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Abstract This chapter presents an overview of techniques for efficiently servingand caching
dynamic web data. We describe techniques for invoking server programs and ar-
chitectures for serving dynamic web content. Caching is crucially important for
improving the performance of Web sites generating significant dynamic data.
We discuss techniques for caching dynamic Web data consistently. Fragment-
based web publication can significantly improve performance and increase the
cacheability of dynamic web data. These techniques assume the existenceof
mechanisms for creating fragments. We discuss techniques for automatically
detecting fragments in web pages.

It is often desirable to provide content with quality-of-service (QoS) guaran-
tees. We examine techniques for providing QoS under overload conditions. We
also look at techniques for providing differentiated QoS.
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1. Introduction

Dynamic data refers to content which changes frequently. Dynamic web
content is created by programs which execute at the time a request is made.
By contrast, static data is usually comprised of already existing files. Dynamic
data requires more overhead to serve than static data; a request for a dynamic
Web page might require orders of magnitude more CPU cycles to satisfy than
a request for a static page. For web sites which generate significant amounts
of dynamic data, the overhead for serving dynamic requests is often the perfor-
mance bottleneck.

Another key problem presented by dynamic data is maintaining updated con-
tent. If a dynamic web page is changing frequently, then copies of the web page
must be updated frequently to prevent stale data from being served. Thischap-
ter will discuss a number of techniques for maintaining consistent replicas of
dynamic content. The dual problems of serving content efficiently and main-
taining updated consistent data are what make dynamic data so challenging.

One method for improving performance which allows at least parts of dy-
namic web content to be cached is to generate web pages from fragments.
A fragment is a portion of a web page which might recursively embed smaller
fragments. Using the fragment-based approach, personalized, secure, or rapidly
changing data can be encapsulated within fragments, allowing other parts of
the web page to be stored in caches which have the ability to assemble web
pages from fragments. This chapter discusses fragment-based web publication
as well as techniques for automatically detecting fragments in web pages.

It is often in the economic interest of Web sites to offer some guarantee on the
quality of service they deliver. Moreover, in many situations, it is desirableto
provide different levels of quality of service, since requests vary in their impor-
tance and their tolerance to delays. We discuss techniques for both achieving
system-wide performance guarantees and class-based service differentiation.

2. Architectures for Serving Dynamic Content

The most common method of generating dynamic content used to be by in-
voking server programs through the Common Gateway Interface (CGI). This
method is inefficient because a new process needs to be invoked for each dy-
namic request. More sophisticated methods for creating dynamic content are
now commonplace. Web servers generally provide interfaces for invoking
server programs which incur significantly less overhead than CGI. One ap-
proach to implementing faster interfaces is for a server program to executeas
part of a web server’s process. This can be done by dynamically loading the
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server program the first time that it is invoked. Alternatively, a server program
can be statically linked as part of the web server’s executable image.

There are drawbacks to running a server program as part of a web server
process, however. Using this approach, a server program could crash a web
server or leak resources such as memory. In addition, the server program should
be thread-safe so that another thread within the server process cannot affect the
state of the server program in unpredictable ways; this can make writing server
programs more difficult. Another approach which alleviates these problems to
a large degree at the cost of slight overhead is for server programs to run as
long-running processes independent from a web server’s process. The server
communicates with these long-running processes to invoke server programs.

One commonly used method for creating dynamic web content is via JavaServer
Pages (JSP) technology. JSP pages consist of special tags in addition tostandard
HTML or XML tags. A JSP engine interprets the special tags and generates
the content required. Subsequently, the results are sent back to the browser in
the form of an HTML or XML page.

JSP pages may be compiled into Java platform servlet classes (A servlet is a
program that runs on the server, compared with an applet which runs ona client
browser. Servlets are handled by special threads within a web server process
and run as part of the web server process.). A JSP page needs to be compiled
the first time the page is accessed. The resulting Java servlet class can remain
in memory so that subsequent requests for the page do not incur compilation
overhead. A JSP page typically has the extension .jsp or .jspx to indicate to the
web server that the JSP engine should be invoked to handle the page.

Microsoft has a similar approach for handling dynamic web content knownas
Active Server Pages (ASP). However, ASP technology is restricted to Microsoft
platforms. JSP technology was developed using the Java Community Process
and is available on a much wider variety of platforms than ASP technology.

Figure 5.1 shows an end-to-end flow of how a web request might proceed
from a client to a server. After the request is made by a browser, it may go
through a proxy server which is shared by several clients. Web content may be
cached at several places within the network as shown in the figure. Caching
can significantly reduce the latency for accessing remote data.

A proxy cache will store static data on behalf of several clients which share the
use of the proxy. By contrast a content distribution network will cache data on
behalf of content providers; content providers pay a content distribution network
such as Akamai to cache content in geographically distributed locations so that
a client can obtain a copy from a cache which is not too far away.

A key problem with caching web data is maintaining consistency among
multiple copies. Later in the chapter, we will discuss different cache consistency
methods which can be used for caching dynamic data. Proxy caches and CDN’s
typically only cache static data.
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Figure 5.2. A three-tiered system for serving dynamic web content. The boxes labeled “app.
server” represent application servers.

A web site which serves dynamic content to a large number of clients will
need several servers. Figure 5.2 depicts a three-tiered system for serving dy-
namic data at a web site. Requests come into a load balancer which sends
requests to Tier 1 consisting of web servers. Static requests are handledby
the web servers in Tier 1. Dynamic requests are handled by the application
servers in Tier 2. Application servers may incur significant overhead in satisfy-
ing dynamic requests. Therefore, there should be enough application servers to
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prevent Tier 2 from becoming a bottleneck during periods of high request rates
for dynamic data. Balancing resources among the tiers is important for pre-
venting one of the tiers from becoming a bottleneck while not wasting money
on excessive resources in a tier which are under-utilized.

High availability is a critically important requirement for commercial web
sites which should be robust in the presence of failures. Multiple serversim-
prove availability as well as performance. If one server fails, requestscan be
directed to another server.

3. Consistently Caching Dynamic Web Data

Caching may take place at any of the tiers in Figure 5.2. For example, many
databases employ some form of caching. A web site might also have one or
more reverse proxy caches [Song et al., 2002]. We now discuss techniques for
achieving consistency among multiple cached copies.

