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Abstract—A wide variety of deep neural network models
for graph-structured data have been proposed to solve tasks
like node/graph classification and link prediction. By effec-
tively learning low-dimensional embeddings of graph nodes, they
have shown state-of-the-art performance. However, most existing
models learn node embeddings by exploring flat information
propagation across the edges within the local neighborhood
of each node. We argue that incorporating hierarchical node
embeddings can capture the inherently hierarchical topological
features of many realistic graphs such as social networks,
biological network and World Wide Web. In this paper we
propose GRAHIES, a general framework for graph neural
networks to learn node representations that preserve hierarchical
graph information at higher-orders. GRAHIES adaptively learns
a multi-level hierarchical structure of the input graph, which
consists of successively coarser (smaller) graphs that preserve
the global structure of the original graphs at different levels.
By combining the graph representations from different levels
of the graph hierarchy, the final node representation captures
the inherent global hierarchical structure of the original graph.
Our experiments show that applying GRAHIES’s hierarchical
paradigm yields improved accuracy for existing graph neural
networks on the node classification tasks.

Index Terms—graph representation learning, node embedding,
deep learning, node classification, multi-scale

I. INTRODUCTION

Graph data is a ubiquitous type of data that widely occurs
in many real world applications, such as social networks,
biological networks, financial networks and World Wide Web.
It is often desired to perform a set of machine learning
tasks on graph data including node classification [1], link
prediction [2], [3] and community detection [4]. Because
deep neural networks have demonstrated significant success
on image data [5] and text data [6], in recent years there has
been a surge of interest in Graph Neural Networks (GNN)
that apply deep neural networks on graph tasks and many
variants of GNN [1], [7]–[12] have been proposed, which
aim to effectively learn low-dimensional representation vectors
/embeddings of nodes with using the graph structure and node
features. The generated node representations are then used as
the input to downstream machine learning tasks on graph data.

Generally, most of GNN variants follow a neighborhood
aggregation framework that learn the representation of a node
by iteratively aggregating the features of its neighboring nodes.
The aggregation in each iteration is parameterized as a GNN
layer. The composition of k GNN layers/iterations let the node
representation capture the structure and feature information

within the node’s k-hop neighborhood. Within this framework,
the information is propagated flatly via edges and the represen-
tation of every node is influenced indiscriminately by any other
nodes in the k-hop neighborhood. It may cause GNNs unable
to effectively exploit the hierarchical information of graph data
and distinguish nodes from different clusters/communities. A
small k for GNN models can lead to insufficient information
aggregation, missing higher-order structure information, while
a large k leads to the aggregation of features from irrelevant
nodes/communities. Many real-world networks, however, are
inherently hierarchical. For example, social networks usually
have many communities that are groups of related nodes that
correspond to social spheres; biological networks may have
communities corresponding to functional subunits such as
protein complexes. The communities can be further recursively
grouped into larger communities to present a deep hierarchi-
cal structure. Hence, GNN models that disregard important
hierarchical structural information may not lead to the best
representations for all nodes on these graph data.

In this paper we propose GRAHIES, a multi-scale graph
learning framework that allows GNN models to exploit latent
hierarchical structure information. GRAHIES recursively co-
alesces the nodes and edges in the original graph to produce
a series of successively smaller and coarser graphs. These
coarsened graphs provide a view of the original graph’s
global structure at different levels/granularities. GNN modules
are stacked in a hierarchical fashion in GRAHIES: each
GNN module operates on a graph at different coarsening
levels(including the original graph) in the hierarchy. The node
representations of a coarsened graph are then projected to the
original graph. By aggregating the node representations from
different graph levels to produce the final representation for
every node in the original graph, GRAHIES is able to effec-
tively capture the latent hierarchical structure of the graph. We
show that applying our framework to various state-of-the-art
neighborhood-aggregation models achieves an average gain in
accuracy.

II. PRELIMINARIES

Let G = (V,E) be a graph where V is the set of nodes
and E is the set of edges. Let |V | = N and A be N × N
adjacency matrix of the graph with each entry Auv being the
weight of the edge between node u and v. We use X ∈ RN×d

to represent the node feature matrix and each row Xv is the



d-dimensional feature vector of node v ∈ V . The goal of
graph representation learning is to map a node or an entire
graph to a point in a low-dimensional continuous vector space.
Such representation vectors (embeddings) of nodes and graphs
could be used for any downstream task such as node/graph
classification, clustering, and link prediction.

