
Combining Quality of Service and Social

Information for Ranking Services

Qinyi Wu#, Arun Iyengar∗, Revathi Subramanian∗, Isabelle Rouvellou∗,
Ignacio Silva-Lepe∗, Thomas Mikalsen∗

#College of Computing, Georgia Institute of Technology
801 Atlantic Drive, Atlanta, GA 30332, USA

qxw@cc.gatech.edu
∗IBM T.J. Watson Research Center

19 Skyline Drive, Hawthorne, NY 10532, USA

{aruni, revathi, rouvellou, isilval, tommi}@us.ibm.com

Abstract. In service-oriented computing, multiple services often exist
to perform similar functions. In these situations, it is essential to have
good ways for qualitatively ranking the services. In this paper, we present
a new ranking method, ServiceRank, which considers quality of service
aspects (such as response time and availability) as well as social perspec-
tives of services (such as how they invoke each other via service compo-
sition). With this new ranking method, a service which provides good
quality of service and is invoked more frequently by others is more trusted
by the community and will be assigned a higher rank. ServiceRank has
been implemented on SOAlive, a platform for creating and managing ser-
vices and situational applications. We present experimental results which
show noticeable differences between the quality of service of commonly
used mapping services on the Web. We also demonstrate properties of
ServiceRank by simulated experiments and analyze its performance on
SOAlive.

Key words: Cloud computing, Quality of service, Service ranking

1 Introduction

Cloud computing is viewed as a major logical step in the evolution of the Internet
as a source of services. With many big companies now offering hosted infrastruc-
ture tools and services, more and more businesses are using cloud computing.
We envision an open, collaborative ecosystem where cloud services can be easily
advertised, discovered, composed and deployed. In cloud computing, there are
often software services that perform comparable functions. An example would
be mapping services such as those available from Google, Yahoo!, and Mapquest.
Users, service composers and service invokers alike are thus faced with the task
of picking from a set of comparable services that meet their needs. A random
selection may not be optimal for its targeted execution environment and may
incur inefficiencies and costs. In this situation, it will be very valuable if users

2 Wu et al

could be provided with some indication of the relative merits of comparable
services. We propose a new ranking method to address this need.

Our methodology takes into account how services invoke each other via ser-
vice composition. Service composition allows developers to quickly build new
applications using existing services that provide a subset of the function they
need. An address book service that takes as input an address and returns its
geocoding is an example of a primitive service that provides a specialized func-
tion. A FindRoute service that takes as input the geocoding of two addresses
and returns a route from the start address to the end address is a composite
service. Composite services can also become the building blocks of other com-
posite services. The ability to compose and deploy services quickly is a big draw
for existing and prospective cloud customers. We therefore imagine that cloud
environments shall abound in service networks, where services form client-server
relationships. Having good methodologies for evaluating and ranking services
will be critically important for selecting the right services in this environment.

Our service ranking methodology incorporates features from social comput-
ing. Social ranking features are available throughout the Web. The social rank
of an item is the popularity of the item within a community of users. This com-
munity can be virtual or real. Recommender systems such as those by Amazon
or Netflix collect reviews and ratings from users and record their preferences.
They can then use this information to recommend products to like-minded users
(a virtual social network of users). Social bookmarking sites such as del.icio.us
allow an explicit community of users to be formed via user networks. del.icio.us
provides listings of the most popular bookmarks at any point in time which can
be tailored to specific communities. There has also been past work in ranking
and matching web services [1][13]. Prior research deals with finding the services
that best match a required interface, support certain functions, or satisfy certain
rules or policies.

In our approach to rank services in the cloud, we start out with the as-
sumption that some initial matchmaking has been performed to arrive at a set
of comparable services which then need to be ranked. We therefore, do not
dwell on the aspects of matching interfaces, service descriptions, semantics, etc.
Instead, we focus our energies on drawing the parallel between social networks
and service networks. In social networks, users rate services. In service networks,
services can rate other services based on how successful the service invocations
were. The high rank (or popularity) of a service is influenced not just by a large
number of service clients, but also by the satisfaction expressed by these service
clients. A hike in the rank of a service S propagates favorably down the line to
other services that it (S) depends upon.

