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Abstract—Data stores are typically accessed using a client-
server paradigm wherein the client runs as part of an application
process which is trying to access the data store. This paper
presents the design and implementation of enhanced data store
clients having the capability of caching data for reducing the
latency for data accesses, encryption for providing confidentiality
before sending data to the server, and compression for reducing
the size of data sent to the server. We support multiple approaches
for caching data as well as multiple different types of caches.

We also present a Universal Data Store Manager (UDSM)
which allows an application to access multiple different data
stores and provides a common interface to each data store. The
UDSM provides both synchronous and asynchronous interfaces
to each data store that it supports. An asynchronous interface
allows an application program to access a data store and continue
execution before receiving a response from the data store. The
UDSM also can monitor the performance of different data stores.
A workload generator allows users to easily determine and
compare the performance of different data stores.

The paper examines the key design issues in developing both
the enhanced data store clients and the UDSM. It also looks
at important issues in implementing client-side caching. The
enhanced data store clients and UDSM are used to determine
the performance of different data stores and to quantify the
performance gains that can be achieved via caching.

I. INTRODUCTION

A broad range of data stores are currently available includ-
ing SQL (relational) databases, NoSQL databases, caches, and
file systems. An increasing number of data stores are available
on the cloud and through open source software. There clearly is
a need for software which can easily provide access to multiple
data stores as well as compare their performance. One of the
goals of this work is to address this need.

A second goal of this work is to improve data store
performance. Latencies for accessing data stores are often high.
Poor data store performance can present a critical bottleneck
for users. For cloud-based data stores where the data is stored
at a location which is distant from the application, the added
latency for communications between the data store server
and the applications further increases data store latencies [1],
[2]. Techniques for improving data store performance such as
caching are thus highly desirable. A related issue is that there
are benefits to keeping data sizes small; compression can be a
key component for achieving this.

A third goal of this work is to provide data confidentiality
as it is critically important to many users and applications.
Giving users the means to encrypt data may be essential either
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Fig. 1: Data stores are typically accessed using clients. This
work focuses on enhancing the functionality of clients.

because a data store lacks encryption features or data is not
securely transmitted between the application and data store
server. For certain applications, encryption at the client is a ne-
cessity as the data store provider simply cannot be trusted to be
secure. There have been many serious data breaches in recent
years in which confidential data from hundreds of millions
of people have been stolen. Some of the widely publicized
data breaches have occurred at the US government, Yahoo!,
Anthem, Democratic National Committee, eBay, Home Depot,
JP Morgan Chase, Sony, and Target.

Data stores are often implemented using a client-server
paradigm in which a client associated with an application
program communicates with one or more servers using a
protocol such as HTTP (Figure 1). Clients provide interfaces
for application programs to access servers. This paper focuses
on providing multiple data store options, improving perfor-
mance, and providing data confidentiality by enhancing data
store clients. No changes are required to servers. That way,
our techniques can be used by a broad range of data stores.
Requiring changes to the server would entail significantly
higher implementation costs and would seriously limit the
number of data stores our techniques could be applied to.

We present architectures and implementations of data store
clients which provide enhanced functionality such as caching,
encryption, compression, asynchronous (nonblocking) inter-
faces, and performance monitoring. We also present a universal
data store manager (UDSM) which gives application programs
access to a broad range of data store options along with the
enhanced functionality for each data store. Caching, encryp-
tion, compression, and asynchronous (nonblocking) interfaces
are essential; users would benefit considerably if they become
standard features of data store clients. Unfortunately, that is
not the case today. Research in data stores often focuses on



server features with inadequate attention being paid to client
features.

The use of caching at the client for reducing latency is
particularly important when data stores are remote from the
applications accessing them. This is often the case when data
is being stored in the cloud. The network latency for accessing
data at geographically distant locations can be substantial [3].
Client caching can dramatically reduce latency in these sit-
uations. With the proliferation of cloud data stores that is
now taking place, caching becomes increasingly important for
improving performance.

Client encryption capabilities are valuable for a number of
reasons. The server might not have the ability to encrypt data.
Even if the server has the ability to encrypt data, the user might
not trust the server to properly protect its data. There could be
malicious parties with the ability to breach the security of the
servers and steal information.

Another reason for using client-side encryption is to pre-
serve confidentiality of data exchanged between the client and
server. Ideally, the client and server should be communicating
via a secure channel which encrypts all data passed between
the client and server. Unfortunately, this will not always be
the case, and some servers and clients will communicate over
unencrypted channels.

Compression can reduce the memory consumed within
a data store. Client-based compression is important since
not all servers support compression. Even if servers have
efficient compression capabilities, client-side compression can
still improve performance by reducing the number of bytes that
need to be transmitted between the client and server. In cloud
environments, a data service might charge based on the size
of objects sent to the server. Compressing data at the client
before sending the data to the server can save clients money
in this type of situation.