A. Graph Neural Networks

Graph neural networks (GNNs) are general deep learning
models that operate on graph G and node features X to
learn a representation vector of a node or a whole graph.
Generally a GNN model follows a neighborhood aggregation
framework [13] that iteratively updates the feature vector of
every node in the graph by aggregating the feature vectors
of its neighbors. A single GNN layer performs one iteration
of neighorhood feature aggregation for every node in G. The
stacking of k GNN layers makes k iterations of aggregation,
which let a nodes’ representation to capture the structural in-
formation within its k-hop network neighborhood. Considering
the k-th GNN layer, the update to v’s feature follows the
framework represented as:

a(k)v = AGGREGATE(k)({h(k−1)u : u ∈ N (v)},W (k)
A )

h(k)v = COMBINE(h(k−1)v , a(k)v ,W
(k)
C )

(1)

where hk−1u is the feature vector of node u from the previous
iteration/layer and h(k)v is the feature vector of node V gener-
ated by the k-th iteration/layer. W (k)

A and W (k)
C are trainable

model parameters. The initial node feature h(0)v used for the
first iteration is initialized with input node feature Xv .

Many GNN variants [1], [8]–[12], [14]–[16] follow the
neighborhood aggregation framework. One of popular variant
of GNNs, GraphSAGE [8], has proposed a number of different
functions for AGGREGATE including mean, max pooling and
LSTM aggregator. For example, the max pooling aggregator
is formulated as

a(k)v = max
(
{σ(Wpoolh

(k−1)
u + b) : ∀u ∈ N (v)}

)
(2)

where σ is the sigmoid function. The COMBINE step of
GraphSAGE is

h(k)v = σ
(
W · CONCAT (h(k−1)v , a(k)v )

)
(3)

which applies a concatenation of a(k)v and node feature h(k−1)v .
Graph Convolutional Networks (GCN) [1] is another popu-

lar variant of GNN. Each GCN layer can be expressed as

H(k) = σ
(
D̂−

1
2 ÂD̂−

1
2H(k−1)W (k−1)) (4)

where H(k) ∈ RN×d(k)

represents the output node feature
matrix of layer k. A row in H(k) is d(k) dimensional feature
for a node. Â = A + IN is the adjacency matrix with
added self-loop connections to ensure that the old node feature
h
(k−1)
v is also taken into consideration to produce updated v’s

feature h(k)v during aggregation. D̂ is the diagonal node degree
matrix where D̂ii =

∑
j Âij . In essence, GCN performs

AGGREGATE and COMBINE as a whole for node v by a
weighted sum of the feature vectors of all of its adjacency
nodes followed by a linear mapping.

For a full GNN module with K layers/iterations of aggre-
gation on a graph G, the node feature h(K)

v of the last layer is
used as the learned node representation vector, that is further
used for downstream tasks such as node/graph classification.

B. Node Classification

The task of node classification assumes that each node
v ∈ V is associated with a label yv , and the goal of the
graph representation learning for it is to learn a representation
vector hv such that v’s label can be predicted as yv = f(hv).
For this task, GNN is usually followed by a fully connected
neural network that takes the node representation from the
final layer of GNN as its input and makes label predictions.
Semi-supervised multi-class node classification assumes only
a small portion of nodes in the graph have label information
and the loss function for the training is evaluated over all the
labeled nodes.

GNN is also used to learn the representation of an entire
graph for graph classification by effectively aggregating all
node features in the graph from the final layer of GNN.
Assuming a set of graphs and each graph is associated with
a a label, the task here is to learn a representation vector for
every graph that can be further used to predict the label of
an entire graph. In this paper we focus on the task of node
classification while our node representation learning approach
can be combined with other graph-level pooling schemes [17],
[18] to produce graph-level representations.

III. OUR APPROACH

The goal of GRAHIES provides a framework to con-
struct deep, multi-layer GNN models that incorporate inherent
hierarchical structures of the graph data to generate node
representation vectors. In this section, we introduce the details
of our multi-layer GNN model GRAHIES.