The contributions of this paper are as follows:

– We present a new algorithm, referred to as ServiceRank, for ranking services
which combines quality of service (QoS) aspects such as response time and
availability with social ranking aspects such as how frequently the service is
invoked by others.

Combining Quality of Service and Social Information for Ranking Services 3

– We show through experimental results that our algorithm is efficient and
consumes minimal overhead.

– We study the performance of different mapping services on the Web. Our
results indicate that the different services exhibit different behavior which is
a key reason that quantitative methods are needed to rank services.

In the rest of this paper, we first define the ServiceRank algorithm in Sec-
tion 2. We then describe an implementation of ServiceRank in Section 3. Exper-
iments are presented in Section 4. We describe related work in Section 5 and
conclude in Section 6.

2 ServiceRank

ServiceRank incorporates features from social computing by taking into account
how services invoke each other via service composition. Figure 1 shows an ex-
ample. A circle represents a service. A directional arrow represents a service
invoking another service to fulfill its functionality. We call the service sending a
request the client and the service processing the request the server. In this exam-
ple, services s1 and s2 are clients. s4 is their server. s3 dynamically invokes either
s4 or s5 to balance its load between these two services. s4 and s5 are grouped
into a category because they provide the same functionality. From ServiceRank’s
perspective, a request is regarded as a rating from the client to the server. The
client evaluates all the requests to compute a local rating of the server. Local
ratings are eventually aggregated to compute global ranks for all the services.
ServiceRank considers three factors for the aggregation. The first factor is how
many clients a service has. In this example, we expect that s4 gains a higher rank
than s5 because it has more client services. The second factor is how frequently
a service is invoked. If s3 sends more requests to s5 than s4, s3 will rank s5

higher under the condition that the quality of both services is similar. The third
factor considers QoS in terms of response time and availability. For example, if
s5 has better response time than s4, its rank should be raised even though it has
fewer clients. In the rest of this section, we explain how ServiceRank combines
all three factors to compute global ranks for services.

S1 S3

S4 S5

S2

category

Fig. 1. A service network example

4 Wu et al

2.1 Local Ratings

A service network consists of a set of services S = s1, s2, ..., sn. If si sends a re-
quest to sj , si is a client of sj , and sj a server of si. We use Rij = {r1

ij , r
2
ij , ..., r

m
ij }

to denote all the requests between si and sj and ru
ij the u-th request. In Ser-

viceRank, a request ru
ij is regarded as a rating from si to sj . If si processes it

successfully, si gives sj a positive rating: rate(ru
ij) = 1, otherwise rate(ru

ij) = −1.
si’s total rating to sj , denoted by lij , is the sum of the ratings of all the requests.

lij =
∑

u

rate(ru
ij) (1)

lij considers how frequently a service is invoked, and whether requests are
successfully processed. However, QoS is a critical factor in service composition
as well. It is important that ranks of services can be differentiated based on
their performance. The ServiceRank algorithm achieves this goal by comparing
the average response time of a service with that of other services with the same
functionality and using the comparison ratio to adjust local ratings. Next we
introduce a few more notations to explain how this is done.

For a service sj , its average response time, rtj , is computed by averaging the
response time of all the requests it receives. Let Bj denote its client set.

rtj =

∑
si∈Bj

∑
ru

ij
∈Rij

response time(ru
ij)∑

si∈Bj
|Rij |

(2)

Services with the same functionality are grouped into a category, denoted by
cu. We use min crt

u to denote the minimal average response time of services in
cu. Services with no requests are not considered. Suppose sj belongs to cu, the
total rating from si to sj is adjusted as follows:

l̂ij = (
∑

u

rate(ru
ij)) ∗

min crt
u

rtj
(3)

In the above equation, if sj achieves the minimal average response time in cate-
gory cu, the total rating remains the same. Otherwise, the rating will be adjusted

by a constant less than 1.
min crt

u

rtj
brings category knowledge into local ratings.