Our enhanced data store clients and UDSM are architected
in a modular way which allows a wide variety of data stores,
caches, encryption algorithms, and compression algorithms.
Widely used data stores such as Cloudant (built on top of
CouchDB), OpenStack Object Storage, and Cassandra have
existing clients implemented in commonly used programming
languages. Popular language choices for data store clients
are Java, Python, and Node.js (which is actually a JavaScript
runtime built on Chrome’s V8 JavaScript engine). These clients
handle low level details such as communication with the server
using an underlying protocol such as HTTP. That way, client
applications can communicate with the data store server via
method (or other type of subroutine) calls in the language in
which the client is written. Examples of such clients include
the Cloudant Java client [4], the Java library for OpenStack
Storage (JOSS) [5], and the Java Driver for Apache Cassan-
dra [6] (Figure 1).

The UDSM is built on top of existing data store clients.
That way, we do not have to re-implement features which
are already present in an existing client. The UDSM allows
multiple clients for the same data store if this is desired.

It should be noted that client software for data stores is
constantly evolving, and new clients frequently appear. The

UDSM is designed to allow new clients for the same data
store to replace older ones as the clients evolve over time.

A key feature of the UDSM is a common key-value
interface which is implemented for each data store supported
by the UDSM. If the UDSM is used, the application program
will have access to both the common key-value interface for
each data store as well as customized features of that data store
that go beyond the key-value interface, such as SQL queries
for a relational database. If an application uses the key-value
interface, it can use any data store supported by the UDSM
since all data stores implement the interface. Different data
stores can be substituted for the key-value interface as needed.

The UDSM provides a synchronous (blocking) interface to
data stores for which an application will block while waiting
for a response to a data store request. It also provides an
asynchronous (nonblocking) interface to data stores wherein
an application program can make a request to a data store
and not wait for the request to return a response before
continuing execution. The asynchronous interface is important
for applications which do not need to wait for all data
store operations to complete before continuing execution and
can often considerably reduce the completion time for such
applications.

Most existing data store clients only provide a synchronous
interface and do not offer asynchronous operations on the
data store. A key advantage to our UDSM is that it provides
an asynchronous interface to all data stores it supports, even
if a data store does not provide a client with asynchronous
operations on the data store.

The UDSM also provides monitoring capabilities as well
as a workload generator which allows users to easily determine
the performance of different data stores and compare them to
pick the best option.

While caching can significantly improve performance, the
optimal way to implement caching is not straightforward.
There are multiple types of caches currently available with
different performance trade-offs and features [7], [8], [9], [10],
[11]. Our enhanced clients can make use of multiple caches to
offer the best performance and functionality. We are not tied to
a specific cache implementation. As we describe in Section III,
it is important to have implementations of both an in-process
cache as well as a remote process cache like Redis [7] or mem-
cached [8] as the two approaches are applicable to different
scenarios and have different performance characteristics. We
provide key additional features on top of the base caches such
as expiration time management and the ability to encrypt or
compress data before caching it.

The way in which a cache such as Redis is integrated with
a data store to properly perform caching is key to achieving an
effective caching solution. We have developed three types of
integrated caching solutions on top of data stores. They vary
in how closely the caching API calls are integrated with the
data store client code. We discuss this further in Section III.

Our paper makes the following key contributions:

• We present the design and implementation of en-
hanced data store clients which improve performance
and security by providing integrated caching, encryp-
tion, and compression. We have written a library for



implementing enhanced data store clients and made it
available as open source software [12]. This is the first
paper to present caching, encryption, and compression
as being essential features for data store clients and to
describe in detail how to implement these features in
data store clients in a general way. Our enhanced data
store clients are being used by IBM customers.

• We present the design and implementation of a uni-
versal data store manager (UDSM) which allows
application programs to access multiple data stores.
The UDSM allows data stores to be accessed with
a common key-value interface or with an interface
specific to a certain data store. The UDSM provides
the ability to monitor the performance of different
data stores as well as a workload generator which
can be used to easily compare the performance of
data stores. The UDSM also has features provided
by our enhanced clients so that caching, encryption,
and compression can be used to enhance performance
and security for all of the data stores supported by
the UDSM. The UDSM provides both a synchronous
(blocking) and asynchronous (nonblocking) interface
to all data stores it supports, even if a data store fails
to provide a client supporting asynchronous operations
on the data store. Asynchronous interfaces are another
commonly ignored feature which should become a
standard feature of data store clients. The UDSM is
available as open source software [13] and is being
used by IBM customers. We are not aware of any
other software which provides the full functionality
of our UDSM or is designed the same way.

• We present key issues that arise with client-side
caching and offer multiple ways of implementing and
integrating caches with data store clients.

• We present performance results from using our en-
hanced clients and UDSM for accessing multiple data
stores. The results show the high latency that can occur
with cloud-based data stores and the considerable la-
tency reduction that can be achieved with caching. The
latency from remote process caching can be a problem
and is significantly higher than latency resulting from
in-process caching.

The remainder of this paper is structured as follows.
Section II presents the overall design of our enhanced data
store clients and UDSM. Section III presents some of the
key issues with effectively implementing client-side caching.
Section IV discusses how delta encoding can sometimes be
used to reduce data transfer sizes when a new version of an
object is stored. Section V presents a performance evaluation
of several aspects of our system. Section VI presents related
work. Finally, Section VII concludes the paper.

II. DESIGN AND IMPLEMENTATION OF ENHANCED DATA
STORE CLIENTS

Key goals of this work are to improve performance, provide
data confidentiality, reduce data sizes where appropriate, pro-
vide access to multiple data stores, and to monitor and compare
performance of different data stores. Caching, encryption, and
compression are core capabilities of our enhanced data store
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Fig. 2: Enhanced data store client.

clients. These features are quite useful for a wide variety of
applications; software developers should make much more of
an effort to incorporate them within data store clients.