A. Framework

GRAHIES defines a model architecture that stacks K
(K > 1) GNN modules and each GNN takes as input
a coarsened version of the graph that the preceding GNN
module works on. By combining the node representations of
graphs at different coarsening levels, GRAHIES lets the model
make local node predictions that respect global structure. In
particular, GRAHIES iteratively applies a GNN module to
generate node representation for current input graph, followed
by a graph coarsening module to produce a coarsened graph
as the input graph for the next GNN module. Formally, let
A(1) = A be the adjacency of the graph G(1) = G and
X(1) = X be the node feature matrix. Generally, GRAHIES
can be expressed as

H(k) = GNN (k)
(
A(k), X(k)

)
(5)

(S(k), X(k+1)) = COARSEN (k)
(
A(k), X(k), H(k)

)
(6)

A(k+1) = S(k)TA(k)S(k) (7)
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Fig. 1. An illustration of the GRAHIES model. We consider a stacking of three GNNs and the input graph is coarsened to two levels. Given a node v in
the input graph, we assume that v only belongs to a single cluster represented by cv in the coarsened graph for simplicity, and the same for cv and c′v . By
propagating the graph representation of each coarsening level to the original graph, we can obtain v’s representations at different levels h

(1)
v , h(2)

cv , h(3)
c′v

from
the output of GNNs in the stack for v itself, cv and c′v respectively. An aggregation function is applied to the three levels representation to generate the final
representation of v.

In this formulation, the k-th GNN module
GNN (k)(A(k), X(k)) generates node representations
H(k) for current input graph G(k) with adjacency matrix
A(k) ∈ RN(k)×N(k)

with node feature matrix X(k).
COARSEN denotes a either trainable or predetermined
non-trainable graph coarsening function that maps the graph
G(k) to a coarsened smaller graph G(k+1) represented
by A(k+1) ∈ RN(k+1)×N(k+1)

, where the sizes of graphs
N (k) > N (k+1). Each node in G(k+1) represents a cluster
of nodes in G(k). The mapping is represented by a soft
cluster assignment matrix S(k) ∈ RN(k)×N(k+1)

where S
(k)
ij

represents the the probability of node i in G(k) belonging
to the cluster node j in G(k+1). Given S(k), the adjacency
matrix A(k+1) can be obtained by Equation (7). Note that
for the last (K-th) GNN module, the graph is not further
coarsened and only 5 is applied to generate H(K).

Figure 1 illustrates the proposed GRAHIES model. Each
GNN module learns node representation for a graph at a dif-
ferent coarsening level. GRAHIES projects the representation
of higher-level graphs to the original graph by recursively
propagating the representation of every node to the nodes in
its represented cluster in the previous finer graph. This step re-
sembles the upsampling in convolutional neural networks [19]
that upsample a feature map to a desired higher-resolution
feature map. In Figure 1, for example, the node representation
h
(3)
c′v

in the coarsest graph is propagated along the hierarchy
to all the nodes in its represented cluster containing cv , and
then is further propagated to the nodes in the clusters they
represent in the original graph at the finer level. As a result,
for a node v in the original graph, we obtain K features
from K different levels, denoted by h(1)v , h

(2)
v , ..., h

(K)
v . Each

h
(k)
v is the graph representation propagated to v from different

levels, representing a cluster in the original graph containing
v at different scales. The final representation of a node v in
the original graph is generated via an aggregation function

such as concatenation, pooling and LSTM to combine these
K features.

B. Graph Coarsening

The COARSEN function in GRAHIES creates a graph hi-
erarchy G(1) = G,G(2), . . . , G(K) by successively clustering
the nodes in the preceding graph G(k) to a smaller graph
G(k+1). We present two types of approaches for the graph
coarsening based on if the GNN modules are coupled with
the coarsening process: decoupled coarsening and coupled
coarsening. Decoupled coarsening is a separate process to the
graph representation learning that produces a graph hierarchy
beforehand and GNN modules works on a fixed graph hi-
erarchy, while in the coupled coarsening graph representation
learning and the formation of graph hierarchy are joint learning
processes.

1) Decoupled Graph Coarsening: The decoupled graph
coarsening creates a graph hierarchy independent of graph
representation learning. In this case, Equation 6 is simplified
as

(S(k), X(k+1)) = COARSEN (k)
(
A(k), X(k)

)
(8)

It does not involve the output of GNNs H(k) and only depends
on the input graph data. It provides a fixed graph hierarchy
for learning node representations.

