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Abstract—This paper proposes VM-µCheckpoint, a lightweight 
software mechanism for high-frequency checkpointing and 
rapid recovery of virtual machines. VM-µCheckpoint 
minimizes checkpoint overhead and speeds up recovery by 
saving incremental checkpoints in volatile memory and by 
employing copy-on-write, dirty-page prediction, and in-place 
recovery. In our approach, knowledge of fault/error latency is 
used to explicitly address checkpoint corruption, a critical 
problem, especially when checkpoint frequency is high. We 
designed and implemented VM-µCheckpoint in the Xen VMM. 
The evaluation results demonstrate that VM-µCheckpoint 
incurs an average of 6.3% execution-time overhead for 50ms 
checkpoint intervals when executing the SPEC CINT 2006 
benchmark. 
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I.    INTRODUCATION 

Virtual machines (VMs), also called guest systems, are 

frequently deployed to host a variety of IT services, such as 

web services, virtual desktops, and databases. To ensure 

continuous service availability, these systems must be 

capable of tolerating runtime errors. Checkpoint and 

rollback techniques can be applied to enhance VM 

availability.  

Virtual machine monitors (VMMs), such as VMware 

and Xen, provide mechanisms a) to save a VM state (by 

stopping the VM and dumping the execution state into 

persistent storage) and b) to migrate the VM to a remote 

node (e.g., [2]). Most existing VM checkpoint techniques 

[1][8][4] exploit these two mechanisms. For example, 

CEVM [1] and VNsnap [8] first use live migration to create 

a copy of the protected VM in memory and then dump the 

replica to disk offline. 

This paper presents the description, implementation, and 

experimental assessment of VM-µCheckpoint, a VM 

checkpointing framework to protect both the guest OS and 

applications against runtime errors. Advantages of using 

VM-µCheckpoint include:  

(i) Small overhead compared with the VM replica-based 

failover approach.  This is achieved by using in-memory 

checkpoint and in-place recovery of VMs, i.e., recovery of a 

failed VM in its current context. No such checkpoint work 

has been done in the context of virtual environments. 

(ii) Alleviation of checkpoint corruption due to error-

detection latency by taking advantage of knowledge of error 

detection latency. Using knowledge of fault/error latency for 

explicitly handling checkpoint corruption is a novel solution 

to this important problem. 

(iii) High checkpointing frequency—tens of checkpoints 

per second—which reduces the size of each increment when 

taking a checkpoint. 

(iv) Rapid recovery—within one second— as compared 

to the stop-and-dump approach provided by VMMs. 

As a result, checkpointing during the normal system 

operation and recovery in response to a guest VM or 

application failure are completely transparent to the client, 

i.e., the client does not see a service interrupt. 

Traditional checkpointing techniques save checkpoints 

on disk in order to tolerate permanent failures. Several VM 

checkpointing techniques, including Remus [4], save 

checkpoints in the memory of another node. In this study, 

we propose saving checkpoints in the memory of the same 

node.  

VM-µCheckpoint is designed as a complementary 

approach to disk-based VM checkpointing rather than its 

replacement. By providing a rapid recovery, VM-

µCheckpoint significantly reduces the failure rate of VMs 

due to transient errors 1 . We created analytical and 

probabilistic models (not presented in this paper due to 

space limitations) to assess the availability improvement 

when using VM-µCheckpoint. The model-based analysis 

can be found in [15]. 

The major contributions of this paper are: 

• Design, implementation, and integration of VM-

µCheckpoint in Xen VMM. The VM-µCheckpoint 

implementation does not introduce any changes to the guest 

VMs or applications. Copy-on-Write (CoW), dirty-page 

prediction, and pre-saving algorithms are designed and 

implemented to achieve high performance. The key 

innovations in the proposed algorithms are (i) the use of 

dirty-page prediction and pre-saving, which are not 

                                                                 

1  At the same time, the checkpoint kept by VM-µCheckpoint can be 

dumped to disk at a sufficiently infrequent rate to minimize overhead. 

This means that in the event of a node fails, the VM and the jobs in the 

node can be restarted from the last valid disk checkpoint. 



