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Abstract— Peer-to-Peer VoIP (voice over IP) networks, exem-
plified by Skype [4], are becoming increasingly popular due
to their significant cost advantage and richer call forwarding
features than traditional public switched telephone networks. One
of the most important features of a VoIP network is privacy (for
VoIP clients). Unfortunately, most peer-to-peer VoIP networks
neither provide personalization nor guarantee a quantifiable pri-
vacy level. In this paper we propose novel flow analysis attacks
that demonstrate the vulnerabilities of peer-to-peer VoIP net-
works to privacy attacks. We present detailed experimental eval-
uation that demonstrates these attacks quantifying performance
and scalability degradation.

I. I NTRODUCTION

The concept of a mix [8] was introduced by Chaum in
1981. Since then several authors have used mix as a network
routing element to construct anonymizing networks such as
Onion Routing [13], Tor [9], Tarzan [12], or Freedom [6]. Mix
network provides good anonymity for high latency communi-
cations by routing network traffic through a number of nodes
with random delayand random routes. However, emerging
applications such as VoIP, SSH, online gaming, etc have addi-
tional quality of service (QoS) requirements; for instanceITU
(International Telecommunication Union) recommends up to
250ms one-way latency for interactive voice communication1.

This paper examines anonymity for QoS sensitive appli-
cations on mix networks using peer-to-peer VoIP service as
a sample application. A peer-to-peer VoIP network typically
consists of a core proxy network and a set of clients that
connect to the edge of this proxy network (see Fig 1). These
networks allow a client to dynamically connect to any proxy
in the network and to place voice calls to other clients on
the network. VoIP uses the two main protocols: Route Setup
protocol for call setup and termination, and Real-time Trans-
port Protocol (RTP) for media delivery. In order to satisfy
QoS requirements, a common solution used in peer-to-peer
VoIP networks is to use a route setup protocol that sets up
the shortest routeon the VoIP network from a callersrc to
a receiverdst2. RTP is used to carry voice traffic between
the caller and the receiver along an established bi-directional
voice circuit.

1Recent case study [22] indicates that latencies up to 250ms are unperceiv-
able to human users; while latencies over 400ms significantly deteriorate the
quality of voice conversations

2Enterprise VoIP networks that use SIP or H.323 signaling protocol may
not use the shortest route

Fig. 1. Anonymizing VoIP Network
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Fig. 2. Mixing Statistically Identical VoIP Flows

In such VoIP networks, preserving the anonymity of caller-
receiver pairs becomes a challenging problem. In this paperwe
focus on attacks that attempt to infer the receiver for a given
VoIP call using traffic analysis on the media delivery phase.
We make two important contributions. First, we show that
using the shortest route (as against a random route) for routing
voice flows makes the anonymizing network vulnerable toflow
analysis attacks. Second, we develop practical techniques to
achieve quantifiable and customizablek-anonymity on VoIP
networks. Our proposal exploits the fact that audio codecs
(such as G.723A without silence suppression3) generatesta-
tistically identical packet streams that can be mixed without
leaking much information to an external observer (see Fig 2).

The following portions of this paper are organized as fol-
lows. We present a reference model for a VoIP network fol-
lowed by flow analysis attacks in Section II. We present related
work in Section III and finally conclude in Section IV.

II. FLOW ANALYSIS ATTACKS

In this section, we describe flow analysis attacks on VoIP
networks. These attacks exploit the shortest path nature of
the voice flows to identify pairs of callers and receivers on
the VoIP network. Similar to other security models for VoIP
networks, we assume that the physical network infrastructure
is owned by an untrusted third party (say, tier one/two network

3G.723A without silence suppression deterministically generates one IP
packet every 20ms. With silence suppression voice flows may be non-identical,
thereby making them trivially vulnerable to traditional traffic analysis attacks
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service provider). Hence, the VoIP service must route voice
flows on the untrusted network in a way that preserves the
identities of callers and receivers from the untrusted network.
We assume that the untrusted network service provider (ad-
versary) is aware of the VoIP network topology [23][9] and
the flow rates onall links in the VoIP network [16][6]4 (see
Fig 3). We experimentally show that the attack can be very
effective even when only 45-65% of the links are monitored
by the adversary.