Web objects which are cached may have expiration times associated with
them. A cache continues to serve an object before its expiration time has
elapsed. If a request is received for an object which has expired, thecache sends
a get-if-modified-since request to the server; the server then either returns an
updated copy of the object or indicates to the cache that the previous version
is still valid. In either case, a new expiration time should be assigned to the
object.

Expiration times require relatively low overhead for consistency mainte-
nance. They only provide weak consistency, however. An application needs to
know in advance when an object will expire, and this is not always possible. If
the application overestimates the lifetime of an object, caches may serve obso-
lete copies. If the application underestimates the lifetime of an object, the cache
will send extraneous authentication messages to the server which add overhead
and increase latency for satisfying client requests.

There are a number of approaches for achieving stronger forms of cache
consistency. In strong cache consistency, any cached copy of an object must be
current; even a slight degree of inconsistency is not acceptable. A keyproblem
with strong consistency is that updates require considerable overhead.Before
performing an update, all cached copies of the object need to be invalidated
first. Considerable delays can occur in making sure that all cached copies have
been invalidated.

Strong consistency is often not feasible for web data because of the highover-
head it entails. For much of the data on the web, slight degrees of inconsistency
are tolerable. Therefore, true strong consistency is overkill for most web data.
Other forms of consistency exist which offer stronger degrees of consistency
than expiration times but don’t have the overhead of strong consistency. These
schemes generally make use of server-driven consistency or client polling.
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In server-driven consistency, servers must notify caches when anobject has
changed. The notification message may either be a message to simply invalidate
the object or it could contain a copy of the new object (prefetch). Prefetching
is advantageous for hot objects which are highly likely to be accessed before
they are updated again. For objects which are not accessed all that frequently
relative to the update rate, prefetching is not a good idea because of the added
bandwidth consumed by the prefetch; if the object is not accessed before the
next update, then the prefetch will not have achieved anything useful.

Server-driven consistency has overhead when an update to a cached object
is made. All caches storing the object need to be notified, and the number of
update messages grows linearly with the number of caches which need to be
notified. The server also needs to maintain information about which caches are
storing which objects; this adds storage overhead.

In client polling, caches are responsible for contacting the server in order to
determine if a cached object is still valid or not. Cache consistency managed via
expiration times is a form of client polling in which the expiration time reduces
the frequency of polling. If expiration times are very short, more frequent
polling is required. In the worst case, polling is required on each request to a
cache. The overhead for these polling message can be quite significant.

One method which can reduce the overhead for maintaining cache consis-
tency isleases.In the lease-based approach, a server grants a lease to a cache
for a duration. During the lease duration, the server must continue to send
update messages to the cache. After the lease duration has expired, the server
is no longer required to send update messages to the cache. If the cache wants
to continue to receive update messages for an object, it must renew the lease.
Leases combine elements of server-driven consistency and client polling. Note
that if the lease duration is zero, the cache consistency scheme degenerates into
pure client polling. If, on the other hand, the lease duration is infinite, the cache
consistency scheme degenerates into pure server-driven consistency. Leases
were used for distributed file cache consistency before they were applied to the
web [Gray and Cheriton, 1989].

Leases provide a number of advantages. They bound the length of time that
a server needs to provide updates to a cache. This is important because acache
might become unresponsive to a server or be taken off the network. Theserver
might not know which caches are responsive and which ones are not. Leases
provide an upper bound on how stale a validly cached object can be. In the worst
case, a cached object is updated multiple times but a cache fails to receive any
invalidation messages for the object due to an event such as a network failure.
In this worst case scenario, the cache will still not serve a copy of the object
obsolete by more than the lease duration.

There are a number of variations on leases which have been proposed.A
volume leaseis a single lease which is granted to a collection of several ob-
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jects [Yin et al., 1999]. Cooperative leaseshave been proposed for CDN’s
and involve cooperation between multiple caches to reduce the overhead of
consistency maintenance [Ninan et al., 2002].

3.1 Determining how Changes to Underlying Data Affect
Cached Objects

A key problem with generating and caching dynamic web data is determining
which cached pages have changed when changes occur. Web pagesare often
constructed from underlying data in a non-obvious fashion. When the underly-
ing data changes, several web pages may be affected. Determining the precise
ones which change can be nontrivial. For example, a news web site might have
information about the latest news stories, stock quotes, sporting events, and
other similar items. Suppose the web pages are constructed from databases
which store the latest information received. When new information is received,
the database tables are updated. The problem then becomes how to determine
which web pages need to be updated as a result of the new information.

Data update propagation (DUP) provides an effective solution to this prob-
lem. In data update propagation, correspondences between web pagesand
underlying data are maintained in an object dependence graph. When under-
lying data changes, graph traversal algorithms are applied to determine which
web pages are affected by the change [Challenger et al., 1999].

Figure 5.3 depicts a simple object dependence graph in which none of the
nodes have both an incoming and outgoing edge. If underlying datau1 changes,
then web pagesW1, W3, andW4 also change. Ifu2 changes, thenW2 also
changes, while ifu3 changes, thenW4 is affected.

Figure 5.4 depicts a more general object dependence graph in which paths
of length longer than one exist. If eitheru1 or u3 change, then both web pages
W1 andW2 are affected.

The relationships between web pages and underlying data can change quite
frequently. Object dependence graphs can thus be quite dynamic.

u1 u2 u3

W1 W2 W3 W4

Figure 5.3. A simple object dependence graph representing data dependencies between web
pages and underlying data.
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u1 u2 u3 u4

W1 W2

Figure 5.4. A more general object dependence graph representing data dependencies between
web pages and underlying data.

4. Fragment-based Web Caching

The primary motivation for fragment-based web caching comes from some
of the recent trends in web publishing. A considerable fraction of dynamicweb
pages exhibit the following distinct properties.

Web pages rarely have a single theme or functionality. Most web pages
have several document segments which differ in the information they pro-
vide or the functionality they encapsulate. For example, a web page from
a news provider web site, in addition to containing an article about a news
event, may also have links and synopses of other headlines of the day.
Recent stock market data might also be listed on the web page. Further,
the web page might also have a welcome bar containing personalized
greetings to each registered user. These segments provide very different
information, but are still present in the web page whose predominant
theme is the news item with which it is associated.