Our enhanced data store clients are built on top of a data
store client library (DSCL) which handles features such as
caching, encryption, compression, and delta encoding (Fig-
ure 2). For important features, there is an interface and multiple
possible implementations. For example, there are multiple
caching implementations which a data store client can choose
from. A Java implementation of the DSCL is available as open
source software [12]. A guide for using this DSCL is also
available [14].

Commonly used data stores such as Cloudant, OpenStack
Object Storage, Cassandra, etc. have clients in widely used
programming languages which are readily available as open
source software [4], [5], [6]. These clients make it easy for
application programs to access data stores since they can use
convenient function/method calls of a programming language
with properly typed arguments instead of dealing with low
level details of a protocol for communicating with a data store.

While existing clients for data stores handle the standard
operations defined on that data store, they generally do not
provide enhanced features such as caching, encryption, com-
pression, performance monitoring, and a workload generator
to test the performance of a data store. Our DSCL and UDSM
provide these enhanced features and are designed to work with
a wide variety of existing data store clients.

Our DSCL can have various degrees of integration with
an existing data store client. In a tight integration, the data
store client is modified to make DSCL calls at important
places in the client code. For example, DSCL calls could be
inserted to first look for an object in a cache when a data
store client queries a server for an object. DSCL API calls
could also be inserted to update (or invalidate) an object in a
cache when a data store client updates an object at a server.
More complicated series of API calls to the DSCL could be
made to achieve different levels of cache consistency. A similar
approach can be used to enable a data store client to perform
encryption, decryption, compression, and/or decompression
transparently to an application.

Tight integration of a data store client with the DSCL
requires source code modifications to the data store client.
While this is something that software developers of the data
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store client should be able to, it is not something that a
typical user of the client can be expected to do. However,
tight integration is not required to use the DSCL with a data
store client. The DSCL has explicit API calls to allow caching,
encryption, and compression. Users can thus use the DSCL
within an application independently of any data store. The
advantage to a tight integration with a data store is that the user
does not have to make explicit calls to the DSCL for enhanced
features such as caching, encryption, and compression; the data
store client handles these operations automatically. In a loosely
coupled implementation in which the data store client is not
modified with calls to the DSCL, the user has to make explicit
DSCL calls to make use of enhanced features.

Optimal use of the DSCL is achieved with a tight coupling
of the DSCL with data store clients along with exposing the
DSCL API to give the application fine grained control over
enhanced features. In some cases, it may be convenient for
an application to make API calls to client methods which
transparently make DSCL calls for enhanced features. In other
cases, the application program may need to explicitly make
DSCL calls to have precise control over enhanced features.

A. Universal Data Store Manager

Existing data store clients typically only work for a single
data store. This limitation is a key reason for developing
our Universal Data Store Manager (UDSM) which allows
application programs to access multiple data stores including
file systems, SQL (relational) databases, NoSQL databases,
and caches (Figure 3).

The UDSM provides a common key-value interface. Each
data store implements the key-value interface. That way, it is
easy for an application to switch from using one data store
to another. The key-value interface exposed to application
programs hides the details of how the interface is actually
implemented by the underlying data store.

In some cases, a key-value interface is not sufficient. For
example, a MySQL user may need to issue SQL queries to
the underlying database. The UDSM allows the user to access
native features of the underlying data store when needed. That
way, applications can use the common key-value interface
when appropriate as well as all other capabilities of the
underlying data store when necessary.

A key feature of the UDSM is the ability to monitor
different data stores for performance. Users can measure and
compare the performance of different data stores. The UDSM
collects both summary performance statistics such as average
latency as well as detailed performance statistics such as
past latency measurements taken over a period of time. It is
often desirable to only collect latency measurements for recent
requests. There is thus the capability to collect detailed data
for recent requests while only retaining summary statistics for
older data. Performance data can be stored persistently using
any of the data stores supported by the UDSM.

The UDSM also provides a workload generator which can
be used to generate requests to data stores in order to determine
performance. The workload generator allows users to specify
the data to be stored and retrieved. The workload generator
automatically generates requests over a range of different
request sizes specified by the user. The workload generator can
synthetically generate data objects to be stored. Alternatively,
users can provide their own data objects for performance tests
either by placing the data in input files or writing a user-
defined method to provide the data. The workload generator
also determines read latencies when caching is being used
for different hit rates specified by the user. Additionally, the
workload generator also measures the overhead of encryption
and compression.

The workload generator is ideal for easily comparing the
performance of different data stores across a wide range of data
sizes and cache hit rates. Performance will vary depending
on the client, and the workload generator can easily run on
any UDSM client. The workload generator was a critical
component in generating the performance data in Section V.
Data from performance testing is stored in text files which can
be easily imported into graph plotting tools such as gnuplot,
spreadsheets such as Microsoft Excel, and data analysis tools
such as MATLAB.