This unique feature differentiates ServiceRank from earlier ranking algorithms
in which local ratings are solely based on local knowledge [5][7]. With this new
feature, if a client sends the same amount of requests to two services in a cat-
egory, the client will give a higher rating to the one achieving better response
time. Note that there are other ways to adjusting local ratings with category
knowledge. For example, we can use the median of services’ average response
time and put penalties on local ratings only when a service performs below the
average. We do not discuss them further since they do not change the definition
of Equation 3 fundamentally. A concern in this approach is that a malicious ser-
vice can register itself in a category and respond back to its malicious partners
instantaneously. In doing so, an ordinary service is likely to be penalized due to
its “bad” performance. This problem can be avoided if we use average response
time from well-established services as an adjusting baseline.

Combining Quality of Service and Social Information for Ranking Services 5

2.2 Normalizing and Aggregating Local Ratings

In social ranking, we wish that the rank of a service is decided by both the
ranks and ratings of its clients. ServiceRank computes the global rank of sj by
aggregating the local ratings from its client, defined as

wj =
∑

si∈Bj

l̂ijwi (4)

It is important to normalize local ratings to remove noisy data and protect
the ranking system from a malicious party which creates bogus services and
commands them to send requests to a service to artificially raise its rank. Ser-
viceRank normalizes local ratings in two steps. First, it evaluates the eligibility
of a local rating lij by two criteria: 1) the total number of requests exceeds a
constant number T such that |Rij | > T ; 2) successful rate exceeds a thresh-

old β such that
|Rsucc

ij |

|Rij |
> β, where Rsucc

ij denotes those requests that satisfy

rate(ru
ij) = 1. T and β are two configurable parameters. The two criteria ensure

that two services must establish a stable history before ServiceRank considers
its local rating. This helps remove noisy data such as ratings from testing re-
quests or ratings for unavailable services. In the second normalization step, only
eligible ratings are considered. A local rating from si to sj is divided by lij with
the total number of requests sent by si:

rij =
l̂ij∑
j l̂ij

(5)

With Equation 4, the global rank values of services w = (w1, w2, ..., wn) are
the entries of the principal left eigenvector of the normalized local rating matrix
R = (rij)ij , defined as follows:

wT = wT R (6)

The above definition does not consider prior knowledge of popular services.
In a service network, some services are known to be trustworthy and provide
good quality. Similar to the early approach [5], ServiceRank uses this knowledge
to address the problem of malicious collectives in which a group of services sends
requests to each other to gain high global ranking values. Let Q denote a set of
trusted services. We define the vector q to represent the pre-trusted rank values.
qi is assigned a positive value if si ∈ Q, otherwsie qi = 0. q satisfies

∑
i qi = 1.

The global rank values of services are now defined as:

wT = awT R + (1 − a)qT (7)

where R is the normalized local rating matrix and a a constant less than 1.
Equation 7 is a flow model [4]. It assumes that the sum of global ranks is a
constant, and the total rank value is distributed among services in a network. q

serves as a rank source. This model states that starting from a trusted source, the

6 Wu et al

global ranks are unlikely to be distributed to untrusted services if there are no
links from trusted services to untrusted services. Therefore, malicious collectives
can be prevented if we can effectively control the number of links between these
two groups.

3 System Prototype and Runtime traffic monitoring

ServiceRank has been implemented on SOAlive [12] which is an approach to pro-
vide smart middleware as a service. The SOAlive platform allows users to create,
deploy, and manage situational applications easily. Each application may include
one or more services which may be invoked at runtime, and which in turn, may
invoke other services. For our experiments, we used a SOAlive implementation
on WebSphere sMash [http://www.projectzero.org/]. WebSphere sMash is an
agile web development platform that provides a new programming model and
a runtime that promotes REST-centric application architectures. Logically, the
SOAlive platform can be broken down into i) system components; and ii) hosted
applications and their runtimes.

Figure 2 shows the key SOAlive components. The service catalog, the repos-
itory, the application manager, the application installer, and the router work in
concert to provide a simplified development and deployment experience.

– The SOAlive repository allows modules, the building blocks for applica-
tions, to be uploaded and shared.

– The SOAlive Application Manager lets users create deployed applica-
tions from deployable modules in the repository.

– The SOAlive Application Installer is responsible for downloading, re-
solving, and installing user applications on worker nodes.

– The SOAlive catalog stores metadata about hosted artifacts, in addition
to storing metadata about external artifacts which are of interest to users of
the SOALive platform. It also acts as the hub for collaborative development.