Most dynamic web pages contain a considerable amount of static content.
The dynamic contents are often embedded in static web page segments.
Similarly web pages are usually not completely personalized; Web pages
generated for different users often share significant amounts of informa-
tion.

These different kinds of information may exhibit different lifetime and
personalization characteristics. For example the stock market informa-
tion in a web page might expire every few minutes whereas the synopses
of headlines might change every few hours.

Web pages hosted by the same web site tend to have similar structure and
may exhibit considerable overlap in terms of HTML segments.
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Figure 5.5. Fragments in a Web Page

Fragment-based publishing, delivery and caching of web pages are designed
with the aim of utilizing these characteristics to improve the cacheable con-
tent on the web and to reduce data invalidations at caches. In fragment-based
dynamic web pages, various information segments are clearly identified and
demarcated from one another.

Conceptually, a fragment is a portion of a web page which has a distinct
theme or functionality associated with it and is distinguishable from the other
parts of the page. In the fragment-based model, each fragment is an independent
information entity. The web pages have references to these fragments, which
are served independently from the server and stored as such in the caches.

Figure 5.5 provides an example of a fragment-based web page. This was
one of the web pages on a web site hosted by IBM for a major sporting event.
The figure shows several fragments in the web page. Fragment-A lists some
of the recent results of the event. Fragment-B indicates the current medal
tally. Fragment-C shows the day’s schedule of events. Fragment-D is a header
fragment. Fragment-E is a navigation side-bar aiding the users to navigate the
web site. Note that the fragments shown in the figure have distinct themes,
whereas the web page itself is a collage of various information pertaining to the
sporting event.

As the fragments differ from one another in terms of the information and the
functionality they provide, the properties associated with them are also likely to
vary from one another. Important properties associated with a fragmentinclude
the time for which the information remains fresh, personalization characteristics
such as whether the generated information is client-specific (based on cookies),
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and information sharing behavior exhibited by them. Fragment-based caching
schemes recognize the variability of these fragment-specific properties. They
try to improve cache performance by allowing the web page designer to specify
cache directives such as cacheability and lifetime at the granularity of a fragment
rather than requiring them to be specified at the web-page level. Specifying the
cache directives at fragment-level provides a number of distinct advantages:

1 Increases Cacheable Web Content:A significant percentage of web
pages contain some kind of personalized information. The personalized
information may be as simple as a welcome bar, or may be highly sensitive
information like credit card or bank account details. This personalized
information should not be cached for reasons of privacy and security, and
hence has to be marked as non-cacheable. However, the pages that contain
them usually also have non-personalized information. By specifying the
properties at fragment level, only the personalized information need be
marked as non-cacheable thereby permitting the caches to store the non-
personalized content; this increases the cacheable content.

2 Decreases Data Invalidations:Fragments in the same web page might
exhibit very different lifetime characteristics. In our example, Fragment-
A and Fragment-B are likely to change more frequently than Fragment-
C which in turn changes less frequently than Fragments D or E. When
lifetimes are specified at the page level, the entire page gets invalidated
when any of its fragments change. Therefore, the lifetime of a web page
is dictated by the most frequently changing fragment contained in it.
With fragment-based caching, the lifetime information can be specified
at fragment-level. This allows the caches to invalidate only the fragment
that has expired, and to fetch only the invalidated fragment from the origin
server. The rest of the web page remains in the cache and need not be
re-fetched from the server.

3 Aids Efficient Disk Space Utilization: Web pages from the same web
site often share content. It might be in the form of same information
being replicated on multiple web pages or it might be structural content
such as navigation bars, headers and footers. In fragment-based publica-
tion, content which is shared across multiple web pages would typically
be generated as fragments. These fragments are stored only once rather
being replicated with each web page, thus reducing redundancy of infor-
mation at the caches.

Researchers have proposed several flavors of fragment-based publishing,
delivery and caching of web data. A fragment-based publishing system for
dynamic web data is presented in [Challenger et al., 2000]. This was one of
the first works on the fragment-based web document model. Their system not
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only improves the performance of web-page construction, but also simplifies
designing of web sites. The system allows embedding smaller and simpler frag-
ments into larger and more complex fragments. This permits reuse of generated
fragments, thereby avoiding unnecessary regeneration of the same information
multiple times. Fragment-based publishing also facilitates designing of mul-
tiple web pages having a common look and feel, thereby simplifying the task
of constructing large web sites. Further, if the information correspondingto a
fragment changes, only that particular fragment needs to be updated rather than
updating every single web page containing that fragment. This significantly
reduces the overhead of maintaining complex web sites.

Datta et al. [Datta et al., 2002] argue that the dynamic nature of a web page is
exhibited along two mutually orthogonal dimensions, namely, the layout of the
web page and its content. They propose a fragment-based web caching scheme
wherein the dynamic content is cached at proxy caches, whereas the layout of
the web page is fetched from the server on each access to the web page.

When a request for a web page reaches a proxy cache, it is routed to the
origin server. The origin server executes a script associated with the request,
which generates the entire web page. A background process called back-end
monitor (BEM) constantly monitors the script generating the web page. This
process creates a layout for the page being generated. The background process
creates the layout by removing those contents that are available at the proxy
cache from the web page being generated by the application script. A reference
containing an identifier of the removed fragment replaces the removed content.
This document, which contains the layout information along with the fragments
not available in the proxy cache, is sent to the proxy cache. The proxy cache,
on receiving this document, parses it and introduces any missing fragments
to generate the complete web page, which is then communicated to the user.
While parsing the document received from the server, the proxy also stores
fragments that are not available locally. This approach reduces the amount of
data communicated from the server to the cache by transferring only the layout
and the fragments that are not present in the cache.

Mohapatra and Chen [Mohapatra and Chen, 2001] apply the concept of
fragments for providing efficient QoS support and security mechanisms for
web documents. They propose a system called WebGraph, which is a graph-
ical representation of the containment relationship among weblets, which are
analogous to fragments. The nodes of the graph correspond to weblets (frag-
ments), and the edges represent the containment relationships. In the proposed
system the QoS and security attributes can be specified at the granularity ofa
weblet. For example fragments may carry attributes such as delay sensitive,
throughput sensitive, loss sensitive, etc. The edges of the WebGraphcan also
carry attributes indicating whether the edge can be dropped under certaincir-
cumstances like server overload or inability to support the QoS requirements
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of the associated fragments. If an edge is dropped, the correspondingfragment
is not included in the web page.

