
Cooperative Data Placement and Replication in
Edge Cache Networks

Lakshmish Ramaswamy
Dept. of Computer Science

University of Georgia
Athens, GA 30602
laks@cs.uga.edu

Arun Iyengar
IBM TJ Watson Research Center

Hawthorne, NY 10532
aruni@us.ibm.com

Jianxia Chen
Dept. of Computer Science

University of Georgia
Athens, GA 30602
jxchen@uga.edu

Abstract— Cooperation among individual caches has proven
to be an effective strategy to improve the scalability and
performance of edge cache networks delivering dynamic web
content. To date, research in the area of cooperative edge caching
has mainly focused on serving client requests and maintaining
freshness of cached documents. However, designing mechanisms
to effectively manage the available resources is an important
challenge that can have significant impact on the performance
of an edge cache network. In this paper we propose a novel
data placement scheme, called the utility-based placement scheme,
which is not only sensitive to the ongoing cooperation in the edge
cache but also takes into account the various costs and benefits of
storing a data-item at an individual edge cache. At the heart of
proposed scheme is a utility function that quantifies the usefulness
of storing a data-item at a particular edge cache. Experiments
show that the proposed scheme provides significant performance
benefits.

I. INTRODUCTION

The amount of dynamic content on the World Wide Web
(web) continues to grow at a rapid phase. Unlike static web
pages, the dynamic web pages are generated on the fly when
a user request arrives at the web server infrastructure. While
dynamic content has enabled several new kinds of applications,
high costs of generating them coupled with their stringent
freshness requirements have posed new challenges to the scal-
ability of the web. Recently, edge computing has emerged as a
popular technique to efficiently deliver dynamic web content
to the clients [1], [14], [19]. The fundamental philosophy of
edge computing is to move data, and possibly parts of the
application closer to the user, so that client-requests reach the
data/service they need by traversing just a few hops within the
Internet.

However, many of the existing edge cache networks have
not been able to fully harness the potentials of the edge
computing technology, which has limited their ability to effec-
tively deliver dynamic web content. In the cooperative edge
cache grid project (henceforth cooperative EC grid), we are
exploring the capabilities of cooperation among the caches of
an edge network as a tool for efficient, scalable and reliable
delivery of dynamic web content [16]. While the basic idea
of collaboration among multiple caches has been studied by
several previous works, cache cooperation in these systems is
limited only to handling cache misses. In contrast, we utilize

the principle of cache cooperation to enhance the perfor-
mance of edge cache networks in several related, yet distinct
ways, including collaborative miss processing, cooperative
document freshness maintenance, cooperative failure handling
and collaborative cache management. Further, unlike earlier
cooperative caching systems that only support the TTL-based
weak document freshness mechanisms, the cooperative EC
grid incorporates stronger, server-driven document consistency
schemes.

This paper considers the problem of cache management
in cooperative edge cache networks. There are two primary
approaches to cache management, namely, data placement
and data replacement. While several document replacement
policies have been proposed and studied [2], [3], [12], [13],
the data placement problem has received very little research
attention. Moreover, very few cache management schemes
take into account the overheads of server-driven document
consistency mechanisms. In addition, they are not sensitive
to the cooperation that might be going on among the caches
of the edge network. Most edge cache networks employ a
very simple data placement scheme wherein a cache retrieving
a data-item stores it locally irrespective of the overheads
involved in maintaining its freshness or its availability in
the cooperative cache group. However, this simple strategy
induces high network loads, and it also increases resource
contention at individual caches.

In this paper we propose a novel utility-based data place-
ment scheme for cooperative edge cache networks. This tech-
nique quantifies the various costs and benefits of storing a
given data-item at a particular edge cache, and it estimates
the utility of the data copy to the edge cache network. A
copy of the data-item is stored at the cache only if the
benefits outweigh the costs. Furthermore, the proposed scheme
explicitly considers the ongoing cooperation within the edge
cache network while computing the costs-benefits tradeoff of
storing the data-items. Our simulation-based experiments show
that the utility-based placement scheme provides considerable
performance benefits.

II. COOPERATIVE EDGE CACHE GRID

Cooperative edge cache grid is a large-scale edge cache
network for delivering dynamic web content, whose design



Fig. 1: The Cooperative Edge Cache Grid

incorporates several unique techniques for supporting cost
effective cooperation among its caches. A cooperative EC
grid typically contains a large number of edge caches and
a few origin servers. Unlike many edge cache networks, the
cooperative EC grid supports server-driven data consistency
mechanisms, wherein the origin server initiates an update
message when a data-item is modified, which is communicated
to all the caches holding a copy of the data.

