

Checkpointing Virtual Machines Against
Transient Errors

Long Wang, Zbigniew Kalbarczyk, Ravishankar K. Iyer

Center for Reliable and High-Performance Computing
University of Illinois at Urbana-Champaign

1308 W. Main Street, Urbana, IL 61801
{longwang, kalbarcz, rkiyer}@illinois.edu

Arun Iyengar

IBM T. J. Watson Research Center
19 Skyline Drive, Hawthorne, NY 10532

aruni@us.ibm.com

Abstract—This paper proposes VM-µCheckpoint, a lightweight
software mechanism for high-frequency checkpointing and
rapid recovery of virtual machines. VM-µCheckpoint
minimizes checkpoint overhead and speeds up recovery by
saving incremental checkpoints in volatile memory and by
employing copy-on-write, dirty-page prediction, and in-place
recovery. In our approach, knowledge of fault/error latency is
used to explicitly address checkpoint corruption, a critical
problem, especially when checkpoint frequency is high. We
designed and implemented VM-µCheckpoint in the Xen VMM.
The evaluation results demonstrate that VM-µCheckpoint
incurs an average of 6.3% execution-time overhead for 50ms
checkpoint intervals when executing the SPEC CINT 2006
benchmark.

Keywords-checkpoint; virtual machine; error latency; high
frequency; checkpoint corruption

I. INTRODUCATION

Virtual machines (VMs), also called guest systems, are

frequently deployed to host a variety of IT services, such as

web services, virtual desktops, and databases. To ensure

continuous service availability, these systems must be

capable of tolerating runtime errors. Checkpoint and

rollback techniques can be applied to enhance VM

availability.

Virtual machine monitors (VMMs), such as VMware

and Xen, provide mechanisms a) to save a VM state (by

stopping the VM and dumping the execution state into

persistent storage) and b) to migrate the VM to a remote

node (e.g., [2]). Most existing VM checkpoint techniques

[1][8][4] exploit these two mechanisms. For example,

CEVM [1] and VNsnap [8] first use live migration to create

a copy of the protected VM in memory and then dump the

replica to disk offline.

This paper presents the description, implementation, and

experimental assessment of VM-µCheckpoint, a VM

checkpointing framework to protect both the guest OS and

applications against runtime errors. Advantages of using

VM-µCheckpoint include:

(i) Small overhead compared with the VM replica-based

failover approach. This is achieved by using in-memory

checkpoint and in-place recovery of VMs, i.e., recovery of a

failed VM in its current context. No such checkpoint work

has been done in the context of virtual environments.

(ii) Alleviation of checkpoint corruption due to error-

detection latency by taking advantage of knowledge of error

detection latency. Using knowledge of fault/error latency for

explicitly handling checkpoint corruption is a novel solution

to this important problem.

(iii) High checkpointing frequency—tens of checkpoints

per second—which reduces the size of each increment when

taking a checkpoint.

(iv) Rapid recovery—within one second— as compared

to the stop-and-dump approach provided by VMMs.

As a result, checkpointing during the normal system

operation and recovery in response to a guest VM or

application failure are completely transparent to the client,

i.e., the client does not see a service interrupt.

Traditional checkpointing techniques save checkpoints

on disk in order to tolerate permanent failures. Several VM

checkpointing techniques, including Remus [4], save

checkpoints in the memory of another node. In this study,

we propose saving checkpoints in the memory of the same

node.

VM-µCheckpoint is designed as a complementary

approach to disk-based VM checkpointing rather than its

replacement. By providing a rapid recovery, VM-

µCheckpoint significantly reduces the failure rate of VMs

due to transient errors 1 . We created analytical and

probabilistic models (not presented in this paper due to

space limitations) to assess the availability improvement

when using VM-µCheckpoint. The model-based analysis

can be found in [15].

The major contributions of this paper are:

• Design, implementation, and integration of VM-

µCheckpoint in Xen VMM. The VM-µCheckpoint

implementation does not introduce any changes to the guest

VMs or applications. Copy-on-Write (CoW), dirty-page

prediction, and pre-saving algorithms are designed and

implemented to achieve high performance. The key

innovations in the proposed algorithms are (i) the use of

dirty-page prediction and pre-saving, which are not

1 At the same time, the checkpoint kept by VM-µCheckpoint can be

dumped to disk at a sufficiently infrequent rate to minimize overhead.