A Java implementation of the UDSM is available as open
source software [13]. A guide for using this UDSM is also
available [15]. This UDSM includes existing Java clients for
data stores such as the Cloudant Java client [4] and the Java
library for OpenStack Storage (JOSS) [5]. Other data store
clients, such as the Java Driver for Apache Cassandra [6],
could also be added to the UDSM. That way, applications
have access to multiple data stores via the APIs in the existing
clients. It is necessary to implement the UDSM key-value
interface for each data store; this is done using the APIs
provided by the existing data store clients. The UDSM allows
SQL (relational) databases to be accessed via JDBC. The key-
value interface for SQL databases can also be implemented
using JDBC.

Most interfaces to data stores are synchronous (blocking).
An application will access a data store via a method or function
call and wait for the method or function to return before
continuing execution. Performance can often be improved via
asynchronous (nonblocking) interfaces wherein an application
can access a data store (to store a data value, for example) and
continue execution before the call to the data store interface
returns. The UDSM offers both synchronous and asynchronous
interfaces to data stores.

The asynchronous interface allows applications to continue



executing after a call to a method to a data store API method
by using a separate thread for the data store API method.
Since creating a new thread is expensive, the UDSM uses
thread pools in which a given number of threads are started
up when the UDSM is initiated and maintained throughout the
lifetime of the UDSM. A data store API method invoked via
an asynchronous interface is assigned to one of the existing
threads in the thread pool which avoids the costly creation of
new threads to handle asynchronous API method calls. Users
can specify the thread pool size via a configuration parameter.

The Java UDSM implementation implements asynchronous
calls to data store API methods using the ListenableFuture
interface [16]. Java provides a Future interface which can be
used to represent the result of an asynchronous computation.
The Future interface provides methods to check if the compu-
tation corresponding to a future is complete, to wait for the
computation to complete if it has not finished executing, and
to retrieve the result of the computation after it has finished
executing. The ListenableFuture extends the Future interface
by giving users the ability to register callbacks which are
code to be executed after the future completes execution. This
feature is the key reason that we use ListenableFutures instead
of only Futures for implementing asynchronous interfaces.

The common key-value interface serves a number of use-
ful purposes. It hides the implementation details and allows
multiple implementations of the key-value interface. This is
important since different implementations may be appropriate
for different scenarios. In some cases, it may be desirable to
have a cloud-based key-value store. In other cases, it may
be desirable to have a key-value store implemented by a
local file system. In yet other cases, it may be desirable to
have a cache implementation of the key-value interface such
as Redis or memcached. Since the application accesses all
implementations using the same key-value interface, it is easy
to substitute different key-value store implementations within
an application as needed without changing the source code.

Another advantage of the key-value interface is that im-
portant features such as asynchronous interfaces, performance
monitoring, and workload generation can be performed on the
key-value interface itself, automatically providing the feature
for all data stores implementing the key-value interface. Once
a data store implements the key-value interface, no additional
work is required to automatically get an asynchronous inter-
face, performance monitoring, or workload generation for the
data store (unless it is necessary to implement one of these
features for a type of data store access not provided by the
key-value interface, such as an SQL query for a relational
database). In our Java implementation of the UDSM, applying
important features to all data store implementations in the same
code is achieved by defining a

public interface KeyValue<K,V> {

which each data store implements. The code which implements
asynchronous interfaces, performance monitoring, and work-
load generation takes arguments of type
KeyValue<K,V> rather than an implementation of
KeyValue<K,V>. That way, the same code can be applied
to each implementation of KeyValue<K,V>.

The UDSM provides data encryption and compression in a

similar fashion as the DSCL. The DSCL can be used to provide
integrated caching for any of the data stores supported by
the UDSM. In addition, the key-value interface allows UDSM
users to manually implement caching without using the DSCL.
The key point is that via the key-value interface, any data
store can serve as a cache or secondary repository for one of
the other data stores functioning as the main data store. The
user would make appropriate method calls via the key-value
interface to maintain the contents of a data store functioning
as a cache or secondary repository. The next section explores
caching in more detail.

III. CACHING

Caching support is critically important for improving per-
formance [17]. The latency for communicating between clients
and servers can be high. Caching can dramatically reduce this
latency. If the cache is properly managed, it can also allow an
application to continue executing in the presence of poor or
limited connectivity with a data store server.

Our enhanced data store clients use three types of caching
approaches. In the first approach, caching is closely integrated
with a particular data store. Method calls to retrieve data from
the data store can first check if the data are cached, and if
so, return the data from the cache instead of the data store.
Methods to store data in the data store can also update the
cache. Techniques for keeping caches updated and consistent
with the data store can additionally be implemented. This first
caching approach is achieved by modifying the source code
of a data store client to read, write, and maintain the cache as
appropriate by making appropriate method calls to the DSCL.

We have used this first approach for implementing caching
for Cloudant. The source code for this implementation is
available from [18]. We have also used this approach for imple-
menting caching for OpenStack Object Storage by enhancing
the Java library for OpenStack Storage (JOSS) [5]. While this
approach makes things easier for users by adding caching
capabilities directly to data store API methods, it has the
drawback of requiring changes to the data store client source
code. In some cases, the client source code may be proprietary
and not accessible. Even if the source code is available (e.g.
via open source), properly modifying it to incorporate caching
functionality can be time consuming and difficult.