  

supported by the default Xen’s CoW mechanism, and (ii) a 

mechanism to overcome the inefficiency of Xen’s CoW in 

supporting high-frequency periodic checkpointing. 

• Use of knowledge of the error detection latency to derive 

checkpoint intervals that minimize the possibility of 

checkpoint corruption. Our model-based analysis (in [15]) 

shows that the availability of guest VMs and applications is 

improved from 99% to 99.98%, assuming a highly reliable 

hypervisor (MTTF of 625 days in our study). 

An experimental assessment of VM-µCheckpoint using  

(i) SPEC benchmark programs. The evaluation shows that 

VM-µCheckpoint incurs an average of 6.3% overhead for 

SPEC benchmark programs with 50 ms checkpoint 

intervals2. This choice represents a design tradeoff between 

keeping checkpoint size small and minimizing chances of 

checkpoint corruption due to latent errors.  

(ii) Apache server, an example network application. The 

results show 17.5% throughput reduction when taking a 

checkpoint every 50ms. This overhead is significantly lower 

than the existing VM checkpointing techniques, e.g., Remus 

[4]. 

 

II.    RELATED WORK 

Checkpoint and rollback techniques have been 

extensively studied in the literature. Checkpoints can be 

taken in different levels (application, runtime library, 

compiler, operating system, virtual machine, or hardware). 

Here we focus on checkpoint techniques in the virtual 

machine level. 

Most existing VM checkpoint/replication techniques are 

based on live migration of VMs (e.g., VMWare VMotion 

[11] and Xen Live Migration [2]), which continually 

transmit dirty pages of a VM from a source node to a 

destination node. These techniques exploit the live 

migration mechanism for the purposes of VM checkpointing, 

VM rejuvenation, load-balancing, and fast VM forking.  

CEVM [1], VNsnap [8], and VM Snapshots [3] are 

disk-based VM checkpointing techniques. These techniques 

employ VM live migration or CoW to create a replica image 

of a VM with low downtime incurred; then they write the 

image to disk offline. An ongoing project on VM 

checkpointing [3] tries to provide a generic API in Xen 

products for saving a VM snapshot to disk on demand. 

Basically, the VM memory is scanned and saved to files 

while the VM runs.  

VM-µCheckpoint differs from disk-based VM 

checkpointing in that we aim to i) provide high-frequency 

checkpointing and rapid recovery of VMs, which allows 

VM failures to be masked to clients, and ii) propose a 

mechanism to alleviate checkpoint corruption in high-

                                                                 

2 The recent work of fault-injection into Linux kernel [1] shows that, about 

95% of crashes occur within 100 million CPU cycles (or within 50ms on 

a 2GHz processor) after an error occurrence. We select a checkpoint 

interval of 50ms in experiments to cover the latency for 95% of errors. 

frequency checkpointing, corruption that has significant 

impacts on service availability. Disk-based VM 

checkpointing is too costly and is unable to keep up with the 

high frequency of rapid checkpointing (tens per second). 

The existing approach closest to our work is Remus [4], 

which maintains a backup VM on a separate physical node 

by periodically transmitting the VM’s dirty pages to the 

backup. Similarly to VM-µCheckpoint, Remus is a method 

of high-frequency VM checkpointing and failover.  But 

VM-µCheckpoint considers error behavior and emphasizes 

reliability/availability improvement, while Remus focuses 

on migration overhead and lacks a study of error behavior or 

reliability/availability. Because checkpoint corruption is not 

handled in Remus (fail-stop errors are assumed), our 

technique is preferable at improving service availability. 

Another relevant work is FTC-Charm++ [16], which 

checkpoints MPI programs. FTC-Charm++ uses in-memory 

checkpointing, keeping two identical checkpoint copies in 

the memories of two nodes in order to tolerate single node 

failure. However, Charm++ is not automated; the 

programmer must specify what and when to checkpoint. 

Charm++ is not aimed at virtual environments, and 

importantly, checkpoint corruption is not considered. 

 

III.    VM-µCHECKPOINT OVERVIEW 

Figure 1 illustrates how VM-µCheckpoint is deployed to 

protect virtual machines (guest systems) running on top of a 

hypervisor. The protected VM in the figure is the guest 

system to be checkpointed. Another guest system on the 

same physical machine is selected to be the checkpointing 

VM where VM-µCheckpoint is installed. The checkpointing 

VM can be a guest system dedicated to the checkpointing 

service; it need not be a privileged guest system, such as 

Dom0 in Xen. The hypervisor and the kernel of the 

checkpointing VM are instrumented to support 

checkpointing and recovery. 