This means that in the event of a node fails, the VM and the jobs in the

node can be restarted from the last valid disk checkpoint.

supported by the default Xen’s CoW mechanism, and (ii) a

mechanism to overcome the inefficiency of Xen’s CoW in

supporting high-frequency periodic checkpointing.

• Use of knowledge of the error detection latency to derive

checkpoint intervals that minimize the possibility of

checkpoint corruption. Our model-based analysis (in [15])

shows that the availability of guest VMs and applications is

improved from 99% to 99.98%, assuming a highly reliable

hypervisor (MTTF of 625 days in our study).

An experimental assessment of VM-µCheckpoint using

(i) SPEC benchmark programs. The evaluation shows that

VM-µCheckpoint incurs an average of 6.3% overhead for

SPEC benchmark programs with 50 ms checkpoint

intervals2. This choice represents a design tradeoff between

keeping checkpoint size small and minimizing chances of

checkpoint corruption due to latent errors.

(ii) Apache server, an example network application. The

results show 17.5% throughput reduction when taking a

checkpoint every 50ms. This overhead is significantly lower

than the existing VM checkpointing techniques, e.g., Remus

[4].

II. RELATED WORK

Checkpoint and rollback techniques have been

extensively studied in the literature. Checkpoints can be

taken in different levels (application, runtime library,

compiler, operating system, virtual machine, or hardware).

Here we focus on checkpoint techniques in the virtual

machine level.

Most existing VM checkpoint/replication techniques are

based on live migration of VMs (e.g., VMWare VMotion

[11] and Xen Live Migration [2]), which continually

transmit dirty pages of a VM from a source node to a

destination node. These techniques exploit the live

migration mechanism for the purposes of VM checkpointing,

VM rejuvenation, load-balancing, and fast VM forking.

CEVM [1], VNsnap [8], and VM Snapshots [3] are

disk-based VM checkpointing techniques. These techniques

employ VM live migration or CoW to create a replica image

of a VM with low downtime incurred; then they write the

image to disk offline. An ongoing project on VM

checkpointing [3] tries to provide a generic API in Xen

products for saving a VM snapshot to disk on demand.

Basically, the VM memory is scanned and saved to files

while the VM runs.

VM-µCheckpoint differs from disk-based VM

checkpointing in that we aim to i) provide high-frequency

checkpointing and rapid recovery of VMs, which allows

VM failures to be masked to clients, and ii) propose a

mechanism to alleviate checkpoint corruption in high-

2 The recent work of fault-injection into Linux kernel [1] shows that, about

95% of crashes occur within 100 million CPU cycles (or within 50ms on

a 2GHz processor) after an error occurrence. We select a checkpoint

interval of 50ms in experiments to cover the latency for 95% of errors.

frequency checkpointing, corruption that has significant

impacts on service availability. Disk-based VM

checkpointing is too costly and is unable to keep up with the

high frequency of rapid checkpointing (tens per second).

The existing approach closest to our work is Remus [4],

which maintains a backup VM on a separate physical node

by periodically transmitting the VM’s dirty pages to the

backup. Similarly to VM-µCheckpoint, Remus is a method

of high-frequency VM checkpointing and failover. But

VM-µCheckpoint considers error behavior and emphasizes

reliability/availability improvement, while Remus focuses

on migration overhead and lacks a study of error behavior or

reliability/availability. Because checkpoint corruption is not

handled in Remus (fail-stop errors are assumed), our

technique is preferable at improving service availability.

Another relevant work is FTC-Charm++ [16], which

checkpoints MPI programs. FTC-Charm++ uses in-memory

checkpointing, keeping two identical checkpoint copies in

the memories of two nodes in order to tolerate single node

failure. However, Charm++ is not automated; the

programmer must specify what and when to checkpoint.

Charm++ is not aimed at virtual environments, and

importantly, checkpoint corruption is not considered.