The second approach for implementing caching is to pro-
vide the DSCL to users and allow them to implement their
own customized caching solutions using the DSCL API. The
DSCL provides convenient methods allowing applications to
both query and modify caches. The DSCL also allows cached
objects to have expiration times associated with them; later
in this section, we will describe how expiration times are
managed. It should be noted that if the first approach of having
a fully integrated cache with a data store is used, it is still
often necessary to allow applications to directly access and
modify caches via the DSCL in order to offer higher levels of
performance and data consistency. Hence, using a combination
of the first and second caching approaches is often desirable.

The third approach for achieving caching is provided by
the UDSM. The UDSM key-value interface is implemented
for both main data stores as well as caches. If an application
is using the key-value interface to access a data store, it is
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very easy for the application writer to store some of the
key-value pairs in a cache provided by the UDSM. Both
the main data store and cache share the same key-value
interface. This approach, like the second approach, requires the
application writer to explicitly manage the contents of caches.
Furthermore, the UDSM lacks some of the caching features
provided by the DSCL such as expiration time management.
An advantage to the third approach is that any data store
supported by the UDSM can function as a cache or secondary
repository for another data store supported by the UDSM; this
offers a wide variety of choices for caching or replicating data.

The DSCL also supports multiple different types of caches
via a Cache interface which defines how an application in-
teracts with caches. There are multiple implementations of the
Cache interface which applications can choose from (Figure 4).

There are two types of caches. In-process caches store
data within the process corresponding to the application (Fig-
ure 5) [19]. That way, there is no interprocess communication
required for storing the data. For our Java implementations of
in-process caches, Java objects can directly be cached. Data
serialization is not required. In order to reduce overhead when
the object is cached, the object (or a reference to it) can be
stored directly in the cache. One consequence of this approach
is that changes to the object from the application will change
the cached object itself. In order to prevent the value of a
cached object from being modified by changes to the object
being made in the application, a copy of the object can be
made before the object is cached. This results in overhead for
copying the object.

Another approach is to use a remote process cache (Fig-
ure 6) [17]. In this approach, the cache runs in one or more pro-
cesses separate from the application. A remote process cache
can run on a separate node from the application as well. There
is some overhead for communication with a remote process
cache. In addition, data often has to be serialized before being
cached. Therefore, remote process caches are generally slower
than in-process caches (as shown in Section V). However,
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Fig. 6: Remote process caches can be used to improve perfor-
mance.

remote process caches also have some advantages over in-
process caches. A remote process cache can be shared by
multiple clients, and this feature is often desirable. Remote
process caches can often be scaled across multiple processes
and nodes to handle high request rates and increase availability.

There are several caches that are available as open source
software which can be used in conjunction with our DSCL.
Redis [7] and memcached [8] are widely used remote process
caches. They can be used for storing serialized data across a
wide range of languages. Clients for Redis and memcached
are available in Java, C, C++, Python, Javascript, PHP, and
several other languages.

Examples of caches targeted at Java environments include
the Guava cache [9], Ehcache [10], and OSCache [11]. A
common approach is to use a data structure such as a HashMap
or a ConcurrentHashMap with features for thread safety and
cache replacement. Since there are several good open source
alternatives available, it is probably better to use an existing
cache implementation instead of writing another cache im-
plementation unless the user has specialized requirements not
handled by existing caches.

Our DSCL allows any of these caches to be plugged into
its modular architecture. In order to use one of these caches,
an implementation of the DSCL Cache interface needs to
be implemented for the cache. We have implemented DSCL
Cache interfaces for a number of caches including redis and
the Guava cache.

The DSCL allows applications to assign (optional) expira-
tion times to cached objects. After the expiration time for an
object has elapsed, the cached object is obsolete and should not



Cache Expiration Method 

o1 cached, 
expires at
7:00 AM

o1 remains in 
cache

7:00 AM
o1 requested,

get-if-modified-since 
request sent to 

server

6:00 AM 7:04 AM

new value of o1 
stored in cache

Expiration time 
for o1 updated

Not modified

Modified, server sends new value of o1

LRU (or greedy-dual-size) replaces objects when cache is full

Fig. 7: Handling cache expiration times.

be returned to an application until the server has been contacted
to either provide an updated version or verify that the expired
object is still valid. Cache expiration times are managed by the
DSCL and not by the underlying cache. There are a couple
of reasons for this. Not all caches support expiration times.
A cache which does not handle expiration times can still
implement the DSCL Cache interface. In addition, for caches
which support expiration times, objects whose expiration times
have elapsed might be purged from the cache. We do not
always want this to happen. After the expiration time for a
cached object has elapsed, it does not necessarily mean that
the object is obsolete. Therefore, the DSCL has the ability to
keep around a cached object o1 whose expiration time has
elapsed. If o1 is requested after its expiration time has passed,
then the client might have the ability to revalidate o1 in a
manner similar to an HTTP GET request with an If-Modified-
Since header. The basic idea is that the client sends a request
to fetch o1 only if the server’s version of o1 is different than
the client’s version. In order to determine if the client’s version
of o1 is obsolete, the client could send a timestamp, entity tag,
or other information identifying the version of o1 stored at the
client. If the server determines that the client has an obsolete
version of o1, then the server will send a new version of o1 to
the client. If the server determines that the client has a current
version of o1, then the server will indicate that the version of
o1 is current (Figure 7).