Hyper-
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Figure 1: Deployment of VM-µCheckpoint 

The starting point of the proposed approach is the 

observation that short-latency errors are dominant. This is 

demonstrated by several previous fault injection 

experiments, including recent work on error injection into 

Linux kernel [1] that shows about 95% of crashes occur 

within 100 million CPU cycles (or within 50ms on a 2GHz 

processor) after an error occurrence.  Fault injections into 

processor micro-architecture [9] also show small error 



  

latencies, and state-of-the-art error detection techniques (e.g., 

[13][12][14]) have helped to limit error latency to low 

values.  

At the same time, it has been shown in many studies that 

a vast majority of failures are transient (up to 95%). 

Furthermore, our experiments on IBM Power series systems 

also demonstrate that, in VM environments, errors 

impacting the hypervisor rarely affect more than a single 

guest VM [7]. 

Latency-driven selection of the checkpoint interval. 

We define a parameter TB as a user-specified bound on error 

latency.  By setting the checkpoint interval greater than an 

acceptable latency bound (e.g., 95th percentile) we 

effectively bound the probability of a latent/undetected error 

affecting the checkpoint to be small (in the best case, <5%).  

In addition, by always holding two checkpoints in sequence 

and, on detecting an error, reverting to the earlier checkpoint, 

we further reduce the probability of checkpoint corruption.  

This is primarily due to two factors: (i) the earlier 

checkpoint is taken at a time that is at least TB in the past, 

and (ii) since by choice (per the latency distribution) the 

chance of an error getting detected (or causing a failure) in 

an interval TB is greater than 95%, we can have confidence 

that the checkpoint is error free if no error has been detected. 

A user-level process in the checkpointing VM, referred 

to as the checkpoint agent in Figure 1, takes a checkpoint of 

the protected VM periodically, at intervals of Tck (where Tck 

> TB), and stores the checkpoint in the checkpointing VM. 

Since at each checkpoint our copy-on-write (CoW) 

implementation indentifies and stores the needed state 

information, the checkpoint agent stores only a small 

fraction of the protected VM state rather than the entire 

system image. This approach allows the checkpoint agent to 

store checkpoints of multiple guest systems on the same 

physical machine using a small amount of memory.  

 

IV.    CHECKPOINTING ALGORITHMS 

At the beginning of a checkpoint interval, register states 

in the protected VM are saved in the checkpoint, and all 

memory pages are set as read-only. From that point on, any 

write to a read-only page triggers a page fault, the original 

data of the page are copied into the checkpoint kept in the 

checkpoint agent memory, and the stored memory page is 

set as writable. Consequently, the checkpoint consists of 

pre-write data of pages updated within a given checkpoint 

interval. 

As mentioned previously, the two most recent 

checkpoints are kept at all times. The following actions are 

performed when an error in the protected VM is detected or 

causes a failure: i) the most recent checkpoint is copied back 

into the current state of the protected VM, and ii) the earlier 

checkpoint of the two kept ones is copied into the system 

memory to restore the correct state. This method restores the 

system to the state when the earlier checkpoint, called the 

committed checkpoint, was taken, a state that is unlikely to 

have been corrupted. Note that a checkpoint is a pre-write 

state of modified pages, i.e., a state at the beginning of the 

corresponding checkpoint interval. Therefore, corruption of 

a later checkpoint does not cause the rollback to fail. Any 

corrupted page in the later checkpoint is overwritten by the 

correct state preserved in the earlier checkpoint. A detailed 

explanation of this method follows. 