4.1 Edge Side Includes: A Standard for Fragment-based
Caching

Although researchers have shown the benefits of fragment-based caching,
adopting it in commercial systems presents additional challenges. One of the
major challenges is to evolve a common standard for fragment-based cachingso
that various proxies and servers implemented by different vendors become inter-
operable. Recognizing the need for standardizing fragment-based publishing,
caching and delivery of web data, the Internet and Web communities have
evolved a standard called theEdge Side Includes (ESI)[ESI, 2005]. ESI is an
XML-based markup language that can be used by content providers to publish
web pages through fragments. The content providers can specify the fragments
to be included in a web page. A cache supporting ESI understands that the
specified fragment has to be included in the web page. It constructs the web
page by inserting those fragments either from the cache, or by fetching them
from the server.

ESI has been endorsed by companies like IBM, Akamai, Oracle and Digital
Island. One of the goals of its design was to make it mark-up language and
programming-model independent. The key functionalities provided by ESI are:

1 Inclusion The primary functionality of ESI is to provide support for spec-
ifying fragments to be inserted in a web page. The include element in the
markup language is provided for this purpose. The content providers use
the include element to instruct the caches to insert the indicated fragment
in the web page. The caches which encounter an include statement check
to see whether it is available locally. In case the fragment is not available
at the cache, the fragment is fetched from the server. In addition to iden-
tifying the fragment, the include element also provides variable support.
It can be used to specify the parameters to the script generating the web
page.

2 Conditional Inclusion/Exclusion: Web page designers may want to
include certain fragments when one or more conditions are satisfied, and
may want to exclude them, or provide alternate fragments otherwise.
Thechoose, whenandotherwiseclauses in the ESI specification provide
support for such conditional inclusions and exclusion of fragments.

3 Handling Exceptions: At certain times, a particular fragment may be-
come unavailable due to failure of the server or the network. ESI in-
cludes mechanisms to counter such exceptions through thetry, attempt
andexceptclauses. Web page designers can use these clauses to specify
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alternate resources, or default fragments to be used by the caches when
such exceptions occur.

4 Fragment Invalidation Support: An important issue with caching dy-
namic web data is maintaining consistency of the cached copies. Since
such documents may become stale when the data on the back-end databases
change, caching such documents needs stronger consistency mechanisms
than the commonly used Time-to-Live schemes. ESI supports stronger
consistency through explicit invalidation of cached fragments. ESI’s
fragment invalidation includes 2 messages: (1) Invalidation request, and
(2) Invalidation response. A server instructs the caches to invalidate one
or more fragments through the invalidation response. A cache receiv-
ing an invalidation request sends the invalidation response to the server
informing it of the result of the invalidation.

While fragment assembly in proxy or CDN caches has been shown to be effec-
tive in reducing the loads on the backbone networks and origin servers,it does
not reduce the load of the network link connecting the end clients to the cache.
However, for clients which are connected through dial-ups, the dial-up links
from the clients to the reverse proxy caches located at the ISPs (or the socalled
last-mile) often become bottlenecks, and the latency involved in transferring
documents over the dial-up links forms a significant fraction of the total latency
experienced by dial-up clients. Therefore, it is important to reduce the load on
the last-mile links, especially for dial-up clients. Rabinovich et al. [Rabinovich
et al., 2003] address this problem by taking fragment assembly one step further.
They propose theClient Side Includesscheme, wherein the composition of web
pages from fragments is done at the client itself, rather than within a network
cache. The CSI mechanism enables the browsers to assemble the web pages
from the individual fragments.

The paper also describes a JavaScript-based implementation of the CSI mech-
anism. In their implementation, the origin server returns a wrapper on receiving
a request for a web page from a CSI-enabled client. This wrapper invokes a
JavaScript-based page assembler at the client’s browser. This assembler fetches
individual fragments from the origin server and composes the web page,which
is then displayed to the user. The clients can cache the wrapper-code of aweb
page in order to avoid the overhead of fetching it from the server on each access
to the web page.

Another important question that needs to be addressed is how dynamic web
pages can be fragmented so that servers and caches provide optimal perfor-
mance. One obvious solution for this problem is to require that the web pages
be fragmented by either the web page designer or the web site administrator.
Manual fragmentation of dynamic web pages in this fashion is both labor in-
tensive and error prone. Further, manual markup of fragments in web pages
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does not scale, and it becomes unmanageable for edge caches servingweb data
from multiple content providers. Ramaswamy et al. [Ramaswamy et al., 2004]
present a scheme to automatically detect fragments in web pages. This scheme
automatically detects and flags fragments at a given web site which exhibit po-
tential benefits as potential cache units. Their approach depends upon acareful
analysis of the dynamic web pages with respect to their information sharing
behavior, personalization characteristics and change patterns.

4.2 Automatic Fragmentation of Dynamic Web Pages

Automatically fragmenting dynamic web pages presents a unique challenge.
The conceptual definition of a fragment says that it is a part of a web page
having distinct theme or functionality. While a human with prior knowledge of
the web page’s domain can easily and unambiguously identify fragments with
different themes, it is not straightforward to build a system that can do the same.
Not only should these systems be able to identify the themes associated with the
fragments, but also they should efficiently detect fragments in web sites with
thousands of web pages.

The proposed scheme detects fragments that form cost-effective cache units
[Ramaswamy et al., 2004]. These fragments are referred to ascandidate frag-
ments. A candidate fragment is recursively defined as follows:

Each Web page of a web site is a candidate fragment.

A part of a candidate fragment is itself a candidate fragment if any one
of the two conditions is satisfied:

– The part is shared among “M” already existing candidate fragments,
where M> 1.

– The part has different personalization and lifetime characteristics
than those of its encompassing (parent or ancestor) candidate frag-
ment.

We distinguish between two types of fragments. The fragments that satisfy
the first condition are called theshared fragmentsand those satisfying the second
condition are referred to as theLifetime-Personalization based fragmentsor the
L-P fragments. The two kinds of fragments benefit the caching application
in two different ways. Incorporating shared fragments into web pages avoids
unnecessary duplication of information at the caches, thereby reducingdisk
space usage at caches. The L-P fragments, on the other hand, improve cacheable
content and reduce the amount of data that gets invalidated.