Graph coarsening can be solved by graph clustering (also
known as community detection) where each cluster is repre-
sented by a node in the coarsened graph. Graph clustering is
a widely studied problem and many clustering techniques has
been proposed, including well-knows ones based on modular-
ity [4], normalized cut [20] and matrix factorization [21]. A
number of algorithms have been proposed to address graph
clustering in attributed networks via probabilistic generative
model [22] and matrix factorization [23]. In this paper we
present a network embedding approach to learn a graph
hierarchy, which later can be easily combined with GNNs



for coupled graph coarsening. It is based on some intuitive
properties for graph clustering in attributed networks [22] that
nodes in the same cluster are likely to share common attributes
and two nodes are more likely to be connected if they belong
to multiple common clusters.

For a graph hierarchy, we have the graph sizes at each coars-
ening level N1 = N > N2 > . . . > NK as hyperparameters
in GRAHIES. We define the feature matrix X(k) ∈ RNk×d for
k-th coarsened graph where dX is the feature dimension of X
and X(1) = X . A membership propensity matrix is defined as

U (k) = X(k)X(k+1)T (9)

in which U
(k)
ij is the similarity of node i’s feature at level k

to cluster node j at level k + 1, representing the propensity
(unscaled logits) of node i belonging to the cluster j. Accord-
ingly, the cluster assignment matrix

S(k) = softmax(U (k)) (10)

where the softmax function is applied in a row-wise manner
on U (k).

Considering two nodes u and v in G(k), row S
(k)
u and S(k)

v

in S(k) represent their probability distributions of belonging to
every cluster. Because the probability of two nodes belonging
to a common cluster indicates their probability of being
connected, the product of S(k)

u S
(k)
v represents the connectivity

strength between u and v that should be consistent with the
adjacency matrix A(k). Thus, the clustering problem can be
formulated as

min||A(k) − S(k)S(k)T ||F (11)

where || · ||F denotes the Frobenius norm.
On the other hand, to achieve a good distinction between

different clusters/communities, it is expected that each node
should be strongly affiliated with only one cluster, which
means the cluster assignment probability vector for each node
should be close to a one-hot vector. Therefore, an entropy
regularization for cluster assignment is introduced to the loss
function. For a cluster assignment matrix S(k), each row S

(k)
i

is a probability distribution of cluster assignment for a node i
in G(k), the entropy function H(S(k)) =

∑
iH(S

(k)
i ) where

H(S
(k)
i ) = −

∑
j S

(k)
ij logS

(k)
ij .

The graph coarsening is then transformed to learn the
feature matrix X(k) (k > 1) for each level of coarsened graphs
with the goal to minimize

K−1∑
k=1

(
||A(k) − S(k)S(k)T ||F +H(S(k))

)
(12)

Once the feature matrix X(k) (k > 1) is learned, we can
apply Equation 9 and 10 to obtain a fixed graph hierarchy with
soft assignment. We can use the pre-trained graph hierarchy
(including node features of coarsened graphs and cluster
assignments) in the framework of GRAHIES. However, the
decoupled graph coarsening process does not interact with the
optimization process of graph representation learning, leading
to a suboptimal graph hierarchy, as shown in our experiment.

2) Coupled Graph Coarsening: In the coupled graph coars-
ening, given an input graph G(k), the generation of a coarser
graph G(k+1) with its node features depends on the output
node features H(k) of the preceding GNN module on G(k).
Therefore, graph coarsening and graph representation learning
are joint together. Its benefit lies on the resulting adaptive
graph hierarchy that can be jointly optimized for the node
representation learning.

The coupled graph coarsening approach is similar to the de-
coupled one. The difference is that, we define the membership
propensity matrix as

U (k) = H(k)X(k+1)T (13)

which means that the cluster assignment depends on the
output of GNN H(k) and the feature X(k) corresponds to the
clustering embeddings with respect to hidden node features
produced by GNN modules. In this way, the learning of graph
hierarchy (in terms of X(k)) and GNN modules for graph
representation are joint together, which allows an adaptive
graph hierarchy/cluster assignments that can be optimized
against node representation. The loss function under joint
optimization is the sum of (12) and the loss for a specific
task like node classification.

In this paper we employ coupled graph coarsening in
our GRAHIES model, because our experiment demonstrates
that the coupling of coarsening and representation learning
achieves better performance than the decoupled approach.