– The SOAlive router is the first stop for any request coming into SOAlive
and provides a suitable extension point for monitoring functions.

SOAlive supports several different topologies ranging from the one in which all
the system components and managed applications run on a single node to a
truly distributed topology where individual system components are themselves
distributed across several nodes, and applications execute in one or more worker
nodes based on system policies. SOAlive defines several extension points as a
way to build upon its core functionality. One of these extension points allows
for different runtime monitors to be added as logical extensions to the routing
component.

Monitoring is enabled on a per-application basis. Each application includes
a “monitor” flag that must be set for monitoring to occur. When monitoring is
enabled for a given application, the server will invoke all registered application
monitors for each application request/response pair. The monitor will be invoked
on the application request thread, after the response is available. The monitor’s

Combining Quality of Service and Social Information for Ranking Services 7

Catalog

System Nodes Application Worker Nodes

SOAlive

Repositor

y

Applicatio

nManager

Nodes housing SOAlive system components

Nodes housing SOAlive managed applications

Catalog

Repository

Application
Manager

Other
MonitorsPerformance

MonitorRanking
Monitor

Router

Other
MonitorsPerformance

MonitorRanking
Monitor

Other
MonitorsPerformance

MonitorRanking
Monitor

Registered monitors as

router extensions

Router

System DB Managed Applications

Application
Installer

Application
Instance
Manager

Application
Manager

Agent

Application
Installer

Application
Instance
Manager

Application
Manager

Agent

Mapquest
Proxy

Yahoo!Maps
Proxy

GoogleMaps
Proxy

Mapquest
Proxy

Yahoo! Maps
Proxy

Google Maps
Proxy

Managed Applications

Fig. 2. SOAlive system architecture

caller assumes that the monitor will return as quickly as possible, and that it
will defer any processing for a later time and on a separate thread. The fol-
lowing figure shows the sequence of events when SOAlive receives a request to a
managed application that has monitoring enabled. For inter-application requests
(i.e., where one hosted SOAlive application invokes another hosted SOAlive ap-
plication), the runtime for the source application adds headers to the out-bound
request that identifies the source application and the specific method in the
source application from which the call originated. This allows the SOAlive mon-
itoring and logging facilities to fully determine the source of a request. This
header injection feature is also used to propagate the correlator for a chain of
invocations. For instance, if application A1 called A2 that called A3 and A4,
then the paths A1 → A2 → A3 and A1 → A2 → A4 have the same correlator.
This correlator is a unique ID generated by SOAlive at the start of a chain of
requests.

Registered Monitor 3

SOAlive Router Application Manager Managed Application

incoming request

save request

connect

invoke appropriate method

return response

save response
monitor(request, response, sourceApp, targetApp)

return response

Registered Monitor 2

Registered Monitor 1

Fig. 3. SOAlive monitoring flow

Using the information gathered from the ranking monitors, ranks are com-
puted periodically and incrementally in SOAlive. Weights are assigned to each
evaluation, with the more recent evaluations having higher weights. The assigned
weights also depend upon service lifecycle events - for example, if a service is en-

8 Wu et al

tirely rewritten, then its previous evaluations are assigned low weights. If a minor
bug fix is made to a service, then the earlier ratings still have considerable impor-
tance, and therefore higher weights. Our incremental ranking procedure allows
new evaluations to update ranks without the need to re-examine old evaluations.

4 Experiment Results

4.1 Map Services

ServiceRank is designed to take QoS into consideration because we expect ser-
vices demonstrate dynamic behavior and should be ranked differently. We con-
ducted experiments on real-world services to confirm this expectation. In our ex-
periments, we collected traffic data from three well-known map services: Google
Maps, Yahoo! Maps, and Mapquest. They were chosen because all of them have
standard APIs that take the geocoding of an address and return its local map.
Moreover, the returned results all contain similar map data. Therefore, it is
meaningful to characterize and compare their performance in terms of response
time and failure rate.