The scheme has two algorithms: one to detect shared fragments and another
to detect L-P fragments. The shared fragment detection algorithm works on
a collection of different dynamic pages generated from the same web site and
detects fragments that are approximately shared among multiple web pages. In
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contrast the L-P fragment detection algorithm detects fragments by comparing
different versions of the same web page.

As both fragment detection algorithms compare several web pages, they
need a data structure that permits efficient comparison of web pages. Theau-
tomatic fragmentation scheme uses a web page model for this purpose which
is called theAugmented Fragment Treemodel, or the AF tree model. An AF
tree model is a hierarchical model for web documents similar to the document
object model (DOM) [DOM, 2005], with three distinct characteristics: First, it
is a compact DOM tree with all the text-formatting tags (e.g.,<Big>, <Bold>,
<I>) removed. Second, the content of each node is fingerprinted with Shingles
encoding [Broder, 1997]. Third, each node is augmented with additionalinfor-
mation for efficient comparison of different documents and different fragments
of documents.

Shingles are fingerprints of strings or text documents with the property that
when the string changes by a small amount its shingles also change by a small
amount. The similarity between two text documents can be estimated by com-
puting the overlap between their shingles. Shared and L-P fragment detection
algorithms use shingles to estimate similarity of web pages.

Shared Fragment Detection Algorithm. The shared fragment detection
algorithm compares different web pages from the same web site and detects
maximal fragments that are approximately shared among at leastShareFactor
distinct web pages, whereShareFactor is a configurable parameter.

Let us consider the two web page parts shown in Figure 5.6a. The first web
page part appeared in the Americas page of BBC’s web site, while the second one
is taken from the World News web page from the same web site. These two web
page parts essentially contain the same information, which makes them prime
candidates for shared fragment detection. However, detecting these fragments
automatically presents several challenges. First, although the two web page
parts are similar, they are not exactly the same. For example, the order of the
bullet points is different, and the text appearing in one of the bullet points is
slightly different. The shared fragment detection algorithm should be able to
detect the entire web page part as a single fragment, or detect individualitems
(like the heading, the text, the bullet points) as fragments depending on the web
site’s preference. Second, similar html segments in two web pages might appear
in completely different positions (note that the bullet points have changed their
relative positions in the two web page parts). Third, if two or more web page
parts are deemed to be similar, and hence detected as a shared fragment, a large
fraction of their sub-parts (like the heading, the text and the bullet points in
the example) would also be similar to one another. However, these sub-parts
aretrivial fragments, and hence the algorithm should avoid detecting them as
fragments.
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Figure 5.6a. Example of Shared Fragments
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Figure 5.6b. Illustration of Shared Fragment Detection Algorithm

The shared fragment detection algorithm addresses these challenges. It
works in two steps as shown in Figure 5.6b. In the first step, the algorithm
sorts the nodes of AF trees of the different web pages based on their sizes. In
the second step the algorithm detects maximally shared fragments by grouping
nodes that are similar to one another based on the overlap of their shingles.

The algorithm has three tunable parameters which can be used to control the
quality of the detected fragments. The first parameter,ShareFactor, specifies
the minimum number of web pages (or more generally other fragments) that
should share a web-page part in order for it to be detected as a fragment. The
web site administrator can use this parameter to avoid detecting fragments that
are shared across a very minute fraction of the web pages. The secondparame-
ter,MinMatchFactor, which can vary between0.0, and1.0, is used to specify
the similarity threshold among the AF tree nodes that form a shared fragment.
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When this parameter is set to higher values, the algorithm looks for more per-
fect matches, thereby detecting larger numbers of small-sized fragments. For
example, in the Figure 5.6a, ifMinMatchFactor is set to 0.6, the entire web
page part is detected as a single fragment. IfMinMatchFactor is set to0.9,
the algorithm detects four fragments (a heading fragment, a fragment corre-
sponding to the text, and two fragments corresponding to two bullet points).
MinFragSize is the third parameter, which specifies the minimum size of the
detected fragments. One can use this parameter to avoid very small fragments
being detected. If a fragment is very small, the advantages in incorporating
it are limited, whereas the overheads of composing the web page from these
very tiny fragments would be considerably high. A web site administrator can
choose an appropriate value for these parameters based on the capabilityof the
infrastructure, the user request patterns, and the invalidation rates.

L-P Fragment Detection. The L-P fragment detection algorithm can be
used to detect fragments that have different lifetime or personalization charac-
teristics than their encompassing fragments. The input to this algorithm is a set
of different versions of the same web page. The different versions might either
be time-spaced, or be obtained by sending in different cookies.

The L-P fragment detection algorithm compares different versions of the
same web page and detects portions of the web page that have changed over
different versions. A web page might undergo several different types of changes:
contents might be added, deleted or they might change their relative position
in the web page. Figure 5.7a shows two versions of a web page part appearing
in two versions of the same web page from Slashdot’s web site. This figure
demonstrates the various kinds of changes web pages might undergo. Therefore,
the algorithm should be sensitive to all these kinds of web page changes. Further,
the algorithm should also detect fragments that are most beneficial to the caching
application.

The L-P fragment detection algorithm discussed in the paper installs the AF
tree of the first version available (in chronological order) as the base version.
The AF tree of each subsequent version is compared against this base version.
For each AF tree node of a subsequent version, the algorithm checks whether
the node has changed its value or position when compared with an equivalent
node from the base version and marks the node’s status accordingly. Inthe
second phase the algorithm traverses the AF trees and detects the L-P fragments
based on its and its children’s status, such that the detected fragments are most
beneficial to caching. Figure 5.7b depicts the execution of the algorithm. The
detected fragments and the object dependency graph are also shown in the
figure.