We represent the VoIP network topology as a weighted
graphG=〈V , E〉, whereV is the set of nodes andE ⊆ V ×V
is the set of undirected edges. The weight of an edgee = (p, q)
(denoted byw(p, q)) is the latency between the nodesp and
q. We assume that the adversary can observe the network and
thus knowsnf(p → q) the number of voice flows between
two nodesp andq on the VoIP network such that(p, q) ∈ E.

To illustrate the effectiveness of our flow analysis attacks,
we use a synthetic network topology with 1024 nodes. The
topology is constructed using the GT-ITM topology gener-
ator [30][1] and our experiments were performed on NS-2
[2][3]. GT-ITM models network geography (stub domains and
autonomous systems) and the small world phenomenon (power
law graph with parameterγ=2.1) [11][19]. The topology gen-
erator assigns node-to-node round trip times varying from 24ms
− 150ms with a mean of 74ms and is within 20% error margin
from real world latency measurements [14]. The average route
(shortest path) latency between any two nodes in the network
is 170ms, while the worst case route latency is 225ms.

We generate voice traffic based on call volume and call
hold time distribution obtained from a large enterprise with
973 subscribers (averaged over a month)− see Figures 4 and
5. The call volume is specified in Erlangs [15]: if the mean
arrival rate of new calls isλ per unit time and the mean call
holding time (duration of voice session) ish, then the traffic in
ErlangsA = λh; for example, if total phone use in a given area
per hour is 180 minutes, this represents 180/60 = 3 Erlangs. We
use G.729A audio codec for generating audio traffic. The (src,
dst) pair information for each call was not made available;
hence, we assume that for a given VoIP call, the (src, dst)
pair is chosen randomly from the VoIP network. As we note
in Section II-E, any prior information (such as, 80% of the
calls are between nodes in the same autonomous system) can
be used by the adversary to further enhance the efficacy of

4The network service provider can obtain VoIP topology and flow infor-
mation using traffic analysis
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TRACE(GraphG=〈V , E〉, Caller src)
(1) for each vertexv ∈ V
(2) f [v] = 0; label[v] = false
(3) end for
(4) f [src] = 1; label[src] = true
(5) while pick a labeled vertexv
(6) label[v] = false
(7) for each nodeu such that(u, v) ∈ E
(8) if (f [u] = 0)
(9) f [u] = 1; label[u] = true
(10) end if
(11) end for
(12) end while

Fig. 8. Naive Tracing Algorithm

flow analysis attacks.

A. Naive Tracing Algorithm

Let src be the caller. We use a Boolean variablef(p) ∈ {0,
1} to denote whether the nodep is reachable fromsrc using
the measured flows on the VoIP network. One can determine
f(p) for all nodesp in O(|E|) time as follows. The base case
of the recursion isf(src) = 1. For any nodeq, we setf(q)
to one if there exists a nodep such that(p, q) ∈ E ∧ f(p) =
1 ∧ nf(p → q) > 0.

Let us consider a sample topology shown in Figure 6. For
the sake of simplicity assume that each edge has unit latency.
The label on the edges in Figure 6 indicates the number of
voice flows. A trace starting from callerp1 will result in f(p1)
= f(p2) = f(p3) = f(p4) = f(p5) = 1. Filtering out the VoIP
proxy nodes (p5) and the caller (p1), the clientsp2, p3 andp4

could be potential destinations for a call emerging fromp1.
However, the tracing algorithm does not consider the short-

est path nature of voice routes. Considering the shortest path
nature of voice paths leads us to conclude thatp2 is not a
possible receiver for a call fromp1. If indeed p2 were the
receiver then the voice flow would have taken the shorter route
p1 → p2 (latency = 1), rather than the longer routep1 → p5 →
p2 (latency = 2) as indicated by the flow information. Hence,
we now have only two possible receivers, namely,p3 andp4.