Experiment setup To obtain the traffic data of three map services through
SOALive, we create three proxies. Each proxy is responsible for forwarding a
request to the real map service and forwarding back the result to its client. We
implement a workload generator that periodically sent requests to three prox-
ies at a configurable interval. At each turn, the workload generator uniformly
chooses the geocoding of an address in the US from a database that contains
hundreds of entries. We collect the traffic data for each service for seven con-
secutive days. The time interval is set to be 30 seconds. The traffic data was
collected from 7:00pm (EDT) August 4th, 2008 to 7:00pm (EDT) August 11th,
2008.

Experiment results Figure 4 shows the average response time at different
times in the day. We can see three phenomena. First, all three map services have
degraded response time during peak hours (approximately between 8:00 and
18:00). Second, MapQuest has slightly worse response times in general compared
to the other two map services. Third, even though Google Maps and Yahoo! Maps
have similar response time during non-peak hours, Google Maps performs worse
than Yahoo! Maps during peak hours. Figure 5 shows the percentage of failed
invocations at different times in the day. The figure does not show anything
for Yahoo! Maps because it did not return any failed invocations during our
experimental period. Both Google Maps and MapQuest have very small failure
rates with MapQuest being slightly higher.

From these experiment results, we can see that real-world services do demon-
strate different behavior over time. Therefore, it is very important to rank them
dynamically to characterize their latest performance. From Figure 4, we see that
Google Maps has degraded response time during peak daytime hours. The most
likely explanation is that Google Maps is more loaded during that period. Yahoo!
Maps demonstrates better average response time during the same period. QoS-
based ranking can provide valuable information to assist applications that have

Combining Quality of Service and Social Information for Ranking Services 9

0 2 4 6 8 10 12 14 16 18 20 22
200

300

400

500

600

700

800

900

1000

1100

1200

Hour (Eastern Daylight Time)

M
ill

is
ec

on
ds

Google Maps
Yahoo! Maps
Mapquest

Fig. 4. Average response time

0 2 4 6 8 10 12 14 16 18 20 22
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Hour (Eastern Daylight Time)

P
er

ce
nt

ag
e

(%
)

Google Maps
Mapquest

Fig. 5. Percentage of failed invocations.
Yahoo! Maps does not have bars be-
cause it did not return any failed request.
Google Maps has few bars because it re-
turned failed requests only in some of the
hours.

critical requirements on performance. For example, travel planning services that
want to integrate a map service would do well to choose Yahoo! Maps during
peak hours.

The relative performance of Google Maps, Yahoo! Maps, and Mapquest may
have changed since the time these measurements were made. For a large number
of customers, all three services offer performance and availability which are more
than adequate. We do not have sufficient data to judge one of the services as
currently being superior to another. The key point is that at any given point in
time, different services offering the same functionality will often show noticeable
differences in performance. In addition, there may also be considerable variations
in performance based on the time of day.

4.2 ServiceRank Properties

We now demonstrate the properties of ServiceRank through a hierarchical service
network model. In this model, a set of services form a hierarchical structure. The
structure is divided into layers l1, l2, ..., ln. Services at the same layer belong to
the same category. The lowest layer is l1. Services at li are clients of services at
li+1. Requests are sent by a root service s0 to services at l1. To process a request,
a service at l1 invokes one of the services at l2, which will in turn uses a service
at l3 and so on. The response time of a request at a service is the service’s own
processing time plus the round trip time spent at upper layers.

Experiment 1 We intend to show how the rank of a service changes with
the number of times it is invoked. A simple topology suffices for this purpose. We
use the one shown in Figure 6. An arrow represents a client-server relationship.
We gradually adjust the percentage of requests between s1 and s2 and observe

10 Wu et al

S1 S2

S3 S4

S0

layer l1

layer l2

Fig. 6. A simple hierarchical service network

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Percentage of requests sent to s
1
 [%]

R
an

ki
ng

 v
al

ue

S1S2

S3S4

Fig. 7. Impact of request frequency on
ranking values

20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

Request rate sent by s
0
 [requests/s]

R
an

ki
ng

 v
al

ue

S1

S2

S3

S4

Fig. 8. Impact of response time on rank-
ing values

how the ranks of s3, s4, s5, and s6 change. To see only the impact of request
frequency, we do not consider the two other factors: failure rate and response
time. In other words, each request is successfully satisfied, and services in the
same category have similar response times. The results are shown in Figure 7.
We can see that the ranking values of both s1 and s3 increase as they consume a
higher percentage of requests compared to their counterparts. The ranking values
of s2 and s4 decrease correspondingly. We can also see that the ranking value
of a service is impacted not only by the percentage of requests it receives, but
also by the ranking values of its client. In this case, s3’s ranking value increases
faster than s1 because both s3’s request percentage and s1’s ranking value get
increased. This property is a desirable feature of social ranking because it takes
into consideration both popularities of services and the amount of workload they
share.