Similar to the shared fragment detection algorithm, the L-P fragment detec-
tion algorithm also provides parameters which can be used by the web admin-
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Figure 5.7a. Examples of L-P Fragments
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istrators to tune the performance of the algorithm. The first parameter called
theMinFragSize specifies the minimum size of the detected fragments. As
in shared fragment detection, this parameter can be used to preclude verysmall
fragments. By doing so one can detect only those fragments that are costeffec-
tive cache units.ChildChangeThreshold is the second tunable parameter of
the algorithm. This parameter in some sense quantifies the amount of change
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an html-segment has to undergo before being detected as a fragment. When
ChildChangeThreshold is set to high values, fragments are detected at a finer
granularity leading to larger numbers of small fragments. While finer granular-
ities of fragmentation reduce the amount of data invalidations at caches, it also
increases the page assembly costs at the caches. The web site administratorcan
decide the appropriate value for this parameter depending upon the available
infrastructure and the web-site specific requirements.

The fragment detection scheme which includes these two algorithms outputs
a set of fragments. These fragments are served as recommendations to theweb
site administrator.

5. Providing quality of service for dynamic web content

Providing good quality of service (QoS) is crucial in serving dynamic content
for several reasons. First, one of the main applications of dynamic content is in
e-business web sites. For an e-business web site, the competitor is only oneclick
away making it very easy for dissatisfied customers to take their business to a
competitor. Second, poor quality of service affects the image of the company
as a whole. Studies have shown that users equate slow web download times
with poor product quality or even fear that the security of their purchases might
be compromised.

In addition, it is often important for a site to offer different levels of ser-
vice, since requests vary in how important they are and users vary in how
tolerant they are to delays. For example, it is in the economic interest of an
e-commerce retailer to differentiate between high-volume customer and low-
volume customers. Moreover, some customers may have paid for service-level
agreements (SLAs) which guarantee certain levels of service. Finally, studies
[Bouch et al., 2000, Bhatti et al., 2000] indicate that customers’ patience levels
decline in proportion to the time spent at the site. Patience levels are also tied
to the type of request users submit. Customers tend to be more tolerant of long
search times and less tolerant of long purchase times.

How users perceive the quality of service they experience when accessing
web content depends on several factors:

The latency experienced by users
When users rate the quality of service received at a web site as poor, the
most common reason is high latency. Latency, or response time, is defined
as the period of time between the moment a user makes a request and the
time the user receives the response in its entirety. In order for a response
to be perceived as immediate, the latency needs to be on the order of 0.1
seconds. For a user to be satisfied, delays should not exceed 5 seconds.
Delays that are longer than 10 seconds are considered intolerable and lead
users to assume that errors have occurred in processing their requests.
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The predictability of system performance
Frequent customers at a site are used to a certain level of service. If the
quality of service is not delivered as expected, users will not be happy.
Unpredictable service compromises customers’ opinions of the company.

The overall system availability
The worst quality of service is no service. Even short service outages
can cost an e-business huge amounts in lost revenues. One common
source of service outages is transient overload at the web site due to an
unexpected surge of requests. Examples of this phenomenon include the
overload of the Firestone web site after a tire recall, the outage of several
large e-tailers during the holiday shopping season in 2000, and overload
of the official Florida election site, which became overwhelmed after the
presidential election of 2000.

The freshness of data returned to the user
Freshness of data is a quality of service aspect that is particular to dynamic
content. It arises when web sites, in an attempt to serve a dynamic
request more efficiently, rely on cached data from an earlier execution
of the dynamic request. This approach is for example commonly used
when serving dynamic requests that require access to a database back-
end. While using cached data reduces work for the server, users might
receive outdated data. Consider, for example, an e-commerce site that
reports product availability based on cached values of stock levels. The
site might realize only after accepting an order that the item is not actually
in stock.

The network community has long studied the efficacy of providing quality
of service guarantees and providing class-based service differentiation. How-
ever, much of this work relies on the assumption that the network is the typical
bottleneck in web transfers. Serving dynamic content can require orders of mag-
nitude more processing power at a web site compared with serving purely static
data [Challenger et al., 2004]. For web sites that are dominated by dynamic
content the bottleneck tends to shift from the network to the server, making it
necessary to provide QoS mechanisms at the server.

In the remainder of this section, we will survey recent research on providing
quality of service at a web server. We first discuss approaches for achieving
system-wide QoS goals, i.e. achieving the same set of QoS goals across all
requests served by a site. We then examine solutions for providing class-based
QoS, where different classes of requests have different QoS goals.
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5.1 Achieving system-wide QoS goals

The system load a site experiences is the main factor affecting the quality of
service. The resources at a web site are limited, so providing a certain level of
quality of service requires keeping the system load below some threshold. The
main approach for guaranteeing a certain level of QoS is therefore load control
in order to avoidoverloadconditions. Overload in this context refers not only
to load that exceeds the system’s capacity, but also to load that is too high to
ensure the system’s QoS specifications.

Load control typically consists of two steps; detecting when a system reaches
overload and reacting by taking measures to reduce the load. The approaches
suggested for load control vary depending on where they are implemented.
Load control can be integrated into the operating system of the web server, it
can be implemented at the application level, or it can be moved to the database
back-end. Below we first describe different approaches for detecting overload
and then discuss possible solutions to the problem.

Detecting Overload. Approaches for overload detection at theoperating
system levelfall into two categories. Approaches in the first category focus on
the network stack and typically monitor the occupancy of the SYN queue or
the TCP listen queue [Voigt et al., 2001]. While the occupancy of these queues
provides only a very limited view of the overall state of the server, the back-
pressure caused by over-utilization of resources in one of the higher system
layers will eventually lead to a backlog in those kernel queues.

Another approach for overload detection at the operating system level is
based on measuring the utilization of server resources. One of the motivations
for considering server resource utilization is that some QoS algorithms can be
theoretically proven to guarantee a certain level of service, assuming thatthe
server utilization is below some threshold [Abdelzaher et al., 2002].

When using information on the utilization level of the system in load control
decisions, it is important to distinguish between high utilization caused by
a short, transient burst of new traffic, versus high utilization resulting from
a persistent increase in traffic that calls for load control. Cherkasova et al.
[Cherkasova and Phaal, 2000] therefore propose to use a predictive admission
control strategy that is based on the weighted moving average of the utilization
level observed in previous measurement periods, rather than the instantaneous
utilization level.

Methods for detecting overload at theapplication levelare either based on
monitoring the occupancy of application internal queues, or on developingan
estimate of the work involved in processing the currently active request.