SHORTEST PATH TRACING(Graph G=〈V , E〉, Caller
src)
(1) for each vertexv ∈ V
(2) dist[v] = ∞; label[v] = false; prev[v] =

null
(3) end for
(4) dist[src] = 0; label[src] = true
(5) while pick a labeled vertexv with minimum

dist[v]
(6) label[v] = false
(7) for each nodeu such that(u, v) ∈ E
(8) if (dist[u] < dist[v] + w(u, v))
(9) dist[u] = dist[v] + w(u, v)
(10) prev[u] = {v}; label[u] = true
(11) end if
(12) if (dist[u] = dist[v] + w(u, v))
(13) prev[u] = prev[u] ∪ {v}
(14) end if
(15) end for
(16) end while
(17) G1 = 〈V 1, E1〉: V 1 = V , E1 = (u → v) ∀u ∈

prev[v], ∀v ∈ V

Fig. 9. Shortest Path Tracing Algorithm

B. Shortest Path Tracing Algorithm

In this section, we describe techniques to generate a directed
sub-graphG1 = 〈V 1, E1〉 from G which encodesthe shortest
path nature of the voice paths. Given a graphG and a caller
src, we construct a sub-graphG1 that contains only those
voice paths that respect the shortest path property. Figure9
uses a breadth first search onG to computeG1 in O(|E|)
time.

One can formally show that the directed graphG1 satisfies
the following properties: (i) If the voice traffic fromsrc were
to traverse an edgee /∈ E1, then it violates the shortest path
property. (ii) All voice paths that respect the shortest path
property are included inG1. (iii) The graphG1 is acyclic.
Figure 7 illustrates the result of applying the algorithm in

Figure 9 on the sample topology in Figure 6. Indeed if one uses
the trace algorithm (Figure 8) on graphG1, we getf(p2) = 0,
f(p3) = f(p4) = 1. Figure 10 compares the effectiveness of the
shortest path tracing algorithm with the tracing algorithmon a
1024 node VoIP network. On the x-axis we plot the call traffic
measured in Erlang. We quantify the efficacy of an attack using
standard metrics from inference algorithms:precision, recall
and F-measure. We useS to denote the set of nodes such
that for everyp ∈ S, f [p] = 1. Recalldenotes the probability
of identifying the true receiverdst (dst ∈ S?) andprecision
is inversely related to the size of candidate receiver set (∝
1
|S| ). F -measure (computed as harmonic mean of recall and
precision scores) is a commonly used as a single metric for
measuring the effectiveness of inference algorithms [24].

recall = Pr(f [dst] = 1)

precision =

{

1
|S| if dst ∈ S

0 otherwise

F-measure =
2 ∗ recall ∗ precision

recall + precision

In a deterministic network setting, the receiverdst is guar-
anteed to be marked withf [dst] = 1, that is,recall = 1 for
both the naive tracking algorithm and the shortest path tracing
algorithm. Hence, Figure 10 compares only the precision of
these two algorithms. We observe that for low call volumes (<
64 Erlangs) the shortest path tracing algorithm is about 5-10
times more precise than the naive tracking algorithm.

C. Statistical Shortest Path Tracing

In a realistic setting with uncertainties in network latencies
the shortest path tracing algorithm may not identify the re-
ceiver. We handle such uncertainties in network link latencies
by using a top-κ shortest path algorithm to constructGκ from
G. An edgee is in Gκ if and only if it appears in some top-κ
shortest path originating fromsrc in graphG. We modified
Algorithm 9 to constructGκ by simply maintaining top-κ
distance measurementsdist1[v], dist2[v], · · · , distκ[v] instead
of only the shortest (top-1) distance measurement; and the pre-
vious hopsprev1[v], prev2[v], · · · , prevκ[v] that correspond
to each of these top-κ shortest paths. We add an edge(u, v) to
Eκ if u = previ[v] for some1 ≤ i ≤ κ. We say that the voice
traffic from src to v satisfies the top-κ shortest path property
if it is routed along one of the top-κ shortest paths fromsrc
to v. One can formally show that all voice paths that respect
the top-κ shortest path property are included inGκ. However,
unlike G1, the graphGκ (for κ ≥ 2) may contain directed
cycles.