Using this approach, the client does not have to receive
identical copies of objects whose expiration times have elapsed
even though they are still current. This can save considerable
bandwidth and improve performance. There is still latency for
revalidating o1 with the server, however.

If caches become full, a cache replacement algorithm such
as least recently used (LRU) or greedy-dual-size [20] can be
used to determine which objects to retain in the cache.

Some caches such as redis have the ability to back up data
in persistent storage (e.g. to a hard disk or solid-state disk).
This allows data to be preserved in the event that a cache
fails. It is also often desirable to store some data from a cache
persistently before shutting down a cache process. That way,
when the cache is restarted, it can quickly be brought to a warm
state by reading in the data previously stored persistently.

The encryption capabilities of the DSCL can also be used
in conjunction with caching. People often fail to recognize the

Simple delta encoding example

0    1     2    3      4    5     6     7     8     9    10   11  12

3      4    7    9    10   13   15    8     4     5     7     3      8

a[5] = 97;
A[6] = 98;

(0, 5)

97     98
(7, 6)

Update array

Delta encoded update

0    1     2    3      4    5     6     7     8     9    10   11  12

3      4    7    9    10   97   98    8     4     5     7     3      8

Fig. 8: Delta encoding.

security risks that can be exposed by caching. A cache may be
storing confidential data for extended periods of time. That data
can become a target for hackers in an insecure environment.
Most caches do not encrypt the data they are storing, even
though this is sometimes quite important.

Remote process caches also present security risks when an
application is communicating with a cache over an unencrypted
channel. A malicious party can steal the data being sent
between the application and the cache. Too often, caches are
designed with the assumption that they will be deployed in a
trusted environment. This will not always be the case.

For these reasons, data should often be encrypted before
it is cached. The DSCL provides the capability for doing so.
There is some CPU overhead for encryption, so privacy needs
need to be balanced against the need for fast execution.

The DSCL compression capabilities can also be used to
reduce the size of cached objects, allowing more objects to
be stored using the same amount of cache space. Once again,
since compression entails CPU overhead, the space saved by
compression needs to be balanced against the increase in CPU
cycles resulting from compression and decompression.

IV. DELTA ENCODING

Data transfer sizes between the client and server can
sometimes be reduced by delta encoding. The key idea is that
when the client updates an object o1, it may not have to send
the entire updated copy of o1 to the server. Instead, it sends
a delta between o1 and the previous version of o1 stored at
the server. This delta might only be a fraction of the size of
o1 [21].

A simple example of delta encoding is shown in Figure 8.
Only two elements of the array in the figure change. Instead
of sending a copy of the entire updated array, only the delta
shown below the array is sent. The first element of the delta
indicates that the 5 array elements beginning with index 0 are
unchanged. The next element of the delta contains updated
values for the next two consecutive elements of the array. The
last element of the delta indicates that the 6 array elements
beginning with index 7 are unchanged.

Our delta encoding algorithm uses key ideas from the
Rabin-Karp string matching algorithm [22]. Data objects are
serialized to byte arrays. Byte arrays can be compressed by



finding substrings previously encountered. If the server has a
previous substring, the client can send bytes corresponding to
the substring by sending an index corresponding to the position
of the substring and the length of the substring as illustrated in
Figure 8. Matching substrings should have a minimum length,
WINDOW SIZE (e.g. 5). If the algorithm tries to encode
differences by locating very short substrings (e.g. of length
2), the space overhead for encoding the delta may be higher
than simply sending the bytes unencoded. When a matching
substring of length at least WINDOW SIZE is found, it is
expanded to the maximum possible size before being encoded
as a delta.

As we mentioned, an object o can be serialized to a byte
array, b. We find matching substrings of o by hashing all
subarrays of b of length WINDOW SIZE in a hash table. In
order to hash substrings of o efficiently, we use a rolling hash
function which can be efficiently computed using a sliding
window moving along b. That way, the hash value for the
substring beginning at b[i + 1] is efficiently calculated from
the hash value for the substring beginning at b[i].

Delta encoding works best if the server has support for
delta encoding. If the server does not have support for delta
encoding, the client can handle all of the delta encoding oper-
ations using the following approach. The client communicates
an update to the server by storing a delta at the server with
an appropriate name. After some number of deltas have been
sent to the server, the client will send a complete object to
the server after which the previous deltas can be deleted. If a
delta encoded object needs to be read from the server, the base
object and all deltas will have to be retrieved by the client so
that it can decode the object.

Delta encoding without support from the server will often
not be of much benefit because of the additional reads and
writes the client has to make to manage deltas. The other
features of our enhanced data store clients do not require
special support from the server. We consider delta encoding
to be a performance optimization which can sometimes be of
benefit but is not as important for our enhanced clients as
caching, encryption, or compression.

V. PERFORMANCE EVALUATION

Our enhanced data store clients and UDSM offer multiple
benefits including improved performance via caching, encryp-
tion, compression, access to a wide variety of data stores
via synchronous and asynchronous interfaces, performance
monitoring, and a workload generator for easily comparing
performance across different data stores. This section uses the
UDSM to determine and compare read and write latencies that
a typical client would see using several different types of data
stores. We show the performance gains that our enhanced data
store clients can achieve with caching. We also quantify the
overheads resulting from encryption, decryption, compression,
and decompression.