The prior approach is taken by [Ramanathan and Singhal, 2000] and [Bhatti
and Friedrich, 1999]. Both employ mechanisms for rapidly draining the TCP
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listen queue and managing the outstanding requests in an internal system of
queues. The lengths of the internal queues can then indicate when to apply
load control. Moving load control from the kernel queues to an application
level queue helps to avoid TCP timeouts experienced by requests droppedin
the kernel queues. Moving the load control to the application level also allows
for the use of application-level information in the load control process.

Chen et al. [Chen et al., 2001] and Elnikety et al. [Elnikety et al., 2004]
follow the latter approach, i.e. they approximate the current system load based
on estimates of the work imposed by each request in progress. Chen et al.
experiment with the CGI scripts included in the WebStone benchmark. They
measure the CPU usage for each CGI script and use it as an estimate for the
work associated with serving the corresponding dynamic request. Elniketyet
al. consider Java servlets that communicate with a database back-end and find
that estimates of per-servlet service time converge relatively quickly. Hence the
per-servlet estimates can indicate the load a given dynamic request introduces
to the system. Both studies then approximate the system load at any given
time by summing up the per-request service time estimates for the requests in
progress. Load control is triggered if the estimated load in the system is close
to the system capacity, which is determined in off-line experiments.

Research on integrating load control into thedatabase serverhas mostly fo-
cused on the avoidance of lock thrashing caused by data contention. A database-
integrated approach offers the possibility of utilizing more detailed information
on the transactions in progress. Rather than simply basing decisions on the
number of transactions in progress, the load control can utilize knowledgeof
the state of the individual transactions (running vs blocked waiting for a lock)
and the progress the transactions have made.

Choosing the right approach for implementing overload control involves
several trade-offs. Integration into the operating system allows overload con-
trol by immediately dropping new requests before occupying any system re-
sources. On the other hand, the advantage of application-level load control is
that application-level information, e.g. the expected work to process a given
request, can be taken into account. For complex applications like database sys-
tems, the application level and the operating system have only limited informa-
tion of the state of the system, potentially allowing only for coarse-grained load
detection and control. However, the more fine-grained approach of integrating
QoS mechanisms into the database system comes at the price of modifying a
complex piece of software.

Reacting to Overload. After detecting an overload situation, measures
must be taken to reduce the server load. One common approach is to reducethe
number of requests at the server by employing admission control, i.e. selectively
rejecting incoming requests. An alternative approach is to reduce the work
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required for each request, rather than reducing the number of requests, by
serving lower quality content that requires less resources. The premisefor
using content adaptation rather than admission control is that clients prefer
receiving lower quality content over being denied service completely.

Dealing with overload through content adaptation
Content adaptation to control overload has first been suggested by Bhatti
et al [Abdelzaher and Bhatti, 1999]. Some of the proposed mechanisms
apply mostly to static content, e.g. the suggestion to replace large, high
resolution images by small, low resolution images to reduce the required
bandwidth. Their approaches can also help reduce high load that is due to
dynamic content. For example, the authors propose reducing the number
of local links in each page, e.g. by limiting the web site’s content tree to a
specific depth. A smaller number of links in a page affects user behavior
in a way that tends to decrease the load on the server.

The work in [Chen and Iyengar, 2003] shows how to apply the conceptof
service degradation to dynamic content that is generated by accessing a
back-end information systems, such as a database server. They propose
to generate a less resource intensive, lower quality version of this type
of content, by compromising the freshness of the served data by using
cached or replicated versions of the original content.

Chen et al. implement this notion of service degradation by comple-
menting the high-end database back-end server at a web site with a set of
low-end servers that maintain replicated versions of the original data with
varying update rates. If the load at the high-end server gets too high, traf-
fic can be off-loaded to the low-end servers at the price of serving more
outdated data.

Li et al. [Li et al., 2003] propose a similar approach for database con-
tent that is replicated in data centers across a wide area network. They
characterize the dependency between request response times and the fre-
quency of invalidating cached content (and hence the freshness of the
cached content) and exploit this relationship by dynamically adjusting
the caching policy based on the observed response times.

A famous example for the application of service degradation in practice
includes the way CNN handled the traffic surge at its site on Sept 11, 2001
[LeFebvre, 2002]. CNN’s homepage, which usually features a complex
page design and extensive use of dynamic content, was reduced to static
content with one page containing 1247 bytes of text, the logo, and one
image.

Dealing with overload through admission control
The simplest form of admission control would be to reject all incoming
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requests, either in the network stack of the operating system or at the
application level, until the load drops below some threshold. There are
at least two problems caused by the indiscriminate dropping of requests
in this naive approach.

1 The decision to drop a request does not take into account whether
the request is from a new user or part of a session that has been
lasting for a while. As a result, long sessions are much more likely
to experience rejected requests at some point during their lifetime
than short sessions. However, it is often the long sessions at an
e-commerce server that finally lead to a purchase.

2 The decision to drop a request does not take the resource require-
ments of the request into account. To effectively shed load through
admission control, one ideally wants to drop incoming requests with
high resource requirements. On the other hand, despite high load,
the server might want to accept a request if this request has very
small resource requirements or requires only little service at the
bottleneck resource.

The work of Cherkasova et al. [Cherkasova and Phaal, 2002] and Chen
et al. [Chen and Mohapatra, 2003] address the first problem by taking
session characteristics into account when making admission control deci-
sions. Simply put, if the load at the server exceeds a specified threshold,
only requests that are part of an active session are accepted, while re-
quests starting new sessions are rejected. In practice, this approach can
be implemented by using cookies to distinguish whether an incoming
request starts a new session or is part of a session in progress.

[Elnikety et al., 2004] and [Chen et al., 2001] base admission control
decisions on estimates of the service requirements of incoming requests
and estimates of the server capacity (determined as described above).
The system load at any given time is computed as the sum of the service
requirements of all requests in progress. Elnikety et al. admit a new
request to the system only if adding its service requirement to the current
load does not increase the load beyond the server capacity. Requests that
would increase the server load beyond its capacity are stored in a backup
queue. Requests are only dropped after the backup queue fills up.