Cache clouds form the fundamental unit of cooperation in
the cooperative EC grid. A cache cloud is a group of several
edge caches that are located in close network proximity. The
caches belonging to a cloud collaborate with one another
primarily for the purposes of resolving misses and maintaining
consistency of cached data. A cache which does not have the
data to serve an incoming request (i.e. the cache suffers a
local miss) first attempts to obtain it from other caches in
the cloud that might have the data, rather than contacting
the origin server immediately. When a data-item undergoes
modification, the origin server sends an update message to
one of the caches in each cloud, which is then collaboratively
disseminated among the caches belonging to each cloud. In
our design, all caches in a cloud share the lookup and update
of the data-items being cached in the cloud. A cache that is
currently handling the lookup and update operations of a data-
item Dc is called Dc’s beacon point. We have designed a
dynamic hashing mechanism to assign data-items to beacon
points. The dynamic hashing mechanism and the data lookup
and update protocols are described in detail in [16]. Currently,
cooperative EC grid supports caching at the granularity of
entire web documents or parts of web documents known as
fragment.

III. PROBLEM STATEMENT

In this section we formally state the data placement prob-
lem. Consider a cache cloud with M caches represented
as CCloudi = {Ec0, Ec1, . . . , EcM−1}. Suppose the cache
Ecl receives a client request for data-item Dc, which is not

available locally (i.e., the request is a local miss). The data-
item may be available in one or more caches within the cloud,
or it might have to be retrieved from the origin server. Suppose
the data-item is available in the cloud, then should Ecl make
a local copy of the data-item Dc? On the contrary, if the data-
item is not available at any of the caches in the cloud, should
it be stored in one of the caches in the cloud, and if so, where
(in which cache) should it be stored? In contrast, the problem
of cache replacement is to decide which data-items that are
currently in the cache should be evicted in order to create disk-
space for incoming data. Since, the cooperative EC grid caches
data at the granularity of documents or parts of documents, the
terms data-item and document and the terms data placement
and document placement are used interchangeably in the
remainder of this paper.

The straightforward solution to the data placement problem,
which we refer to as the ad hoc data placement is to store
the document at every cache that receives a client request
for it. However, this simple scheme can lead to uncontrolled
data replication within the cache cloud, which in turn can
result in several performance limitations. First and foremost,
the data consistency maintenance traffic in the clouds be-
comes very heavy, thereby imposing high communication and
processing overheads. Second, if the storage-space at each
cache is limited, then each additional copy of a document
causes the eviction of other documents from the caches.
Hence, the number of unique documents available within each
cache cloud shrinks. Further, the average amount of time the
documents live in the cache before they are evicted decreases.
The cumulative effect of these two is the decrease in the
cumulative hit rates of the cache clouds.

These performance problems are the manifestations of two
important shortcomings of the ad-hoc document placement
scheme. First, the ad-hoc scheme does not consider the costs
of storing document copies. Storing an additional copy of the
document within a cache cloud has two associated costs: (1)
The document update message has to be communicated to



an additional edge cache; and (2) The new copy consumes
extra storage space. The ad hoc scheme ignores these costs
while making document placement decisions. The second
shortcoming of the ad hoc scheme is that it does not take
into account the possibility of the document being available
in other caches in the cache cloud − it is essentially blind to
the contents of the other caches in the cloud.

In order to overcome these limitations, this paper proposes
the utility-based cooperative placement scheme which is de-
scribed in the next section.

IV. UTILITY-BASED COOPERATIVE PLACEMENT SCHEME

As the name suggests, the placement decisions in the
utility-based cooperative scheme rely upon the usefulness of
a document-copy to the cache storing it, and to the entire
cache cloud. The usefulness of the document of a document
copy is termed as the utility value of the document copy,
and is represented as Utility(Dc) for document copy Dc.
Our document placement scheme is also sensitive to the
cooperation among the caches belonging to a cloud. In fact,
our formulation of the utility value function takes into account
the number of copies of the document, if any, that currently
exist in the various caches of the cooperative cloud. When a
cache retrieves a document it calculates the document’s utility
value. Based on this utility value the cache decides whether
or not to store the document.

The utility of document copy Dc estimates the benefit-to-
cost ratio of storing and maintaining the new copy. A higher
value of utility indicates that benefits outweigh the costs, and
vice-versa. As mentioned before, the costs of caching dynamic
documents are two fold, namely, the consistency maintenance
costs and the storage costs. Consistency maintenance costs
correspond to the overheads involved in maintaining the
freshness of the cached copy of a document. Storage costs
correspond to physical storage space needed for storing the
document copy. On the other hand caching a document copy
benefits the edge network by reducing the server load, network
load and the client latency.

Our formulation of the utility function has four components.
Each of these components quantifies one aspect of the
interplay between benefits and the costs. We now briefly
discuss each of these components. Throughout this discussion
we assume that a cache Ecl has retrieved the document copy
Dc, and is calculating its utility value to decide whether to
store it locally.

A. Document Availability Component
The document availability component, represented as

DAIC(Dc, Ecl), quantifies the improvement in the availabil-
ity of the document in the cache cloud achieved by storing
the document copy at Ecl. Availability of a document Dc is
defined as the probability that an in-coming request for the
document can be served by one of the caches in the cache
cloud. Improving the availability of a document increases the

probability that a future request for the document would be
served within the cache cloud.