We test the following data stores by using the UDSM to
send requests from its workload generator using the key-value
interface:

• A file system on the client node accessed via standard
Java method calls.

• A MySQL database [23] running on the client node
accessed via JDBC.

• A commercial cloud data store provided by a major
cloud computing company (referred to as Cloud Store
1).

• A second commercial cloud data store provided by a
major cloud computing company (referred to as Cloud
Store 2).

• A Redis instance running on the client node accessed
via the Jedis client [24].

The Redis instance also acts as a remote process cache for the
other data stores. A Guava cache [9] acts as an in-process
cache for each data store. The performance numbers were
all obtained using the common key-value interface which the
UDSM implements for each data store.

A 2.70GHz Intel i7-3740QM processor with 16 GB of
RAM running a 64-bit version of Windows 7 Professional was
used for running the UDSM and enhanced data store clients.
The performance graphs use log-log plots because both the
x-axis (data size in bytes) and y-axis (time in milliseconds)
values span a wide magnitude of numbers. Experiments were
run multiple times. Each data point is averaged over 4 runs
of the same experiment. Data from files in a file system were
stored and retrieved from different data stores to generate the
performance numbers. We did not find significant correlations
between the types of data read and written and data store read
and write latencies. There was often considerable variability
in the read and write latency for the experimental runs using
the same parameters.

Figure 9 shows the average time to read data as a function
of data size. Cloud Store 1 and 2 show the highest latencies
because they are cloud data stores geographically distant from
the client. By contrast, the other data stores run on the same
machine as the client. Another factor that could adversely
affect performance for the cloud data stores, particularly in
the case of Cloud Store 1, is that the requests coming from
our UDSM might be competing for server resources with
computing tasks from other cloud users. This may be one of
the reasons why Cloud Store 1 exhibited more variability in
read latencies than any of the other data stores. Significant
variability in cloud storage performance has been observed by
others as well [2]. The performance numbers we observed for
Cloud Store 1 and 2 are not atypical for cloud data stores,
which is a key reason why techniques like client-side caching
are essential for improving performance.

Redis offers lower read latencies than the file system for
small objects. For objects 50 Kbytes and larger, however, the
file system achieves lower latencies. Redis incurs overhead
for interprocess communication between the client and server.
There is also some overhead for serializing and deserializing
data stored in Redis. The file system client might benefit from
caching performed by the underlying file system.

Redis offers considerably lower read latencies than MySQL
for objects up to 50 Kbytes. For larger objects, Redis offers
only slightly better read performance, and the read latencies
converge with increasing object size.
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Fig. 9: Read latencies for data stores.
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Fig. 10: Write latencies for data stores.

Figure 10 shows the average time to write data as a function
of data size. Cloud Store 1 has the highest latency followed
by Cloud Store 2; once again, this is because Cloud Store 1
and 2 are cloud-based data stores geographically distant from
the client. MySQL has the highest write latencies for the local
data stores. Redis has lower write latencies than the file system
for objects of 10 Kbytes or smaller. Write latencies are similar
for objects of 20-100 Kbytes, while the file system has lower
write latencies than Redis for objects larger than 100 Kbytes.

Write latencies are higher than read latencies across the
data stores; this is particularly apparent for MySQL for which
writes involve costly commit operations. It is also very pro-
nounced for larger objects with the cloud data stores and the
file system. Write latencies for the file system and MySQL
exhibit considerably more variation than read latencies.

Figures 11 - 19 show read latencies which can be achieved
with the Guava in-process cache and Redis as a remote process
cache. Multiple runs were made to determine read latencies
for each data store both without caching and with caching

when the hit rate is 100%. From these numbers, the workload
generator can extrapolate performance for different hit rates.
Each graph contains 5 curves corresponding to no caching and
caching with hit rates of 25%, 50%, 75%, and 100%.

The in-process cache is considerably faster than any of
the data stores. Furthermore, read latencies do not increase
with increasing object size because cache reads do not involve
any copying or serialization of data. By contrast, Redis is
considerably slower, as shown in Figure 19. Furthermore, read
latencies increase with object size as cached data objects have
to be transferred from a Redis instance to the client process
and deserialized. An in-process cache is thus highly preferable
from a performance standpoint. Of course, application needs
may necessitate using a remote process cache like Redis
instead of an in-process cache.

Figure 18 shows that for the file system, remote process
caching via Redis is only advantageous for smaller objects;
for larger objects, performance is better without using Redis.
This is because the file system is faster than Redis for reading
larger objects. Figure 16 shows a similar trend. While Redis
will not result in worse performance than MySQL for larger
objects, the performance gain may be too small to justify the
added complexity.

Figure 20 shows the times that an enhanced data store
client requires for encrypting and decrypting data using the
Advanced Encryption Standard (AES) [25] and 128-bit keys.
Since AES is a symmetric encryption algorithm, encryption
and decryption times are similar.

Figure 21 shows the times that an enhanced data store
client requires for compressing and decompressiong data us-
ing gzip [26]. Decompression times are roughly comparable
with encryption and decryption times. However, compression
overheads are several times higher.