Figure 2 illustrates timelines of this checkpointing/ 

recovery scheme. Two complete checkpoint intervals, [t0, t1) 

and [t1, t2), are shown in Figure 2. The horizontal axis at the 

top of the figure represents error-free execution of the 

protected VM, while the horizontal axis at the bottom 

represents execution when an error occurs at tf_s. The error is 

detected (or the application/system fails) at tf_d (the error 

latency 
_ _f f d f s B

T t t T= − ≤ ). At tf_d, the two most recent 

checkpoints are those taken at t0 and t1. We first restore the 

data preserved during the time interval [t1, tf_d) into the 

protected VM and then restore the data preserved during [t0, 

t1) to roll back the system to the state at time t0.  
t0 t1 t2

(a)

Tck
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Figure 2: Timelines for two checkpoint strategies: (a) 

CoW-B and (b) CoW-P 

In the algorithm described above called CoW Basic 

(CoW-B), setting all memory pages as read-only at the 

beginning of a checkpoint interval potentially results in a 

large number of page faults and a significant performance 

overhead. An optimized version of the basic algorithm 

called CoW Pre-saving (CoW-P) is designed to reduce the 

resulting page faults (checkpoint-caused page faults are 

reduced by 75% when the checkpoint interval is 50ms in our 

experiments, see Section V.B).  

The CoW-B algorithm. This algorithm is depicted as 

the timeline (a) in Figure 2. Here are the notations used in 

our discussion: 

ti   Beginning time of the i
th

 checkpoint interval 

Si   State of the protected VM at time ti. 

DPi Dirty Pages – data of the memory pages preserved by 

VM-µCheckpoint’s mechanism during [ti, ti+1]. 

St  State of the protected VM at any time t (t∈[ti, ti+1]). 

DPi(t) Data of the memory pages preserved by VM-

µCheckpoint’s mechanism during [ti, t] for any time t 

(t∈[ti, ti+1]). 

The following operation reflects the inherent 

relationship between Si, St, and DPi(t): 



  

( , ( )),
i t i

S restore S DP t=                           (1) 

where ( , ( ))
t i

restore S DP t  denotes an operation of copying 

the data preserved in DPi(t) into their corresponding 

memory pages in St to restore the system to state Si. 

In the example error scenario shown in Figure 2 

1 _ 2f dt t t≤ ≤ ,
f B ckT T T≤ ≤ , and S0 is the last committed 

checkpoint. Applying the operation (1) twice, we can derive 

the expression that depicts restoration of S0: 

0 1 0 1

1 _ 0

( , ( ))

( ( , ( )), ),f f d

S restore S DP t

restore restore S DP t DP

=

=

          (2) 

where 
1 1t

S S= , 
0 1 0( )DP t DP= , and Sf denotes the system state 

at tf_d. At the restoration time tf_d, Sf, DP1(tf_d) and DP0 are 

all available, and we can restore the memory state of the 

protected VM into S0. After restoration, neither DP1(tf_d) nor 

DP0 is valid any more, as the system is now in state S0. They 

are discarded after the restoration. 

The CoW-P algorithm.  Figure 2 (b) shows the timeline 

of the CoW-P. This algorithm reduces the number of page 

faults by predicting the pages to be updated in the upcoming 

checkpoint interval. The predicted pages are then pre-saved 

in the checkpoint when this interval begins (H0, H1, and H2 

are the pre-saved pages in Figure 2 (b)). These pre-saved 

pages are marked as writable and do not raise page faults. 

The typical checkpoint intervals (selected in our 

approach) range from tens of milliseconds to several 

seconds. Due to the space and time locality of memory 

accesses, pages that were updated recently tend to be 

updated again in the near future. Therefore, the pages dirtied 

in the previous checkpoint interval are used to predict the 

pages to be updated in the upcoming interval. 

Specifically, a page table supported by current-

generation processors maintains an entry for each memory 

page.  The page entry has two control bits—the write 

permission bit and the dirty bit—which are leveraged for 

our prediction.  (We manipulate the shadow copy of this 

page table maintained by the VMM, rather than the page 

table in the guest operating system. In this way, the guest 

system’s use of its page table is not interfered with.) The 

write-permission bit controls whether the page is writable, 

and the dirty bit shows whether the page has been updated 

since the dirty bit was last cleared. At the beginning of a 

checkpoint interval, both of the bits for non-dirty pages are 

cleared (i.e., set as read-only and not dirty). While the pages 

dirtied in the previous checkpoint interval are saved in 

checkpoint, their write permission bits are set to allow 

writes to them, and their dirty bits are cleared to enable 

tracking of whether they will be updated during the 

upcoming interval. If a page dirtied in the previous interval 

is not updated during the upcoming interval, then next time 

(i.e., after this upcoming interval), this page is not pre-saved 

and is set as read-only.  