III. VM-µCHECKPOINT OVERVIEW

Figure 1 illustrates how VM-µCheckpoint is deployed to

protect virtual machines (guest systems) running on top of a

hypervisor. The protected VM in the figure is the guest

system to be checkpointed. Another guest system on the

same physical machine is selected to be the checkpointing

VM where VM-µCheckpoint is installed. The checkpointing

VM can be a guest system dedicated to the checkpointing

service; it need not be a privileged guest system, such as

Dom0 in Xen. The hypervisor and the kernel of the

checkpointing VM are instrumented to support

checkpointing and recovery.

Hyper-
visor

checkpointing VM protected VM

kernelkernel

app app app app

checkpoint
agent

app

restore

check-

point

Hardware
Figure 1: Deployment of VM-µCheckpoint

The starting point of the proposed approach is the

observation that short-latency errors are dominant. This is

demonstrated by several previous fault injection

experiments, including recent work on error injection into

Linux kernel [1] that shows about 95% of crashes occur

within 100 million CPU cycles (or within 50ms on a 2GHz

processor) after an error occurrence. Fault injections into

processor micro-architecture [9] also show small error

latencies, and state-of-the-art error detection techniques (e.g.,

[13][12][14]) have helped to limit error latency to low

values.

At the same time, it has been shown in many studies that

a vast majority of failures are transient (up to 95%).

Furthermore, our experiments on IBM Power series systems

also demonstrate that, in VM environments, errors

impacting the hypervisor rarely affect more than a single

guest VM [7].

Latency-driven selection of the checkpoint interval.

We define a parameter TB as a user-specified bound on error

latency. By setting the checkpoint interval greater than an

acceptable latency bound (e.g., 95th percentile) we

effectively bound the probability of a latent/undetected error

affecting the checkpoint to be small (in the best case, <5%).

In addition, by always holding two checkpoints in sequence

and, on detecting an error, reverting to the earlier checkpoint,

we further reduce the probability of checkpoint corruption.

This is primarily due to two factors: (i) the earlier

checkpoint is taken at a time that is at least TB in the past,

and (ii) since by choice (per the latency distribution) the

chance of an error getting detected (or causing a failure) in

an interval TB is greater than 95%, we can have confidence

that the checkpoint is error free if no error has been detected.

A user-level process in the checkpointing VM, referred

to as the checkpoint agent in Figure 1, takes a checkpoint of

the protected VM periodically, at intervals of Tck (where Tck

> TB), and stores the checkpoint in the checkpointing VM.

Since at each checkpoint our copy-on-write (CoW)

implementation indentifies and stores the needed state

information, the checkpoint agent stores only a small

fraction of the protected VM state rather than the entire

system image. This approach allows the checkpoint agent to

store checkpoints of multiple guest systems on the same

physical machine using a small amount of memory.

IV. CHECKPOINTING ALGORITHMS

At the beginning of a checkpoint interval, register states

in the protected VM are saved in the checkpoint, and all

memory pages are set as read-only. From that point on, any

write to a read-only page triggers a page fault, the original

data of the page are copied into the checkpoint kept in the

checkpoint agent memory, and the stored memory page is

set as writable. Consequently, the checkpoint consists of

pre-write data of pages updated within a given checkpoint

interval.

As mentioned previously, the two most recent

checkpoints are kept at all times. The following actions are

performed when an error in the protected VM is detected or

causes a failure: i) the most recent checkpoint is copied back

into the current state of the protected VM, and ii) the earlier

checkpoint of the two kept ones is copied into the system

memory to restore the correct state. This method restores the

system to the state when the earlier checkpoint, called the

committed checkpoint, was taken, a state that is unlikely to

have been corrupted. Note that a checkpoint is a pre-write

state of modified pages, i.e., a state at the beginning of the

corresponding checkpoint interval. Therefore, corruption of

a later checkpoint does not cause the rollback to fail. Any

corrupted page in the later checkpoint is overwritten by the

correct state preserved in the earlier checkpoint. A detailed

explanation of this method follows.