The availability of a document depends upon the number
of copies of the document existing within the cloud. Further,
the availability of the document is also directly proportional
to the reliability of the caches storing those copies. Relia-
bility of a cache denotes the probability that the cache is
alive at any given point in time. Let Rblty(Ecp) denote the
reliability of the cache Ecp. The current document avail-
ability of document Dc is computed as CAvblty(Dc) =∑

EcpcontainsDc Rblty(Ecp). Note that CAvblty(Dc) becomes
0 when Dc is not currently stored at any cache in the
cache cloud. If an additional copy of the document is stored
at the cache Ecl, it improves the document availability by
Rblty(Ecl). Document availability improvement component
is now defined as:

DAIC(Dc, Ecl) =

(

MaxV alue If CAvblty(Dc) = 0
Rblty(Ecl)

CAvblty(Dc) Otherwise

Here MaxV alue denotes a large positive real number.
Observe that DAIC(Dc, Ecl) acquires a very high value if
there are no existing copies of Dc within the cache cloud,
whereas its value would be very small if several copies already
exist in the cloud.

B. Disk-Space Contention Component
This component captures the storage costs of caching the

document copy at Ecl. An important point that needs to be
noted is that the cost associated with storing a given document
may vary from cache to cache. It is much more expensive to
store the same document in a smaller (or heavily accessed
cache) than a larger (or a less busy cache), since in the first
scenario documents that are more recently accessed would
have to be evicted. Hence any reasonable quantification of
storage costs should take into account the contention at the
cache where the document is stored. Accordingly, we quantify
this component in terms of the disk-space contention at Ecl.

The disk-space contention at the cache Ecl determines the
time duration for which the document can be expected to
reside in the cache Ecl before it is replaced. Suppose the
cache cloud already contains a copy of the document at cache
Ecp. If the disk space contention at that cache is lower than
that of cache Ecl, then even if we were to make a new copy
at the cache Ecl, the new copy would be removed earlier
than the existing copy. Hence, the benefits of storing the new
copy are limited, whereas it adds to the disk-space contention
at Ecl. On the other hand if the disk-space contention at
Ecl is significantly lower than that of Ecp, the new copy is
expected to remain in the cache much longer than the copy
at Ecp benefiting the cache cloud for a longer duration. We
use the concept of cache expiration age [15] to accurately
quantify the disk space contention at edge caches. The higher
the cache expiration age of a cache, the lower is its disk space
contention, and vice versa.

If the cache Ecl retrieves the document Dc from another
cache in the cache cloud, say Ecp, then the disk-space
component for document Dc is defined as the ratio of the



expiration age of Ecl to the expiration age of Ecp. However,
if the document is not available in the cache cloud, the disk-
space component is assigned a large positive value, since it is
always advantageous to store a copy of Dc.

DsCC(Dc, Ecl) =

(

CacheExpAge(Ecl)

CacheExpAge(Ecp)
If Dc is retrieved fromEcp

MaxV alue If Dc is retrieved from server

DsCC(Dc, Ecl) acquires a higher value when the expiration
age of Ecp is smaller and vice versa. A higher value of
DsCC(Dc, Ecl) implies that the new document copy is likely
to remain in the cache cloud for a longer duration than the old
one, and it is beneficial to store this copy.

C. Consistency Maintenance Component

Denoted by CMC(Dc, Ecl) this component accounts for
the costs incurred for maintaining the consistency of the new
document copy at Ecl, and the advantages that are obtained
as a result of storing Dc at Ecl by avoiding the cost of
retrieving the document from other caches on each access.
Suppose we observe the access and the update patterns of the
document Dc at cache Ecl for tw time units. Let there be
AccCount accesses during this time period. An access Av is
termed as an updated-access if the document Dc is updated
between the accesses Av−1 and Av, and as nonupdated-
access otherwise. Let NonUpCount represent the number
of nonupdated-accesses within the time duration tw. The
consistency maintenance component is obtained as:

CMC(Dc, Ecl) =
NonUpCount

AccCount

A high value of CMC(Dc, ECl) indicates that the document
Dc is accessed more frequently than it is updated, and vice-
versa.

D. Access Frequency Component

The final component of our utility function quantifies how
frequently the document Dc is accessed in comparison to other
documents in the cache. If access frequency of Dc at the cache
Ecl is high when compared to other documents in the cache,
it is advantageous to store it. Let ReqCount(Dc, Ecl, Tz)
indicate the number of requests to the document Dc at cache
Ecl in the past Tz time units, TotReqs(Ecl, Tz) denote the
total number of client requests received at cache Ecl in the
past Tz time units, and let NumDocs(Ecl) represent the total
number of documents currently cached at Ecl. Therefore, the
mean of the number of requests received by the documents in
the cache is given by MnReqs(Ecl, Tz) = TotReqs(Ecl,Tz)

NumDocs(Ecl)
.

The access frequency component of the utility function is
computed as below.