Experiment 2 We now evaluate how the rank of a service is impacted by
the quality its requests receive. We continue to use the topology in Figure 6.
We assume that the percentage of requests between s1 and s2 follows the 80-20
rule in which s1 receives 80% of requests while s2 receives 20%. The experiment
runs in cycles. In each cycle, s0 sends requests at a given rate to both s1 and

Combining Quality of Service and Social Information for Ranking Services 11

s2, which will invoke their corresponding services at the next upper layer. We
simulate the average response time of a service by a function, which remains
constant when the request rate below a threshold and increases linearly after
that. In the experiment, we configure the threshold to be 50. Figure 8 shows
the result. Without considering the factor of response time, the ranking values
of all services would not change over the course of the experiment because the
percentage of requests at all services does not change. After taking response
time into consideration, the number of ratings a service receives from its clients
will be adjusted by how well the requests are served. From Figure 8, we can see
that the ranks of services do not change when the number of requests is below
50. After that, the ranks of s1 and s3 begin to drop because their response
times start to increase. This is to simulate the situation in which a service shows
degraded performance when overloaded. As a result, the ranks of s1 and s2 start
to converge. s3 and s4 demonstrate similar trends. In real applications, this
property motivates service writers to improve service response times in order to
keep service ranks from declining when the services are overloaded due to high
request rates. It also provides more accurate information to guide new traffic to
services that are less overloaded.

4.3 Monitoring Overhead in SOALive

SOALive collects the traffic data of services when they are serving customers.
It is very important that the monitoring procedure does not interfere with the
ordinary operation of services. The experiment in this section measures the mon-
itoring overhead.

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

14

16

18

20

Number of requests

T
ot

al
 e

xe
cu

tio
n

tim
e

[s
ec

on
ds

]

monitoring disabled
monitoring enabled

Fig. 9. Monitoring overhead in SOALive

Experiment setup We set up two services si and sj in SOALive. si uses sj ’s
functionality by sending a sequence of HTTP requests. The monitoring service
in SOALive is responsible for recording the round trip time of each invocation

12 Wu et al

and its status. sj has an empty function body. It returns back to si as soon as
it receives a request. Therefore, the total amount of time to process a batch of
requests will be close to the overhead introduced by SOALive.

Experiment result Figure 9 shows the results. We gradually increase the
total number of requests between si and sj . For each configuration, we collect to-
tal processing time with and without monitoring enabled. We run the experiment
five times and compute the average. Figure 9 shows that the overall processing
time with monitoring enabled is only slightly higher than the case with moni-
toring disabled. This demonstrates that an efficient monitoring service can be
implemented in a cloud. The current experiment is only run in a small setting.
For large settings with hundreds or even thousands of services deployed, we can
use different optimization techniques such as sampling to collect traffic data.

4.4 ServiceRank Performance

In SOALive, ServiceRank periodically analyzes traffic data and computes the
ranking values of services. It is important that ServiceRank can scale up to
large numbers of services to provide ranking values in a timely fashion. We have
implemented the ServiceRank algorithm by using the power method to compute
the left principal eigenvector of Equation 7. Since we do not have enough services
in SOALive to test the algorithm for a large number of services, we evaluate its
performance for a high number of services by simulation.

Service network model The topology of a service network is determined by
both the number of services and the service invocations. We assume that within
the cloud, services with different popularities exist. For an invoked service, the
number of its clients conforms to a power law distribution as shown in Table 1.
In this setting, 35% of services are only clients and do not provide services to
others. A majority of services (60.36%) have clients ranging between 1 and 20.
Less than 1% services have more than 100 clients.