Figure 2 illustrates timelines of this checkpointing/

recovery scheme. Two complete checkpoint intervals, [t0, t1)

and [t1, t2), are shown in Figure 2. The horizontal axis at the

top of the figure represents error-free execution of the

protected VM, while the horizontal axis at the bottom

represents execution when an error occurs at tf_s. The error is

detected (or the application/system fails) at tf_d (the error

latency
_ _f f d f s B

T t t T= − ≤). At tf_d, the two most recent

checkpoints are those taken at t0 and t1. We first restore the

data preserved during the time interval [t1, tf_d) into the

protected VM and then restore the data preserved during [t0,

t1) to roll back the system to the state at time t0.
t0 t1 t2

(a)

Tck

S0 DP0
S1 DP1

S2 DP2

(b)
DP0’ DP1’

H1

DP2’

H2

execution time

H0

tf_d

Tf

execution time
tf_s

Figure 2: Timelines for two checkpoint strategies: (a)

CoW-B and (b) CoW-P

In the algorithm described above called CoW Basic

(CoW-B), setting all memory pages as read-only at the

beginning of a checkpoint interval potentially results in a

large number of page faults and a significant performance

overhead. An optimized version of the basic algorithm

called CoW Pre-saving (CoW-P) is designed to reduce the

resulting page faults (checkpoint-caused page faults are

reduced by 75% when the checkpoint interval is 50ms in our

experiments, see Section V.B).

The CoW-B algorithm. This algorithm is depicted as

the timeline (a) in Figure 2. Here are the notations used in

our discussion:

ti Beginning time of the i
th

 checkpoint interval

Si State of the protected VM at time ti.

DPi Dirty Pages – data of the memory pages preserved by

VM-µCheckpoint’s mechanism during [ti, ti+1].

St State of the protected VM at any time t (t∈[ti, ti+1]).

DPi(t) Data of the memory pages preserved by VM-

µCheckpoint’s mechanism during [ti, t] for any time t

(t∈[ti, ti+1]).

The following operation reflects the inherent

relationship between Si, St, and DPi(t):

(, ()),
i t i

S restore S DP t= (1)

where (, ())
t i

restore S DP t denotes an operation of copying

the data preserved in DPi(t) into their corresponding

memory pages in St to restore the system to state Si.

In the example error scenario shown in Figure 2

1 _ 2f dt t t≤ ≤ ,
f B ckT T T≤ ≤ , and S0 is the last committed

checkpoint. Applying the operation (1) twice, we can derive

the expression that depicts restoration of S0:

0 1 0 1

1 _ 0

(, ())

((, ()),),f f d

S restore S DP t

restore restore S DP t DP

=

=

 (2)

where
1 1t

S S= ,
0 1 0()DP t DP= , and Sf denotes the system state

at tf_d. At the restoration time tf_d, Sf, DP1(tf_d) and DP0 are

all available, and we can restore the memory state of the

protected VM into S0. After restoration, neither DP1(tf_d) nor

DP0 is valid any more, as the system is now in state S0. They

are discarded after the restoration.

The CoW-P algorithm. Figure 2 (b) shows the timeline

of the CoW-P. This algorithm reduces the number of page

faults by predicting the pages to be updated in the upcoming

checkpoint interval. The predicted pages are then pre-saved

in the checkpoint when this interval begins (H0, H1, and H2

are the pre-saved pages in Figure 2 (b)). These pre-saved

pages are marked as writable and do not raise page faults.

The typical checkpoint intervals (selected in our

approach) range from tens of milliseconds to several

seconds. Due to the space and time locality of memory

accesses, pages that were updated recently tend to be

updated again in the near future. Therefore, the pages dirtied

in the previous checkpoint interval are used to predict the

pages to be updated in the upcoming interval.

Specifically, a page table supported by current-

generation processors maintains an entry for each memory

page. The page entry has two control bits—the write

permission bit and the dirty bit—which are leveraged for

our prediction. (We manipulate the shadow copy of this

page table maintained by the VMM, rather than the page

table in the guest operating system. In this way, the guest

system’s use of its page table is not interfered with.) The

write-permission bit controls whether the page is writable,

and the dirty bit shows whether the page has been updated

since the dirty bit was last cleared. At the beginning of a

checkpoint interval, both of the bits for non-dirty pages are

cleared (i.e., set as read-only and not dirty). While the pages

dirtied in the previous checkpoint interval are saved in

checkpoint, their write permission bits are set to allow

writes to them, and their dirty bits are cleared to enable

tracking of whether they will be updated during the

upcoming interval. If a page dirtied in the previous interval

is not updated during the upcoming interval, then next time

(i.e., after this upcoming interval), this page is not pre-saved

and is set as read-only.