AFC(Dc, Ecl) =
ReqCount(Dc, Ecl, Tz)

MnReqs(Ecl , Tz)

E. Document Placement Algorithm
The above four components form the building blocks of the

utility function. We observe that for each component, a higher
value implies that benefits of storing Dc are higher than the
overheads, and vice-versa. We define the Utility of storing the
document Dc at cache Ecl, denoted as Utility(Dc, Ecl), to
be a weighted linear sum of the above four components.

Utility(Dc, Ecl) = WDAIC × DAIC(Dc, Ecl) + WDsCC × DsCC(Dc, Ecl)

+ WCMC × CMC(Dc, Ecl) + WAF C × AFC(Dc, Ecl)

In the above equation WDAIC , WDsCC , WCMC , and WAFC

are positive real constants such that WDAIC + WDsCC +
WCMC + WAFC = 1. These constants are assigned values
reflecting the relative importance of the corresponding com-
ponent of the utility function to the performance of the system.
For example, if the documents in the system have high update
rates, then WCMC is assigned a high value. Similarly if disk-
space availabilities at the caches are limited WCMC would be
set to a high value.

If the value of the utility function Utility(Dc, Ecl) exceeds
a threshold, represented as UtlThreshold(Ecl), then Dc is
stored at cache Ecl. Otherwise the edge cache Ecl does not
store a local copy of Dc. Concretely, suppose a client-request
for document Dc encounters a local miss at cache Ecl. Then
Ecl retrieves the document either from another cache in the
cache cloud, or from the origin server. If the document Dc

does not currently exist in the cache cloud, Ecl stores the
document Dc and registers it with the beacon point of Dc.
This is because, in this scenario the DAIC and the DsCC

components of its utility function assume very high values. If
at least one cache in the cache cloud contains Dc, then Ecl

does not decide immediately whether to store the document.
Instead, it monitors the pattern of requests and updates to the
document for fixed time duration in order to evaluate its utility
value. At the end of this time duration, the cache evaluates
the utility function Utility(Dc, Ecl). The cache stores the
document Dc, only if Utility(Dc, Ecl) ≥ UtlThreshold, in
which case it registers the new copy with its beacon point.
The pseudo-code of the utility-based document placement is
outlined in Algorithm 1.

We note that the utility function accurately quantifies the
costs and benefits of caching dynamic documents, and it can
also be adopted as the cost function in cost-based document
replacement policies such as the Greedy-dual size [3], Greedy-
dual* [2] algorithms.

F. Discussion
In this section we compare and contrast two approaches to

cache management, namely, the document placement policies
and document replacement policies. As described in Sec-
tion III, the problem of document placement is to decide
whether a document Dc that has been retrieved by a cache
Ecl, should be stored at the cache Ecl, or whether it should
be stored at a different cache in the cloud, or should just
be discarded after serving the user request. In contrast the



Algorithm 1 Utility-based Document Scheme: Algorithm
performed by a cache on receiving a request for document
Dc

if Dc is available locally then
Serve request and update document statistics

else
Contact Dc’s beacon point and obtain lookup information
if Dc is not available within cache cloud then

Obtain Dc from the origin server
Store Dc locally
Register the new copy with beacon point

else
Obtain Dc from one of the caches currently holding Dc
Along with Dc obtain the responding cache’s Expiration Age
if A DocumentRecord for Dc exists in DocumentMonitorList then

Update the DocumentRecord

if DocumentRecord of Dc has resided in
the DocumentMonitorList for more than
MonitorDurationThreshold then

Remove DocumentRecord of Dc
Compute the utility function Utility(Dc, Ecl)
if Utility(Dc, Ecl) ≥ UtlThreshold(Ecl) then

Store Dc locally
Register the new copy with beacon point

else
Discard the DocumentRecord of Dc

end if
end if

else
Create a DocumentRecord for Dc and store it in
DocumentMonitorList

end if
end if

end if

document replacement problem can be summarized as follows:
Suppose the cache Ecl wants to store a document Dc locally,
but its storage-space is already full. Now the cache has to
evict some of the documents that are currently stored by it,
so that the incoming document can be stored. In this scenario,
deciding which documents to evict is known as the document
replacement problem. While researchers have proposed many
techniques to address the document replacement problem [2],
[3], [12], [13], the studies on the document placement problem
are relatively few [9], [15], [18].

Both document placement and document replacement prob-
lems are concerned with managing the available resources
such as disk-space and network bandwidth effectively. The
goal of both problems is to maximize the benefits of caching.
The document placement approach may be considered as a
proactive approach to resource management, whereas docu-
ment replacement can be regarded as a reactive approach,
since it is triggered when the available resources such as disk-
space become insufficient. We contend that caches need to
implement a good document placement as well as a good
document replacement scheme in order to effectively manage
their resources.