Table 1. Distribution of number of clients for invoked services

number of clients percentage number of clients percentage

0 35% [21, 40] 2.26%
[1, 5] 48.69% [41, 100] 1.39%

[6, 20] 11.67% [100, +] 0.99%

Simulation execution We evaluate the response time and throughput of
our ranking algorithm by simulation. In each simulation cycle, a workload gen-
erator sends requests at different rates (i.e. the number of requests per second).
We use a thread pool to process concurrent requests. Each request computes
the ranking values for a service network with a given number of services. The
services are connected according to our service network model. To measure aver-
age response time, we run our workload generator for three minutes and average
the response time of each request. To measure maximum throughput, we adjust

Combining Quality of Service and Social Information for Ranking Services 13

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

Number of services

A
ve

ra
ge

 r
es

po
ns

e
tim

e
[s

]

Fig. 10. Average response time for ser-
vice networks with different number of
services

0 500 1000 1500 2000 2500 3000 3500 4000
0

50

100

150

200

250

300

Number of services

T
hr

ou
gh

pu
t [

ra
nk

in
gs

/s
]

Fig. 11. Throughput per second for ser-
vice networks with different number of
services

request rates and observe the values of throughput at different rates for three
minutes. The maximum throughput is the point when the throughput does not
increase any more with the increase of request rate.

Hardware configuration All experiments are conducted on a 64-bit GNU
Linux machine with Intel(R) Core(TM)2 Quad CPU 2.83GHz, 4GB RAM.

Experiment results Figure 10 shows the results for the measurement of
response time. Figure 11 shows the results for the measurement of throughput.
As the number of services increases in a service network, the response time is less
than tens of milliseconds on average until the number reaches at around 1500
services. Correspondingly, the throughput of ServiceRank scales well for service
networks with less than 1500 services. After that the throughput gradually drops
from hundreds of rankings per second to less than ten rankings per second. We
expect in a real cloud, rankings are not workload-intensive. There may be many
seconds between successive rankings. Therefore, ServiceRank should be able to
scale up to large settings with many thousands of services.

5 Related Work

Past work addresses the ranking problem by analyzing relationships between
different parties. Mei et. al. [7] analyze binding information in service WSDL
specifications and apply the PageRank algorithm [9] to compute global ranks
of services. The binding relationships are static and cannot distinguish services
different in runtime qualities. Gekas et.al. [3] analyze semantic compatibility of
input/output parameters of services and select the best matching service for an
output request. We focus on QoS metrics for service composition. Two pieces
of work are close to ours. One is EigenTrust [5], which works on peer ranking
on P2P networks. EigenTrust considers how frequently two parties interact with
each other and uses this information to compute global ranks for them. A unique
feature of our approach is that we use global knowledge to adjust local ratings

14 Wu et al

to consider the impact of response time. This feature makes our approach better
suitable for service ranking in that QoS is a critical factor for service composition.
The other related work is [10], which applies document classification techniques
for web API categorization and ranks APIs in each category by combining user
feedback and utilization. Similar to their work, we also model the service ranking
problem by using statistics collected from web traffic. However, [10] considers
the factor of popularity only. Our approach additionally considers response time
and failure rate and can be easily extended to include user feedback as well.

Other ranking approaches include those based on user feedback or testing
techniques. In [2], the authors propose to rank services based on users’ ratings
to different QoS metrics. These ratings are then aggregated to compute global
ranks of services. In [8], gaps between users’ feedback and actually delivered
QoS from service providers are measured to rank services. These approaches
have limited application in service networks because human feedback may not
be available for those backend services that do not have direct interactions with
customers. Tsai et.al. [14] propose a ranking technique in which pre-developed
testing cases are executed periodically to check the current status of services.
Services are ranked according to their deviation from the expected output.

Several ranking frameworks are proposed to rank services by combining many
aspects of QoS into the same picture. Liu et al. [6] proposed to rank services
based on prices, advertised QoS information from service providers, feedback
from users, and performance data from live monitoring. Sheth et. al [11] pro-
posed a service-oriented middleware for QoS management by taking into consid-
eration time, cost, reliability and fidelity. Bottaro et al. [1] proposed a context
management infrastructure in which services are dynamically ranked based on
application contextual states at runtime (e.g., physical location of mobile de-
vices). These frameworks target a broader spectrum of QoS domains and mainly
focus on the design of expressive QoS specification languages and algorithmic
solutions to aggregating metrics from different subdomains. By comparison, our
work provides a unique solution to incorporate QoS into service ranking and can
be adopted as part of a broader ranking framework covering other aspects.