C. Feature Projection and Aggregation

The final node representation is a combination of GNN
output on graphs at different coarsening levels. However,
because the graph coarsening is a soft cluster assignment,
a node v ∈ G can have non-zero probabilities in multiple
clusters at each level. The probability of any node in the
original graph G belonging to a cluster node at level k (k > 1),
denoted by B(k), can be computed as

B(k) =

{
S(k−1) k = 2

B(k−1)S(k) k > 2
(14)

where B(k) ∈ RN×N(k)

. Then, the cluster representation at
k-th level (k > 1) for v, denoted by h(k)v , can be computed as
the sum of cluster node representations weighted by v’s proba-
bilities of being in their represented clusters. Accordingly, the
node feature matrix H(k) for graph G(k) is projected to the
original graph G via B(k)

H
(k)
G = B(k)H(k) (15)

A row H
(k)
iG

of H(k)
G is the projected feature on node i of G. It

can regarded as a sum of node features of graph G(k) weighted
by B

(k)
i that are the probabilities of node i belonging to the

corresponding clusters, i.e., H(k)
iG

= B
(k)
i H(k).

Top-k clusters based projection. Because of the soft assign-
ment, the projected feature derived from Equation 15 integrates
the features of all clusters at each level, which may lead
to a weak distinction between nodes from different clusters.



Therefore, we only choose features of clusters that node i has
top-k largest probabilities being associated with, and project
them to node i. Formally, for the probability vector B(k)

i ,
we keep top-k largest entries in it and set others to zero, to
obtain a new probability vector denoted by B̂

(k)
i . With L1-

normalization B̂(k)
i /

∑
j B̂

(k)
ij , the projected feature on node i

becomes H(k)
iG

= B̂
(k)
i H(k)/

∑
j B̂

(k)
ij .

Trainable layer importance. The information on graphs at
different coarsening levels may be correlated with original
graph in varying degrees. To capture that in the model, we
introduce trainable layer-wise coefficients on feature projec-
tion. For each level k(k > 1), a trainable coefficient parameter
β(k) ∈ R is introduced to (15), i.e.,

H
(k)
G = β(k)B(k)H(k) (16)

β(k) = 1 represents lossless projection which means the
original graph G has highest correlation to the k-th level graph
in terms of node feature, while β(k) = 0 means the k-th level
graph is not informative and important for learning the node
features of G.

After feature projection, for every node v in the original
graph G, we obtain K features h

(k)
v ( 1 ≤ k ≤ K)

from different graph levels. We can apply different types
of aggregation to produce the final node representation. A
simple aggregation is a concatenation h

(1)
v ||h(2)v || . . . ||h(K)

v .
The aggregated node features are then used as the input to a
class prediction layer/model for node classification.

D. Model Complexity

The model parameters of GRAHIES include the model
parameters of each GNN module, the feature matrix X(k)

(k > 1) for each level of graphs, k number of layer importance
coefficients, and parameters of the final aggregation function
and prediction layer for classification. Here we consider X(k)

(k > 1) since it depends on input size but others do not. Given
a specific graph coarsening ratio α, the graph at k-th level has
size of Nαk−1 which decreases with levels exponentially and
thus the total is O(N).

IV. EXPERIMENT

In this section, we evaluate GRAHIES against a number
of multi-label node classification tasks on several real-life
networks. In particular, we compare our approach with prior
state-of-the-art models and analyze the impact of model hy-
perparameters on the performance.

A. Datasets

Our experiments use a set of standard benchmark datasets
for node classification. The dataset statistics are summarized
in Table I. In the semi-supervised node classification setting,
the unlabeled testing data are accessible during training time.
We use three standard citation network benchmark datasets-
Cora, Citeseer and Pubmed and closely follow the transductive
experimental setup of [1]. In these datasets, nodes correspond
to documents and edges to citations. Node features correspond
to a bag-of-words representation of a document Each node has

TABLE I
SUMMARY OF THE DATASETS USED IN OUR EXPERIMENT

Dataset # Nodes # Edges # Classes #Features
Cora 2,708 5,429 7 1,433

Citeseer 3,312 4732 6 3,703
Pubmed 19,717 44,338 3 500

a class label. The training data has 20 nodes per class. There
are 500 nodes for validation and 1000 nodes for testing.