Evidently, asκ increases, the tracing algorithm can accom-
modate higher uncertainty in network latencies, thereby im-
provingrecall. On the other hand, asκ increases, theprecision
initially increases and then decreases. The initial increase is
attributed to the fact whenκ is small the tracing algorithm may
even fail to identify the actual receiver as a candidate receiver;
f [dst] may be 0 resulting in zero precision. However, for
large values ofκ, the number of candidate receivers become
very large, thereby decreasing theprecisionmetric. Figure 11
shows the precision, recall andF -measure of the statistical
shortest path tracing algorithm with 128 Erlang call volume
and varyingκ. This experiment leads us to conclude thatκ =
2 yields a concise and yet precise list of potential receivers;
observe thatκ = 2 improves precision and recall by 97% and
37.5% (respectively) overκ = 1.

Figure 12 compares theF -measure for the statistical short-
est path tracing algorithm (κ = 2) and the shortest path tracing
algorithm (κ = 1) and varying call volume. We observe that
for low call volumes the shortest path tracing algorithm is
sufficiently accurate. However, for moderate call volumes the
statistical shortest path tracing algorithm can improve attack
efficacy by 1.5-2.5 times.

D. Flow Analysis Algorithm

We have so far used a Boolean variablef(p) to denote
whether a VoIP clientp can be a potential receiver for a VoIP
call from src. In this section, we use the flow measurements
to construct a probability distribution over the set of possible
receivers. LetGκ be a sub-graph ofG obtained using the top-κ
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shortest path tracing algorithm with callersrc. Let nf(p → q)
denote the number of flows on the edgep → q. Let in(p)
denote the total number of flows into nodep. Note that both
nf(p → q) andin(p) are observable by an external adversary.
Assuming a nodep in the VoIP network performs perfect
mixing, the probability that some incoming flow is forwarded
on the edgep → q as observed by an external adversary is
nf(p→q)

in(p) . Let f(p) denote the probability that a VoIP flow
originating atsrc flows through nodep. The functionf is
recursively defined on the directed edges inGκ=〈V κ, Eκ〉 as
follows:

f(q) =
∑

p→q∈Eκ

f(p) ∗
nf(p → q)

in(p)
(1)

with the base casef(src) = 1 andin(src) = 1. Now, every
VoIP client p (p 6= src) is a possible destination for the VoIP
flow originating fromsrc if f(p) > 0. Consistent with other
work in this research area, we use the top-m probability met-
ric, namely, the probability that the receiverdst appears in the
top-m entries whenf(p) is sorted in descending order.

Computing the probabilitiesf(p) for G1 (top-1 shortest
paths) is very efficient. Observe that sinceG1 is a directed
acyclic graph, it can be sorted topologically. Letp1 = src, p2,
· · · pN be a topological ordering of the nodes inG1 such that
f(pi) depends onf(pj) only if j < i. Hence, one can effi-
ciently evaluate the probabilities by following the topological
order, namely, computef(p1), f(p2), · · · f(pN ) in that order.

However, Gκ (for κ ≥ 2) may contain cycles and thus
cannot be topologically sorted. In this case, we represent the
set of equations in 1 asπ = πM , whereπ is a 1×N row
vector andM is a N×N matrix, whereπi = f(pi) andMij

= nf(pi→pj)
in(pi)

if there exists a directed edgepi → pj in Gκ;
andMij = 0 otherwise. Hence, the solutionπ is the stationary
distribution of a Markov chain whose transition probability
matrix is given byM . We computeπ iteratively:πt+1 = πtM
starting withπ0

i = 1 if pi = src; π0
i = 0 otherwise. Assuming

M is irreducible,π converges to a steady state solution in
O(N log N) iterations.

E. Distance Prior and Hop Count Prior

In this section, we enhance the efficacy of the flow analysis
algorithm using hop count and distanceprior. We useghop

andglat to denote hop count and distance (in terms of latency)
betweensrc anddst. For instance, one can useghop andglat to
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encode the fact that most calls are between nodes in the same
autonomous system. Using the hop count prior, the probability
that a nodep forwards an incoming flow on the edgep →
q is nf(p→q)

in(p) ∗ Pr(hop ≥ hc(src, p) + 1 | hop ≥ hc(src,
p)), wherehc(src, p) denotes the number of hops along the
shortest path betweensrc and p on graphGκ. Pr(hop ≥
hc(src, p) + 1 | hop ≥ hc(src, p)) = Pr(hop≥hc(src,p)+1)

Pr(hop≥hc(src,p))
denotes the probability that the receiverdst could be one more
hop away given thatdst is at leasthc(src, p) hops away from
src.