6 Conclusion

In cloud computing, services are discovered, selected, and composed to satisfy
application requirements. It is often the case that multiple services exist to per-
form similar functions. To facilitate the selection process for comparable services,
we propose a new ranking method, referred to as ServiceRank, that combines
quantitative QoS metrics with social aspects of services to provide valuable rank-
ing information. Services form a social network through client-server invocation
relationships. The ServiceRank algorithm ranks a service by considering not only
its response time and availability but also its popularity in terms of how many
services are its clients and how frequently it is used. By combining all these fac-
tors, the rank of a service will be raised if it attracts a higher amount of traffic
and demonstrates better performance compared to other comparable services. In

Combining Quality of Service and Social Information for Ranking Services 15

the future, we plan to integrate service level agreements into our current work.
With this feature, the rank of a service will be impacted by both its performance
and its fulfillment of service-level contracts.

References

1. André Bottaro and Richard S. Hall. Dynamic contextual service ranking. In
Software Composition, pages 129–143, 2007.

2. Hoi Chan, Tieu Chieu, and Thomas Kwok. Autonomic ranking and selection of web
services by using single value decomposition technique. In ICWS, pages 661–666,
2008.

3. John Gekas and Maria Fasli. Automatic web service composition based on graph
network analysis metrics. In OTM Conferences (2), pages 1571–1587, 2005.

4. Audun Jósang, Roslan Ismail, and Colin Boyd. A survey of trust and reputation
systems for online service provision. Decis. Support Syst., 43(2):618–644, 2007.

5. Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The eigen-
trust algorithm for reputation management in p2p networks. In Proceedings of the
12th international conference on World Wide Web, pages 640–651, New York, NY,
USA, 2003. ACM.

6. Yutu Liu, Anne H. Ngu, and Liang Z. Zeng. Qos computation and policing in
dynamic web service selection. In Proceedings of the 13th international World Wide
Web conference on Alternate track papers & posters, pages 66–73, New York, NY,
USA, 2004. ACM.

7. Lijun Mei, W. K. Chan, and T. H. Tse. An adaptive service selection approach to
service composition. In Proceedings of the 2008 IEEE International Conference on
Web Services, pages 70–77, Washington, DC, USA, 2008. IEEE Computer Society.

8. Mourad Ouzzani and Athman Bouguettaya. Efficient access to web services. IEEE
Internet Computing, 8(2):34–44, 2004.

9. Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. Technical Report 1999-66, Stanford
InfoLab, November 1999.

10. Ajith Ranabahu, Meenakshi Nagarajan, Amit P. Sheth, and Kunal Verma. A
faceted classification based approach to search and rank web apis. In Proceedings
of ICWS’08, pages 177–184, 2008.

11. A. Sheth, J. Cardoso, J. Miller, and K. Kochut. Qos for service-oriented middle-
ware. In Proceedings of the Conference on Systemics, Cybernetics and Informatics,
2002.

12. Ignacio Silva-Lepe, Revathi Subramanian, Isabelle Rouvellou, Thomas Mikalsen,
Judah Diament, and Arun Iyengar. Soalive service catalog: A simplified approach
to describing, discovering and composing situational enterprise services. In Pro-
ceedings of ICSOC’08, pages 422–437. Springer-Verlag, 2008.

13. Natenapa Sriharee and Twittie Senivongse. Matchmaking and ranking of semantic
web services using integrated service profile. Int. J. Metadata Semant. Ontologies,
1(2):100–118, 2006.

14. Wei-Tek Tsai, Yinong Chen, Raymond Paul, Hai Huang, Xinyu Zhou, and Xiao
Wei. Adaptive testing, oracle generation, and test case ranking for web services. In
Proceedings of the 29th Annual International Computer Software and Applications
Conference, pages 101–106, Washington, DC, USA, 2005. IEEE Computer Society.