B. Experimental Setup

Unless otherwise noted, we employ coupled graph coarsen-
ing based GRAHIES. To examine the capability of GRAHIES
framework for improving the performance of existing GNN
models, we consider two representative GNN models in Sec-
tion II-A, GCN [1] and GraphSage [8], and use them as
GNN modules in GRAHIES, referred to as GRAHIES-GCN,
GRAHIES-Sage respectively. In particular, we use the “mean”
variant of GraphSage in which the aggregation takes the
element-wise mean value of feature vectors in the neighbor-
hood and the concatenation is used to combine neighborhood
features with nodes’s own features.

GRAHIES’s hyperparameters include the number of graph
hierarchy levels and the size of coarsened graphs at different
levels. To facilitate hyperparameter tuning, we introduce a
coarsening ratio α such that each coarsening level reduces
the graph size N to αN . Let L be the number of levels in
the graph hierarchy and N be the size of the original graph,
the final coarsened graph has size NαL−1 which should be no
less than one. The optimal settings of these hyperpapameters
depends on the dataset since it is correlated with the latent
hierarchical structure of graph data. Another hyperparameter
is the k value for top-k clusters based projection. The settings
for our experiment are given in Table III.

For the transductive tasks on citation networks, we use the
same data splitting/preprocessing and follow the exactly same
setup as in [1]: we train all models for a maximum of 200
epochs using Adam optimizer [24] with a learning rate of 0.01
; We employ early stopping with a window size of 10, i.e. we
stop training if the validation loss does not decrease for 10
consecutive epochs; We initialize weights using the initializa-
tion described in [25] and normalize input feature vectors;
We have the hyperparameter settings: 0.5 (dropout rate), 5·10-
4 (L2 regularization) and 16 (number of hidden units). For
GRAHIES-GCN, we use a single GCN layer as GNN module
in each graph level while without introducing trainable layer
importance since we found it achieved higher accuracy. The
final aggregation function performs concatenation to produce
final node representation For node classification, we apply a
GCN layer with final node representation as input for predic-
tion. In order to fairly assess the benefits of GRAHIES exploit-
ing hierarchical information, we further compare GRAHIES-
GCN with the 2-layer GCN model given in [1] where a GCN
layer produces node representation followed by another GCN
layer for prediction. The only difference between them is that
the final node feature in GRAHIES integrates the features of



TABLE II
HYPERPARAMETER SETTINGS OF GRAHIES-GCN FOR THREE DATASETS

Dataset #levels coarsening ratio k value
Cora 2 0.01 2
Citeseer 3 0.15 1
Pubmed 3 0.08 1

TABLE III
HYPERPARAMETER SETTINGS OF GRAHIES-SAGE FOR THREE DATASETS

Dataset #levels coarsening ratio k value
Cora 2 0.01 2
Citeseer 3 0.08 1
Pubmed 3 0.08 1

coarsened graphs at higher levels. For GRAHIES-Sage, each
GNN module consists of two GraphSage aggregator layers.
Following the GraphSage model, a fully connected layer is
used for label prediction. Similarly, we compare GRAHIES-
Sage with a 2-layer GraphSage model.

C. Results Analysis

The results of our comparative evaluation are shown in
Table IV. we report the classification accuracy and reuse the
metrics reported in [1] for state-of-the-art models including
DeepWalk [26], Planetoid [27], and Chebyshev [7]. We group
GRAHIES and its corresponding non-hierarchy GNN model
together in the table. As we can see, GRAHIES is able to
improve upon its base model GCNs by a margin of 1.5%,
1.8% and 2% on three datasets respectively. It suggests that
exploiting hierarchy sturcutre in the graph can be beneficial
for graph representation learning.

Note the previous works [1], [16] have shown that GCNs
with more than 2 layers, even with residual connections, donot
perform as well as the 2-layer GCN on citation networks.
Our results on GRAHIES show that adding more GCN layers
but on different scales(coarsened graphs) improves the perfor-
mance. The reason could be that, adding more GCN layers
on the original graph enlarges the neighborhood for feature
aggregation, which allows the node representation to capture
higher-order information but at the same time may integrate a
lot of irrelevant information and cause the distinct node feature
be “washed out” via averaging. However, adding a GCN layer
on the cluster-level coarsened graph with feature projection
to the original graph avoids this problem. It allows the node
representation to capture higher-order graph information while
distinguishing the information from different clusters and
integrating features from the most relevant clusters via top-
k clusters based projection.

Next we examine our design choice for GRAHIES and the
impact of model parameters on the performance.