In the context of cooperative edge cache networks, incor-
porating a proactive approach through good document place-
ment schemes provides some unique benefits. First, utilizing
resources judiciously even when the resource consumption at
individual caches have not reached their respective limits is
likely to benefit the performance of the cooperative cache
group. For example, suppose a cache Ecl retrieves a document
Dc which is being modified very frequently. If the cache stores

this document, Dc’s beacon point would have to communicate
Dc’s updates to Ecl until it is replaced, which would place
significant load on the beacon point and on the network. This
cost could have been avoided had Ecl made the placement
decision judiciously. Similarly, suppose the cache Ecl retrieves
a document Dc1, which is available at many other caches in
the cloud. Then making an additional copy at Ecl blindly,
could result in the replacement of one or more documents,
which may not be available in any other caches within the
cache cloud. This affects the cumulative hit rate of the cache
cloud.

The second advantage of the document placement approach
for cache management is the ease and efficiency of its imple-
mentation in a cooperative cache group setting. For example,
collaborative cache management schemes require information
about the availability of documents in various caches of the
group. A typical cooperative edge cache network maintains
this information in order to facilitate the document retrieval
process (in the cooperative EC grid this information is main-
tained at the document’s beacon point). This information can
be piggy-backed on the document lookup data sent to a cache
that is attempting to retrieve the corresponding document.
Therefore, the edge caches can obtain all the information
needed to make the placement decisions at no extra-cost. In
contrast, if a cache has to implement a cooperative replacement
scheme, it has to obtain the availability information for a
subset of documents that would be the probable candidates for
eviction which could involve additional communication costs.

V. EXPERIMENTAL EVALUATION

This section reports the experimental study we have con-
ducted to evaluate the proposed document placement scheme.
We compare the utility-based document placement scheme to
two other schemes. The first scheme is the ad-hoc document
placement mechanism, wherein a cache stores every document
for which it receives a client-request. The second is the
beacon-point placement. In this scheme, each document is only
cached at its beacon point. Any other cache receiving a request
from a client retrieves the document from its beacon point
and serves the request. The experimental study was conducted
through trace-based simulations of the cooperative EC grid.
The simulator can be configured to simulate any of the above
three document placement schemes. Each cache in the edge
cache network receives requests continuously from a request
trace file. If the requested document is available within the
cache it is recorded as a local hit. If the document is retrieved
from another cache, it is a group hit. A request is a miss, if
none of the caches in the cloud has the document. The local
hit rate of a cache cloud is defined as the ratio of the sum of
the local hits at the caches belonging to the cloud to the total
number of requests received at those caches. The terms group
hit rate and miss rate are analogously defined.

For our experimental study, we use a dataset which is
derived from real request and update traces from a major



10 50 100 195 500 1000
0

10

20

30

40

50

60

70

80

90

100

Document Update Rate (# of Updates per Unit Time)

%
 a

ge
 o

f D
oc

um
en

ts
 S

to
re

d 
pe

r C
ac

he

Ad hoc Placement
Beacon Placement
Utility Placement
Observed Update Rate

Fig. 2: Percentage of Documents Stored at Varying Update
Rates (DsCC Turned Off)

10 50 100 195 500 1000
10

20

50

100

200

500

1000

Document Update Rate (# of Updates Per Unit Time)

Ne
tw

or
k 

Lo
ad

 (M
bs

 p
er

 U
ni

t T
im

e)

Ad hoc Placement
Beacon Placement
Utility Placement
Observed Update Rate

Fig. 3: Network Loads of Different Placement Schemes at
Varying Update Rates (DsCC Turned Off)

10 20 50 100 200 1000
0

10

20

30

40

50

60

70

80

90

100

Document Update Rate (# of Updates/Unit Time)

Hi
t R

at
e

Ad hoc: Local Hit
Ad hoc: Group Hit
Beacon: Local Hit
Beacon: Group Hit
Utility: Local Hit
Utility: Group Hit
Observed Update Rate

Fig. 4: Hit Rates of Different Placement Schemes at Varying
Update Rates (DsCC Turned Off)

100 500 1000 1500 2000
10

20

50

100

200

500

1000

Request Rate (# of Requests Per Unit Time)

Ne
tw

or
k 

Lo
ad

 (M
bs

 p
er

 U
ni

t T
im

e)

Ad hoc Placement
Beacon Placement
Utility Placement
Observed Req. Rate

Fig. 5: Network Loads of Different Placement Schemes at
Varying Request Rates (DsCC Turned Off)

IBM sporting event website1(henceforth referred to as Sydney).
The logs contained 52527 unique documents with the average
size of each document being 65.3 Kilobytes. The requests
were segregated based on their client-ids, and the requests
from a few random clients were combined to generate the
request-logs. Each cache was driven by one such request log.
In these experiments we have simulated a cooperative EC
grid consisting of 120 caches that were organized into 12
cache clouds each containing 10 caches. Since, the document
placement schemes work at the level of individual cache
clouds, we report the results on a representative cache cloud.