Discussion. Both error latency and checkpoint overhead

are considered when selecting a checkpoint interval Tck.

Checkpointing with a larger interval incurs smaller overhead

but causes a longer output delay and a larger checkpoint size

(because output is held until the corresponding checkpoint is

committed). Hence, there is a trade-off in Tck selection. For

example, if a small output delay is desired, a small Tck is

preferred, as long as Tck is larger than the selected TB and

the checkpoint overhead is acceptable.

Error detection latency depends on error detection

techniques (e.g., [13][12][14]). Note that error detection is

not in the scope of this paper. In order to obtain the

distribution of error detection latency, we inject errors into a

target system and measure the latency from error activation

to the occurrence of system or application failure. We

conducted an analytical model to study the impacts of Tck on

checkpoint corruption and system availability [15]. Based

on the analytical model and the obtained error latency

distribution, we can select the proper Tck.

VM-µCheckpoint recovers a guest system and

applications in the system from any transient hardware error

or transient software error, including both application and

system errors. Transient hardware errors include those

occurring in the processor (functional units, registers, caches,

buses, and control logics) and in memory due to events such

as radiation or current disturbances. Transient software

errors, or Heisenbugs [5], include exceptional conditions

(e.g., a counter overflow and an interrupt arrival with a bad

timing), occasional device driver faults, race conditions, and

corrupted parameter or data due to bad transmission. Note

that transient failures of the checkpointing VM are handled

by an immediate restart of the failed checkpointing VM.

VM-µCheckpoint cannot guarantee recovery if either of

the following holds: (i) Checkpoint corruption. There is a

small but finite probability of checkpoint corruption. In this

case, VM-µCheckpoint aborts recovery and restarts the VM

and the interrupted jobs. (ii) Failure of the hypervisor due to

a transient fault. In this case, we first restart the hypervisor

and restart all jobs executing prior to the failure. If this is

unsuccessful, the system rolls over to an adjacent physical

node and restarts.

While this paper focuses on the design, implementation,

and analysis of the memory state checkpointing in VM-

µCheckpoint, I/O checkpointing can be dealt with by

adapting the output-commit mechanism applied in [4][10].

V. EXPERIMENTAL EVALUATION

Fully working prototype of VM-µCheckpoint is

implemented in Xen VMM. The source codes of the Xen

hypervisor and the checkpointing VM are instrumented

while there is no change to the protected VM3. Details of

algorithms and the overall implementation can be found in

[15].

The testbed consists of a physical machine with an AMD

Athlon 2800 (1.8G Hz) processor and 1.5GB memory.

3 The I/O recovery mechanism is not implemented in the current prototype.

(Because hardware is virtualized by Xen, VM-ucheckpoint

should work on SMP platforms as well, though we have not

tried such experiments.) There are two guest systems (Linux

2.6.18) running on top of Xen 3.3.1 in the testbed. The

Dom0 is selected as the checkpointing VM, and the other

guest system, a DomU, is the protected VM. 512MB and

1GB memory are assigned to the checkpointing VM and the

protected VM, respectively. We use two VMs in our

experiments to measure performance overhead accurately in

a relatively simple deployment.

A. Experiment Setup

Workload of SPEC CINT 2006. SPEC2006 is widely

accepted in industry for performance benchmarking. For

example, milc is a scientific application used for millions of

node hours at DOE and NSF supercomputer centers, and

gcc is a full-featured compiler with 365k lines of source

code. A set of SPEC CINT 2006 benchmark programs are

executed in the protected guest system with VM-

µCheckpoint deployed. A suite of experiments are

conducted involving each of these benchmark programs: (i)

a baseline case with no checkpoint; (ii) CoW-B algorithm

deployed with the four checkpoint intervals of 1000ms,

600ms, 200ms, and 50ms; and (iii) CoW-P algorithm

deployed with the same four intervals. A given program

executes with the same input across all experiments.