Orthogonal to the above approaches, Welsh et al. [Welsh and Culler,
2003] propose a whole new design paradigm for architecting internet
services with better load control that they call SEDA (Staged-event-
driven-architecture). In SEDA, Internet services are decomposedinto
a set of event-driven stages connected with request queues. Each stage
can control the rate at which to admit requests from its incoming request
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queue and decide which requests to drop in the case of excessive load.
This approach allows fine-grained admission control. Moreover, com-
bating overload can be focused on those requests that actually lead to a
bottleneck (since requests that never enter an overloaded stage are not
affected by the admission control).

As mentioned earlier, work for load control in the database commu-
nity is mostly concerned with avoiding thrashing due to data contention.
Database internal methods reduce data contention not only by employing
admission control, but also by canceling transactions that are already in
progress. The conditions for triggering admission control and the can-
celing of transactions depends on the state of the transactions in progress.
One option is to trigger admission control and transaction cancellation
once the ratio of the number of locks held by all transactions to the
number of locks held by active transactions exceeds a critical threshold
[Moenkeberg and Weikum, 1992]. Another possibility is to apply ad-
mission control and cancel an existing transaction if more than half of all
transactions are blocked waiting for a lock after already having acquired
a large fraction of the locks they require for their execution [Carey et al.,
1990]. In both cases, the transaction to be canceled is one that is blocked
waiting for a lock and at the same time is blocking other transactions.

5.2 Differentiated quality of service

There are two different types of differentiated quality of service.

Best effort performance differentiation
Different classes with different priorities, where higher priority classes
should receive better service than lower priority classes.

Absolute guarantees
Each class has a concrete QoS goal that it needs to meet, e.g. a latency
target specified in number of seconds.

Best effort performance differentiation. Methods for providing best
effort performance differentiation typically follow one of the following three
approaches:

1 providing different quality of content depending on the priority of a re-
quest.

2 changing the order in which requests are processed based on request
priorities.

3 adapting the rate at which a request is served according to the request
priority.
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We first discuss how to implement these approaches for non-database driven
requests, and we then turn to the question of how to achieve performance dif-
ferentiation at a database back-end server.

For non-database driven requests the first two approaches can be imple-
mented as extensions of methods discussed previously for achieving system-
wide QoS goals. The first approach can be implemented by applying the meth-
ods for content degradation described above, where the degree of content degra-
dation is chosen according to request priorities. The second approachcan be
implemented as a straightforward extension of any of the mechanisms presented
earlier that involve queues. More precisely, the processing order of requests
can be changed based on request priorities, by either prioritizing the kernel
SYN and listen queue [Voigt et al., 2001], or by prioritizing application internal
queues such as those used in the work by [Bhatti and Friedrich, 1999] and by
[Ramanathan and Singhal, 2000]. The former approach is limited to the case
where class priorities can be determined based on the client IP address, since
at this point no application level information is available.

Mechanisms for changing the rate at which requests are processed (approach
3 in the above list) include limiting the number of server processes available
to low priority requests and adjusting the operating system priorities of server
processes [Eggert and Heidemann, 1999]. The applicability of both of these
mechanisms is limited in that they assume a process-based server architecture.

When it comes to database-driven requests, most commercial databases ship
with tools that allow the database administrator to assign priorities to trans-
actions in order to affect the rate at which transactions are processed.The
implementation of those tools usually relies on CPU scheduling [Rhee et al.,
2001, IBM DB2, 2005] and is therefore most effective when applied to CPU-
bound workloads.

For database-driven workloads whose performance is limited by data con-
tention, effective service differentiation requires prioritization applied atthe
lock queues. McWherter et al. [McWherter et al., 2004, McWherter et al.,
2005] evaluate different lock scheduling strategies and find that simple reorder-
ing of lock queues according to priorities provides a relatively good levelof
service differentiation. However, to allow for optimal performance of high
priority transactions, preemptive lock scheduling policies are necessary, i.e.
scheduling policies that allow high priority transactions to abort and restartlow
priority transactions in case of a lock conflict. McWherter et al. show that naive
preemptive policies impose harsh performance penalties onto the low priority
transactions due to the large amounts of wasted work introduced by transaction
aborts and restarts. They go on to propose a new preemptive lock scheduling
policy that is able to balance the cost (in terms of wasted work due to rollbacks)
and the benefit of preemptive lock scheduling.
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Achieving absolute guarantees. One approach for achieving absolute
delay guarantees is by adapting the approaches for best-effort differentiation
(described above) through feedback control. For example, admission control
could be used in combination with one of the approaches that maintains internal
request queues to adjust the drop rate of low priority requests if the response
times of high priority requests are higher or lower than their target. This ap-
proach has been shown to work sufficiently well in the presence of only two
priority classes, where one is best-effort and one has a delay bound [Ramanathan
and Singhal, 2000]. However, multi-class latency targets call for more complex
methods.

[Chen et al., 2001] propose the use of priority scheduling in combination
with admission control guided by queuing theory to ensure multi-class latency
targets. More precisely, requests are scheduled from an application internal
queue in strict priority order. The priority of a request is determined by the
latency target of its class: requests from classes with low latency targets al-
ways have priority over requests from classes with higher latency targets. This
scheduling policy implies that the share of the system capacity received by a
class equals the total system capacity minus the capacity used up by higher
priority classes. The per-class share of the system capacity can be determined
based on estimates for request service requirements, the per-class arrival rate,
and the overall system capacity. Chen et al. then use known queuing formulas
to compute the maximum arrival rate a class can sustain while staying in its
delay target and apply admission control to ensure that a class stays within this
maximum rate.

The above work focuses only on requests that are not database driven. There
is relatively little work in the area of database systems for supporting per class
QoS targets. Most work that is concerned with providing performance guar-
antees is in the large domain of real-time database systems (RTDBMS). The
goal in RTDBMS is not improvement of mean execution times for high priority
classes of transactions, but rather meeting (usually hard) deadlines associated
with each transaction. In achieving this goal RTDBMS often rely on their
specialized architecture with features such as optimistic concurrency control
mechanisms, which are not available in the general purpose database systems
used as web server back-ends.

The existing work in the area of general purpose databases systems forpro-
viding multi-class response time goals relies on buffer management strategies
[Brown et al., 1993, Brown et al., 1996, Sinnwell and Koenig, 1997]. How-
ever, as of now these, there has been little work evaluating these approaches for
web-driven database workloads.
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