In the first set of experiments the caches are assumed to
have unlimited amounts of disk-space. This implies that the
storage costs of caching documents are minimal. Therefore the
disk-space component of the utility function is turned off by
setting WDsCC to 0. The weights of availability, consistency
maintenance, and access frequency components are all set to
0.33. In the first experiment the access rates at caches are

1The Sydney 2000 Olympic Games Website

fixed, whereas we vary the document update rate to study the
effect of the five document placement policies.

The graph in Figure 2 shows the percentage of the total
documents in the log that are stored at each cache in the cache
cloud at various document update rates. The X-axis represents
the document update rate in number of updates per minute
on the log scale, and the Y-axis represents the percentage
of documents cached. The vertical broken line indicates the
observed document update rate in the real trace. As the ad hoc
policy places each document at every cache which receives
a request, almost all documents are stored at all caches. In
contrast the beacon point placement stores each document
only at its beacon point. Hence, each cache stores around
10% of the total documents. The percentage of documents
stored per cache in the utility-based scheme varies with the
update rate, indicating its sensitivity towards document update
costs. In the utility-placement scheme, when the update rates
are low, a large percentage of documents are stored at each
cache, owing to the small consistency maintenance cost. As the
update rate increases, the consistency maintenance component



100 500 1000 1500 2000
0

10

20

30

40

50

60

70

80

90

100

Request Rate (# of Requests/Unit Time)

Hi
t R

at
e

Ad hoc: Local Hit
Ad hoc: Group Hit
Beacon: Local Hit
Beacon: Group Hit
Utility: Local Hit
Utility: Group Hit
Observed Req. Rate

Fig. 6: Hit Rates of Different Placement Schemes at Varying
Request Rates (DsCC Turned Off)

10 50 100 195 500 1000
10

20

50

100

200

500

1000

Document Update Rate (# of Updates Per Unit Time)

Ne
tw

or
k 

Lo
ad

 (M
bs

 p
er

 U
ni

t T
im

e)

Ad hoc Placement
Beacon Placement
Utility Placement
Observed Update Rate

Fig. 7: Network Loads of Different Placement Schemes at
Varying Update Rates(DsCC Turned On)

value (defined in Section IV-C) of the utility function decreases
for all the documents, thereby leading to a decrease in the
percentage of documents stored at each cache.

In order to demonstrate the benefits of being sensitive to the
update costs when making document placement decisions, we
plot the total network traffic in the clouds generated by various
document placement policies in Figure 3. The results indicate
that the utility-based document placement creates the least net-
work traffic at all update-rates. The improvements provided by
the utility-based placement scheme over the ad hoc placement
scheme increase with increasing update rate. This is because
while the number of replicas present in the cache cloud
essentially remains a constant in the ad hoc placement scheme,
the utility-based scheme creates fewer replicas at higher update
rates, thereby reducing the consistency maintenance costs
significantly. The network traffic produced by the beacon point
caching is very high at all update-rates, as in this scheme
only one copy of each document is stored per cache cloud.
Hence, most of the network traffic is due to caches repeatedly
accessing the single copies of the documents.

Figure 4 indicates the local and the group hit-rates of ad-
hoc, beacon-point and utility-based placement schemes. The
local hit rates and the group hit rates of ad hoc and beacon
point placement schemes remain constant at all document
update rates, since these schemes are not sensitive to document
update costs. In contrast to these schemes the hit rate of the
utility scheme varies with the document update rates. As the
document update rate gets higher, the local hit rate of the
utility scheme drops and its group hit rate increases.

In the second experiment of this set, we fix the document
update rate to 195 updates per unit time and study the impact
of varying document access rates on the performance of the
three document placement schemes. Figure 5 indicates the total
network traffic in the clouds induced by the three document
placement policies when the access rates at the caches vary
from 100 accesses per unit time to 2000 requests per unit time.
The network load of the ad hoc placement remains almost

constant at around 55 MBs per unit time. In this scheme,
every cache stores all requested documents. Hence, the load
due to document access is very low, and the network load is
predominantly due to the document updates. The network load
for beacon placement starts from a low value, but increases at
a very rapid pace. The utility-based placement scheme takes
into account the tradeoff between access and update rates,
thereby resulting in significantly lower network loads at all
request rates. Figure 6 shows the local and the remote hit rates
of the three document placement schemes at various request
rates. Similar to the previous experiment, the local and the
group hit rates of the ad hoc and the beacon point placement
schemes remain constant, while the local hit rate of the utility-
based placement scheme increases and its group hit rate drops
as the request rate increases. This is because the utility-based
placement scheme stores more documents at each cache as the
document access rate increases, thus increasing the fraction of
requests that are served by the cache that receives the client
request.

In the second set of experiments, we study the performance
of the three document placement policies when the disk spaces
available at the edge caches are limited. In these experiments
the disk space at each cache is set to 25% of the sum of sizes
of all documents in the trace. As the disk space is a limiting
factor in this series of experiments, we turn on the disk-space
component of the utility function. The weights of all the utility
function components are set to 0.25.