VI. RELATED WORK

Clients exist for a broad range of data stores. A small
sample of clients for commonly used data stores includes
the Java library for OpenStack Storage (JOSS) [5], the Jedis
client for Redis [24] and the Java Driver for Apache Cas-
sandra [6]. These clients do not have the capabilities that
our enhanced clients provide. Amazon offers access to data
stores such as DynamoDB via a software development kit
(SDK) [27] which provides compression, encryption, and both
synchronous and asynchronous APIs. Amazon’s SDK does
not provide integrated caching, performance monitoring, or
workload generation; we are not aware of other clients besides
our own which offer these features. Furthermore, we offer
coordinated access to multiple types of data stores, a key
feature which other systems lack.

Remote process caches which provide an API to allow
applications to explicitly read and write data as well as to
maintain data consistency were first introduced in [17], [28].
A key aspect of this work is that the caches were an essential
component in serving dynamic Web data efficiently at several
highly accessed Web sites. Memcached was developed several
years later [8]. Design and performance aspects for in-process
caches were first presented in [19].
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Fig. 11: Cloud Store 1 read latencies with
in-process caching.

 0.1

 1

 10

 100

 1000

 10000

 1000  10000  100000  1x106  1x107

La
te

nc
y 

(m
ill

is
ec

on
ds

)

Object size (bytes)

Cloud Store 1 Latency, Remote Cache

No Caching
25% hit rate
50% hit rate
75% hit rate

100% hit rate

Fig. 12: Cloud Store 1 read latencies with
remote process caching.
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Fig. 13: Cloud Store 2 read latencies with
in-process caching.
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Fig. 14: Cloud Store 2 read latencies with
remote process caching.
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Fig. 15: MySQL read latencies with in-
process caching.

 0.1

 1

 10

 100

 1000  10000  100000  1x106  1x107

La
te

nc
y 

(m
ill

is
ec

on
ds

)

Object size (bytes)

MySQL Latency with Remote Cache

No Caching
25% hit rate
50% hit rate
75% hit rate

100% hit rate

Fig. 16: MySQL read latencies with re-
mote process caching.
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Fig. 17: File system read latencies with
in-process caching.
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Fig. 18: File system read latencies with
remote process caching.
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Fig. 19: Redis read latencies with in-
process caching.
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Fig. 20: Encryption and decryption latency.
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Fig. 21: Compression and decompression latency.

In recent years, there have been a number of papers which
have looked at how to improve caches such as memcached.
Facebook’s use of memcached and some of the performance
optimizations they made are described in [29]. A more detailed
description of Facebook’s memcached workload is contained
in [30]. Cliffhanger is a system which optimizes memory use
among multiple cache servers by analyzing hit rate gradient
curves [31]. A memcached implementation of Cliffhanger
described in the paper considerably reduces the amount of
memory required to achieve a certain hit rate. Optimizations
to memcached are presented in [32] including an optimistic
cuckoo hashing scheme, a CLOCK-based eviction algorithm
requiring only one extra bit per cache entry, and an optimistic
locking algorithm. These optimizations both reduce space
overhead and increase concurrency, allowing higher request
rates. Expanding the memory available to memcached via
SSDs is explored in [33]. A cache management system that
performs adaptive hashing to balance load among multiple
memcached servers in response to changing workloads is pre-
sented in [34]. Memory partitioning techniques for memcached
are explored in [35]. MIMIR is a monitoring system which

can dynamically estimate hit rate curves for live cache servers
which are performing cache replacement using LRU [36].

There have also been a number of papers which have
studied the performance of cloud storage systems. Dropbox,
Microsoft SkyDrive (now OneDrive), Google Drive, Wuala
(which has been discontinued), and Amazon Cloud drive are
compared using a series of benchmarks in [1]. No storage
service emerged from the study as being clearly the best
one. An earlier paper by some of the same authors analyzes
Dropbox [37]. A comparison of Box, Dropbox, and SugarSync
is made in [2]. The study noted significant variability in service
times which we have observed as well. Failure rates were
less than 1%. Data synchronization traffic between users and
cloud providers is studied in [38]. The authors find that much
of the data synchronization traffic is not needed and could
be eliminated by better data synchronization mechanisms.
Another paper by some of the same authors proposes reducing
data synchronization traffic by batched updates [39].

VII. CONCLUSIONS

This paper has presented enhanced data store clients which
support client-side caching, data compression, and encryp-
tion. These features considerably enhance the functionality
and performance of data stores and are often needed by
applications. We have also presented a Universal Data Store
Manager (UDSM) which allows applications to access multiple
data stores. The UDSM provides common synchronous and
asynchronous interfaces to each data store, performance mon-
itoring, and a workload generator which can easily compare
performance of different data stores from the perspective of the
client. A library for implementing enhanced data store clients
as well as a Java implementation of the UDSM are available
as open source software. Enhanced data store clients are being
used by IBM customers.

Most existing data store clients only have basic functional-
ity and lack the range of features that we provide. Users would
significantly benefit if caching, encryption, compression, and
asynchronous (nonblocking) interfaces become commonly sup-
ported in data store clients.

Future work includes providing more coordinated features
across multiple data stores such as atomic updates and two-
phase commits. We are also working on new techniques
for providing data consistency between different data stores.
The most compelling use case is providing stronger cache
consistency. However, the techniques we are developing are
also applicable to providing data consistency between any data
stores supported by the UDSM.
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