1) Decoupled v.s. Coupled graph coarsening: To under-
stand the benefit of joint learning of graph hierarchy and graph
representation, we compare GRAHIES-GCN with its variant
with decoupled graph coarsening process. For the decoupled
variant, we first run the decoupled graph coarsening on the
graph data with sufficient training epochs (1000 epochs in

TABLE IV
SUMMARY OF RESULTS IN TERMS OF CLASSIFICATION ACCURACIES.

Model Cora Citeseer Pubmed
DeepWalk 67.2% 43.2% 65.3%
Planetoid 75.7% 64.7% 77.2%
Chebyshev 81.2% 69.8% 74.4%
GCN 81.5% 70.3% 76.9%
GRAHIES-GCN 83.0% 72.1% 78.9%
GraphSage 77.5% 65.9% 75.9%
GRAHIES-Sage 78.9% 66.9% N/A

TABLE V
COUPLED COARSENING V.S. DECOUPLED COARSENING

Model Cora Citeseer Pubmed
GRAHIES-GCN 83.0% 72.1% 78.9%
Decoupled variant 81.0% 71.1% 79.0%

our experiment) to derive the graph hierarchy and then train
GNN modules for graph representation learning. We compare
GRAHIES-GCN with its decoupled variant and the results are
given in Table V As we can see, the decoupled variant has
lower accuracy by a margin up tp 2.2%.

2) Impact of Top-k clusters based projection: To assess the
benefit of Top-k clusters based projection, we evaluate the
performance of GRAHIES-GCN in the cases of without top-k
projection (k=0), and with k values from 1 to 5 on the Cora
and Citeseer dataset with other settings as the same as before.
The result is show in Table VI. The maximum accuracy occurs
at k-2 and 1 for Cora and Citeseer respectively.

3) Impact of coarsening ratio: We choose different coars-
ening ratio for graph hierarchy given a fixed number of
coarsening levels and evaluate the accuracy on Cora dataset.
The results are given in Table VII. As we can see that the
accuracy is affected by the value of coarsening ratio and
highest accuracy got is at 0.01. By evaluating the model
accuracy under different parameters settings, we can see that
the importance of hierarchy parameters for model accuracy.

V. RELATED WORK

The hierarchy approach to improving the performance on
learning graph features have been exploited in a number
of recent works [16], [18], [28]. HARP [28] is a hierar-
chical enhancement to existing random walk based network
embedding that learns node embeddings only with topology
structure, which is different from GNN that consider both node

TABLE VI
DIFFERENT k FOR TOP-K IMPORTANCE BASED PROJECTION ON CORA

k 0 1 2 3 4 5
cora 82.7 82.6 83.2 83.1 83.1 83.1
citeseer 68.3 72.1 71.4 71.4 71.3 71.3

TABLE VII
DIFFERENT k FOR TOP-K CLUSTERS BASED PROJECTION

coarsening ratio 0.005 0.01 0.02 0.03 0.04 0.05
accuracy 82.4 83.2 80.5 80.4 82.1 81.4



features and network topology. In addition, the approach of
HARP for building hierarchy is pure topology based node/edge
merging process. In contrast, our graph coarsening approach
is designed for attributed graph data. It exploits node features
and adaptively learns the hierarchy and also cluster/community
level node representations along with GNN training.

DiffPool [18] addresses graph classification that is to is to
label a graph, instead of node classification, and aim to learn
representation of a whole graph instead of node representation.
The hierarchy structure is built through learn-able cluster
assignment and used for pooling. Our approach learns the
hierarchy structure through node features and used for feature
projection. JK-Net [16] considers how to effectively combine
the output of different layers within a GNN model on a single
graph to improve the node representation. GRAHIES considers
the combination at GNN module level. It is straightforward for
GRAHIES to use JK-Net to replace GCN/GraphSage as GNN
module at each level of graphs in the hierarchy and we will
examine its performance gain in the future.

VI. CONCLUSION

This paper presents a general framework GRAHIES for
stacking GNNs to capture inherent hierarchical structure in
many realistic networks. By jointly optimizing the hierarchy
structure and graph representation, GRAHIES captures the
latent hierarchical structure and generates the final node em-
beddings by effectively projecting the graph representation
from higher-level graphs to lower-level. With concatenating
the node embedding from different layers, the final node
embeddings can be effectively used for node classification.
In our future work, we will explore useful herusitic ways to
chosse the best hierarchical parameters setting.
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