Figure 7 indicates the total network traffic generated by the
three document placement policies at various update rates.
As in the previous experiment, the utility-based document
placement places the least load on the network. However, the
results in this experiment differ from the previous experiment
considerably. The percentage improvement in the network
load provided by the utility scheme over the ad hoc scheme
is higher in the limited disk-space case at low document
update rates. However, the percentage improvement in the
unlimited disk space case grows much faster in the limited



10 20 50 100 200 1000
0

10

20

30

40

50

60

70

80

90

Update Rate (# of Updates/Unit Time)

Hi
t R

at
e

Ad hoc: Local Hit
Ad hoc: Group Hit
Beacon: Local Hit
Beacon: Group Hit
Utility: Local Hit
Utility: Group Hit
Observed Update Rate

Fig. 8: Hit Rates of Different Placement Schemes at Varying
Update Rates (DsCC Turned On)

100 500 1000 1500 2000
5

10

20

50

100

200

500

1000

Request Rate (# of Requests Per Unit Time)

Ne
tw

or
k 

Lo
ad

 (M
bs

 p
er

 U
ni

t T
im

e)

Ad hoc Placement
Beacon Placement
Utility Placement
Observed Req. Rate

Fig. 9: Network Loads of Different Placement Schemes at
Varying Request Rates (DsCC Turned On)

100 500 1000 1500 2000
0

10

20

30

40

50

60

70

80

90

Request Rate (# of Requests/Unit Time)

Hi
t R

at
e

Ad hoc: Local Hit
Ad hoc: Group Hit
Beacon: Local Hit
Beacon: Group Hit
Utility: Local Hit
Utility: Group Hit
Observed Req. Rate

Fig. 10: Hit Rates Different Placement Schemes at Varying Request
Rates (DsCC Turned On)

disk space scenario. These observations are the manifestations
of the different roles the utility placement scheme is playing
at different update rates in the limited disk space scenario. At
low document update rates the utility scheme assumes the pre-
dominant role of reducing disk space contention at individual
caches. Whereas at higher update rates its predominant effect
is to reduce consistency maintenance costs.

Figure 8 shows the hit rates of ad-hoc, beacon-point and
utility-based placement schemes for the limited disk space
experiment at different update rates. As in the unlimited disk
space scenario, the local hit rate of the utility scheme drops as
the update rate increases, whereas its group hit rate starts to
increase. A crucial observation here is that the cumulative hit
rate (the sum of local and group hit rates) of the utility scheme
is around 5.5% higher than that of the ad hoc scheme. This
shows that when disk space becomes a limiting factor, the
utility scheme uses the aggregate disk space available in the
cache cloud more efficiently.

The final experiment evaluates the three document place-
ment policies when the update rate is fixed while the request
rate varies from 100 requests per unit time to 2000 requests
per unit time. Figure 9 shows the network load induced by the
three schemes, and Figure 10 indicates their local and group
hit rates. The results are similar to the previous experiment,
except that the local hit rate of the utility scheme increases
and its group hit rate decreases as the request rate grows.

In summary, these experiments show that being sensitive
to the various costs and benefits of dynamic content caching
while making document placement decisions can significantly
enhance the performance of the cooperative edge cache net-
work.

VI. RELATED WORK

The issue of cache management has received considerable
attention from the web caching community. However, most of
the research has focused on the document replacement prob-
lem [2], [3], [12], [13]. Of the several document replacement
strategies that have been proposed in the literature, the cost-
based document replacement schemes such as Greedy-dual
size [3] and Greedy-dual* [2] are the ones that are most related
to the work presented in this paper.

Although both the greedy-dual size algorithm and our
utility-based document placement scheme adopt a cost-benefit
approach for cache management, there are important differ-
ences between them. While the greedy-dual size algorithm is
a document replacement scheme, the utility-based scheme is a
document placement scheme which takes a proactive approach
to cache management. Further, most current formulations of
the greedy-dual size algorithm’s cost function do not consider
the document consistency costs, and hence, they are not
directly applicable to caching dynamic documents. In this
context, we note that our utility function can be adapted in
a framework such as the greedy-dual size, to yield highly
effective document replacement strategies for caches storing
dynamic web content.



The schemes proposed by Korupolu et al. [9], and by Wu
et al. [18] are among the few document placement strategies
proposed in the literature. However, these schemes are targeted
for caching static web content, and they do not consider the
document consistency costs while making document place-
ment decisions.

Research in the general area of cooperative web caching
has been concentrated mainly on issues such as quantify-
ing benefits of cooperation among proxy caches, designing
cache-sharing protocols and cooperative architectures aimed
at improving hit rates and document access latencies [5], [7],
[8], [10], [17]. However, most of these schemes only support
the weaker, TTL-based document consistency mechanisms. In
contrast, Ninan et al. [11] propose a cooperative strategy for
implementing lease-based consistency schemes. In addition
there is a vast body of literature on delivery of dynamic
content [4], [6], [14], [19]. However, very few of these works
address the document placement problem.