Program execution times are measured, and normalized

execution times are illustrated in Figure 3. (While 95%

confidence intervals of execution times are computed, these

are not presented to avoid cluttering in Figure 3)

Normalized execution time is computed by dividing

program execution time by the execution time in the

corresponding baseline case.

Workload of a web server. We conduct experiments to

study how VM-µCheckpoint affects Apache web server

throughput when the web server runs on the protected guest

system. Web clients reside on three physical machines with

each machine hosting 50 clients. These clients request the

same load of web pages, one request immediately after

another, from the server simultaneously via a 100Mbps

LAN. The output-commit mechanism is disabled in these

experiments, and consequently, we compare our

performance with Remus results when the output commit is

also disabled.

Figure 4 illustrates the measured server throughput as a

function of checkpoint intervals. The same load of web

requests is processed in these experiments. The percentages

indicated along the data points on the graph represent the

ratio between the throughput measured with the checkpoint

deployed and the throughput when checkpoint is not

deployed.

B. Results

The major findings in our experiments are summarized

below:

a) VM-µCheckpoint achieves much better performance

than existing migration-based VM checkpointing. For a

workload of SPEC CINT 2006 benchmark and a checkpoint

frequency of 20 times per second (Tck=50ms), an average of

6.3% overhead is incurred when CoW-P is deployed. With

the same checkpoint algorithm and checkpoint frequency,

Apache server throughput is reduced by 17.5%. In contrast,

Remus [4], a migration-based VM replication/checkpoint

technique, reports approximately 50% overhead in their

experiments for the same checkpoint frequency.

VM-µCheckpoint’s performance varies with the

workload. Generally, workload applications with larger data

set have more overhead. For example, milc is a scientific

application dealing with larger data set while gcc deals with

smaller data set. As a result, VM-ucheckpoint incurs more

overhead for milc workload than that for gcc (Figure 3).

b) The CoW-P algorithm performs much better than

CoW-B. With CoW-P deployed with 50ms checkpoint

intervals, Apache throughput is 82.5% of the baseline

performance, which is larger than the 74.3% when CoW-B

is deployed. We also measure the number of page faults and

the checkpoint size (not shown due to space limitations).

Dirty page prediction and pre-saving effectively reduce page

faults by 75% when the checkpoint interval is 50ms (details

can be found in [15]).

0.9

0.95

1

1.05

1.1

1.15

1.2

perlbench bzip2 gcc milc namd dealII povray omnetpp astar sphinx3 xalancbmk specrand

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

baseline CoW-B (1000ms) CoW-P (1000ms) CoW-B (600ms) CoW-P (600ms) CoW-B (200ms) CoW-P (200ms) CoW-B (50ms) CoW-P (50ms)

Figure 3: Experiment results in terms of execution time of SPEC CINT 2006

050100150200250300
baseline =1000ms =600ms =200ms =50msnumber of web request

s/sec
number of web request
s/sec
number of web request
s/sec
number of web request
s/sec CoW-BCoW-P91.1% 90.7% 85. 8%

74. 3%

92.7% 91.9% 90. 9%

82.5%

100%

Tck Tck Tck Tck

Figure 4: Experiment results in terms of Apache web

server throughput

c) Average checkpoint sizes are very small, less than

2% of the size of the entire system state, when the

checkpoint interval is 50ms. With CoW-P deployed at a

checkpoint interval of 50ms, the average checkpoint size is

654.5 memory pages or 2.6MB, while the size of the entire

system state during the experiment is up to 206MB. The

observed maximum checkpoint size is less than 8MB, less

than 4% of the entire system state size. When the checkpoint

interval is increased to 1000ms, most checkpoints are less

than 10,000 pages, and the average size is 2162.4 pages

(8.6MB, or 4.2% of the entire state).

C. Virtual Machine Recovery

Experiments are conducted a) to test the ability of the

proposed technique to correctly recover a virtual machine

and b) to measure the recovery time. In this analysis, we

consider application failures as a means to error detection.

For this purpose, a small custom program is developed that

causes a segmentation failure after executing for a while.

The instrumented hypervisor-level exception handler then

issues an “error detected” request via a divided-by-zero

exception.