A similar analysis applies to distance prior as well. We use
dist(src, p) to denote the latency of the shortest path between
src and p on graphGκ and w(p, q) denotes the one-way
latency between nodesp and q. As with the flow analysis
algorithm, the functionf is defined on the directed edges in
graphGκ = 〈V κ, Eκ〉 as follows:

f(q) =
∑

p→q∈Eκ

f(p) ∗
nf(p → q)

in(p)
∗

Pr(hop ≥ hc(src, p) + 1)

Pr(hop ≥ hc(src, p))

f(q) =
∑

p→q∈Eκ

f(p) ∗
nf(p → q)

in(p)
∗

Pr(lat ≥ dist(src, p) + w(p, q))

Pr(lat ≥ dist(src, p))

In our enterprise data set (see Section II),src anddst were
chosen randomly from the network. Hence we compute hop
count and distance distribution using randomly chosen pairs
of src anddst.

Figure 13 shows the top-m probability, namely, the proba-
bility that the true receiverdst appears in the top-m entries
whenf(p) is sorted in descending order using the flow anal-
ysis algorithm with distance prior andκ = 2. We also experi-
mented with hop count prior; however, distance prior directly
reflects on the latency based shortest path nature of the route
setup protocol and thus performs best. With a call volume of



64 Erlangs, there is 86% chance that the true receiverdst
appears in the top-10 entries. Under very high call volume
(512 Erlangs) the top-10 probability drops to 0.17. However,
we note from our enterprise data set (see Fig 4) that the call
volume is smaller than 64 Erlangs for about 75% of the day.

III. R ELATED WORK

Mix [8] is a routing element that attempts to hide corre-
spondences between its input and output messages. A large
number of low latency anonymizing networks have been built
using the concept of a mix network [8][21]. Onion routing [13]
and its second generation Tor [9] aim at providing anonymous
transport of TCP flows over the Internet. ISDN mixes [17]
proposes solutions to anonymize phone calls over traditional
PSTN (Public Switched Telephone Networks). In this paper we
have focused on VoIP networks given its recent wide spread
adoption5.

It is widely acknowledged that low latency anonymizing
networks [9][13][6] are vulnerable to timing analysis attacks
[23][21], especially from well placed malicious attackers[28].
Several papers have addressed the problem of tracing encrypted
traffic using timing analysis [27][29][31][26][7][10][25]. All
these papers use inter-packet timing characteristics for trac-
ing traffic. Complementary to all these approaches, we have
introduced flow analysis attacks that target the shortest path
property of voice routes and presented techniques to provide
customizable anonymity guarantees in a VoIP network.

Tarzan [12] presents an anonymizing network layer using a
gossip-based peer-to-peer protocol. We note that flow analysis
attacks target the shortest path property and not the protocol
used for constructing the route itself; hence, a gossip based
shortest path setup protocol is equally vulnerable to flow anal-
ysis attacks.

Traditionally, multicast and broadcast protocols have been
used to protect receiver anonymity [18][20]. However, in a
multicast based approach achievingk-anonymity may increase
the network traffic byk-fold. In contrast our paper attempts
to reroute and mix existing voice flows and thus incurs sig-
nificantly smaller overhead on the VoIP network.

IV. CONCLUSION

In this paper we have addressed the problem of providing
privacy guarantees in peer-to-peer VoIP networks. First, we
have developed flow analysis attacks that allow an adversary
(external observer) to identify a small and accurate set of
candidate receivers even when all the nodes in the network
are honest. We have used network flow analysis and statistical
inference to study the efficacy of such an attack. We have
presented detailed experimental evaluation that demonstrates
the efficacy of these attacks in a VoIP network.

5According to TeleGeography Research [5], world wide VoIP’sshare of
voice traffic has grown from 12.8% in 2003 to an estimated 75% in2007
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