Previously, we had outlined the utility-based document
placement framework when describing the overall design
architecture of cache clouds [16]. However, that paper does
not discuss the exact mathematical formulations of the various
components of the utility function that are presented here.
Further, the study on the impact of request patterns on the
performances of the various document placement schemes has
not been previously reported. In short, the work presented in
this paper is unique and it addresses an important problem in
the area of edge cache networks.

VII. CONCLUSIONS

Cooperation among the caches of an edge cache network is
an effective strategy to improve the scalability and efficiency
of delivering dynamic web content. One of the important
challenges in designing a cooperative edge network is to
develop effective mechanisms for cache management. To-
wards this end, this paper proposed a novel utility-based data
placement scheme in which the data placement decisions are
based upon the costs and benefits of storing a data-item at a
given cache. Furthermore, our scheme also takes into account
the cooperation among the various caches of the edge cache
network. We also presented a utility function comprised of four
components each of which quantifies one aspect of the costs-
benefits tradeoff of caching dynamic data. An experimental
study of the proposed scheme has been reported in the paper,
the results of which show that the utility-based placement
scheme can yield significant performance benefits.

ACKNOWLEDGEMENTS

This research is supported by a grant from the UGA research
foundation (UGARF).

[1] Akamai Technologies Incorporated. http://www.akamai.com.
[2] A. Bestavros and S. Jin. Popularity-Aware Greedy Dual-Size Web

Proxy Caching Algorithms. In Proceedings of the 20
th Inter-

national Conference on Distributed Computing Systems(ICDCS-
2000), April 2000.

[3] P. Cao and S. Irani. Cost-Aware WWW Proxy Caching Al-
gorithms. In Proceedings of USENIX Symposium on Internet
Technologies and Systems, 1997.

[4] J. Challenger, P. Dantzig, A. Iyengar, M. S. Squillante, and
L. Zhang. Efficiently Serving Dynamic Data at Highly Accessed
Web Sites. IEEE/ACM Transaction on Networking, 12(2), April
2004.

[5] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, and
K. Worell. A Hierarchical Internet Object Cache. In Proceedings
of the 1996 USENIX Technical Conference, January 1996.

[6] A. Datta, K. Dutta, H. Thomas, D. VanderMeer, Suresha, and
K. Ramamritham. Proxy-Based Acceleration of Dynamically
Generated Content on the World Wide Web: An Approach
and Implementation. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, June 2002.

[7] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary Cache: A
Scalable Wide-Area Web Cache Sharing Protocol. In Proceed-
ings of ACM SIGCOMM 98, September 1998.

[8] Internet Cache Protocol: Protocol Specification, Version 2,
September 1997. http://icp.ircache.net/rfc2186.txt.

[9] M. R. Korupolu and M. Dahlin. Coordinated Placement and
Replacement for Large-Scale Distributed Caches. IEEE Trans-
actions on Knowledge and Data Engineering, 14(6), 2002.

[10] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd, and
V. Jacobson. Adaptive Web Caching: Towards a New Global
Caching Architecture. Computer Networks and ISDN Systems,
30(22-23), November 1998.

[11] A. Ninan, P. Kulkarni, P. Shenoy, K. Ramamritham, and
R. Tewari. Scalable Consistency Maintenance in Content Distri-
bution Networks Using Cooperative Leases. IEEE Transactions
on Knowledge and Data Engineering (TKDE), 15(4), July 2003.

[12] S. Podlipnig and L. Boszormenyi. A Survey of Web Cache Re-
placement Strategies. ACM Computing Surveys, 35(4), December
2003.

[13] K. Psounis and B. Prabhakar. A Randomized Web-Cache
Replacement Scheme. In Proceedings of IEEE-INFOCOM-2001,
April 2001.

[14] M. Rabinovich, Z. Xiao, and A. Aggarwal. Computing on
the Edge: A Platform for Replicating Internet Applications. In
Proceedings of the 8

th International Workshop on Web Content
Caching and Distribution, September 2003.

[15] L. Ramaswamy and L. Liu. An Expiration Age-Based Docu-
ment Placement Scheme for Cooperative Web Caching. IEEE
Transactions on Knowledge and Data Engineering (TKDE),
16(5), May 2004.

[16] L. Ramaswamy, L. Liu, and A. Iyengar. Cache Clouds: Coop-
erative Caching of Dynamic Documents in Edge Networks. In
Proceedings of the 25

th International Conference on Distributed
Computing Systems(ICDCS-2005), June 2005.

[17] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Beyond Hierarchies:
Design Considerations for Distributed Caching on the Internet.
In Proceedings of International Conference on Distributed Com-
puting Systems, May 1999.

[18] K.-L. Wu and P. S. Yu. Replication for Load Balancing and Hot-
Spot Relief on Proxy Web Cache with Hash Routing. Distributed
and Parallel Databases, 13(2), 2003.

[19] C. Yuan, Y. Chen, and Z. Zhang. Evaluation of Edge
Caching/Offloading for Dynamic Content Delivery. IEEE Trans-
actions on Knowledge and Data Engineering (TKDE), 16(11),
November 2004.