The SPEC CINT 2006 benchmark programs run as the

workload on the protected virtual machine. The custom

program is launched to generate a failure while the

workload is running. The protected virtual machine is then

rolled back to the last committed checkpoint. The measured

recovery time ranges from 144ms to 1017ms with the

average of 639.4ms (the 95% confidence interval is

639.4ms ± 193.1ms) in our experiments.

VI. CONCLUSIONS

This paper proposes VM-µCheckpoint, a lightweight

VM checkpointing technique that a) addresses the problem

of checkpoint corruption in high-frequency checkpointing

and b) minimizes overhead by placing checkpoints in

memory and performing in-place recovery in a virtual

environment. We show that it is important to take into

account the expected times for errors to manifest themselves

in determining checkpoint intervals. VM-µCheckpoint was

implemented in the Xen VMM. Experimental results

showed that the proposed technique achieves much better

performance than existing techniques based on VM live

migration. Overhead is low with VM-µCheckpoint: the

average program execution time overhead for the SPEC

CINT 2006 benchmark when VM-µCheckpoint is deployed

at a checkpoint frequency of 20 times per second is 6.3%.

Moreover, checkpoint size is small: an average of less than

2% of the entire system state in our experiments when the

CoW-P algorithm is applied with 50ms checkpoint intervals.

ACKNOWLEDGMENTS

This work was supported in part by NSF grants, CNS-

05-24695, CNS-05-51665, and ACI-0121658 ITR/AP, the

Gigascale Systems Research Center (GSRC/MARCO), IBM

Corporation, and Boeing Corporation.

REFERENCES

[1] K. Chanchio et al., An Efficient Virtual Machine

Checkpointing Mechanism for Hypervisor-based HPC Systems,

High Availability and Performance Computing Workshop, 2008

[2] C. Clark et al., Live Migration of Virtual Machines. Proc. of

Networked Systems Design and Implementation, 2005.

[3] P. Colp, VM Snapshots, Xen Summit, 2009,

http://www.xen.org/files/xensummit_oracle09/VMSnapshots.pdf

[4] B. Cully et al., Remus: High Availability via Asynchronous

Virtual Machine Replication, Proc. of Networked Systems Design

and Implementation, 2008.

[5] J. Gray, Why Do Computers Stop and What Can Be Done

About It? Proc. of Symposium on Reliability in Distributed

Software and Database Systems, 1986.

[6] W. Gu et al., Error Sensitivity of the Linux Kernel Executing

on PowerPC G4 and Pentium 4 Processors, Proc of Conference on

Dependable System and Networks, 2004.

[7] W. Gu et al., Fault Inject Based Study of Fault Resilience of

Hypervisor, University of Illinois Urbana-Champaign Report 2007.

[8] A. Kangarlou et al., VNsnap: Taking Snapshots of Virtual

Networked Environments with Minimal Downtime, Proc. of

Conference Dependable Systems and Networks, 2009.

[9] M. Li et al., Understanding the Propagation of Hard Errors to

Software and Implications for Resilient System Design,

Architectural Support for Programming Languages and Operating

Systems, 2008.

[10] J. Nakano et al., ReVive I/O: Efficient Handling of I/O in

Highly Available Rollback-Recovery servers, HPCA 2006.

[11] M. Nelson et al., Fast Transparent Migration for Virtual

Machines, USENIX 2005.

[12] K. Pattabiraman et al., Automated Derivation of Application-

aware Error Detectors Using Static Analysis. Proc. of International

On-Line Testing Symposium, 2007.

[13] G. Reis et al., SWIFT: Software Implemented Fault Tolerance,

Proc. of Symposium on Code Generation and Optimization, 2005.

[14] J. Smolens et al., Fingerprinting: Bounding Soft-error

Detection Latency and Bandwidth, Architectural Support for

Programming Languages and Operating Systems, 2004.

[15] L. Wang, et al., Checkpointing Virtual Machines Against

Transient Errors: Design, Modeling, and Assessment.

https://netfiles.uiuc.edu/longwang/www/VM-ucheckpoint.pdf.

[16] G. Zheng et al., FTC-Charm++: An In-Memory Checkpoint-

based Fault Tolerant Runtime for Charm++ and MPI, IEEE

International Proc. of Conference on Cluster Computing, 2004.