Discussion.  Both error latency and checkpoint overhead 

are considered when selecting a checkpoint interval Tck. 

Checkpointing with a larger interval incurs smaller overhead 

but causes a longer output delay and a larger checkpoint size 

(because output is held until the corresponding checkpoint is 

committed). Hence, there is a trade-off in Tck selection. For 

example, if a small output delay is desired, a small Tck is 

preferred, as long as Tck is larger than the selected TB and 

the checkpoint overhead is acceptable. 

Error detection latency depends on error detection 

techniques (e.g., [13][12][14]). Note that error detection is 

not in the scope of this paper. In order to obtain the 

distribution of error detection latency, we inject errors into a 

target system and measure the latency from error activation 

to the occurrence of system or application failure. We 

conducted an analytical model to study the impacts of Tck on 

checkpoint corruption and system availability [15]. Based 

on the analytical model and the obtained error latency 

distribution, we can select the proper Tck. 

VM-µCheckpoint recovers a guest system and 

applications in the system from any transient hardware error 

or transient software error, including both application and 

system errors. Transient hardware errors include those 

occurring in the processor (functional units, registers, caches, 

buses, and control logics) and in memory due to events such 

as radiation or current disturbances. Transient software 

errors, or Heisenbugs [5], include exceptional conditions 

(e.g., a counter overflow and an interrupt arrival with a bad 

timing), occasional device driver faults, race conditions, and 

corrupted parameter or data due to bad transmission. Note 

that transient failures of the checkpointing VM are handled 

by an immediate restart of the failed checkpointing VM.  

VM-µCheckpoint cannot guarantee recovery if either of 

the following holds: (i) Checkpoint corruption. There is a 

small but finite probability of checkpoint corruption.  In this 

case, VM-µCheckpoint aborts recovery and restarts the VM 

and the interrupted jobs. (ii) Failure of the hypervisor due to 

a transient fault. In this case, we first restart the hypervisor 

and restart all jobs executing prior to the failure. If this is 

unsuccessful, the system rolls over to an adjacent physical 

node and restarts.  

While this paper focuses on the design, implementation, 

and analysis of the memory state checkpointing in VM-

µCheckpoint, I/O checkpointing can be dealt with by 

adapting the output-commit mechanism applied in [4][10]. 

 

V.    EXPERIMENTAL EVALUATION 

Fully working prototype of VM-µCheckpoint is 

implemented in Xen VMM. The source codes of the Xen 

hypervisor and the checkpointing VM are instrumented 

while there is no change to the protected VM3. Details of 

algorithms and the overall implementation can be found in 

[15].  

The testbed consists of a physical machine with an AMD 

Athlon 2800 (1.8G Hz) processor and 1.5GB memory. 
                                                                 

3 The I/O recovery mechanism is not implemented in the current prototype. 



  

(Because hardware is virtualized by Xen, VM-ucheckpoint 

should work on SMP platforms as well, though we have not 

tried such experiments.) There are two guest systems (Linux 

2.6.18) running on top of Xen 3.3.1 in the testbed. The 

Dom0 is selected as the checkpointing VM, and the other 

guest system, a DomU, is the protected VM. 512MB and 

1GB memory are assigned to the checkpointing VM and the 

protected VM, respectively. We use two VMs in our 

experiments to measure performance overhead accurately in 

a relatively simple deployment.  

A.    Experiment Setup  

Workload of SPEC CINT 2006. SPEC2006 is widely 

accepted in industry for performance benchmarking. For 

example, milc is a scientific application used for millions of 

node hours at DOE and NSF supercomputer centers, and 

gcc is a full-featured compiler with 365k lines of source 

code. A set of SPEC CINT 2006 benchmark programs are 

executed in the protected guest system with VM-

µCheckpoint deployed. A suite of experiments are 

conducted involving each of these benchmark programs: (i) 

a baseline case with no checkpoint; (ii) CoW-B algorithm 

deployed with the four checkpoint intervals of 1000ms, 

600ms, 200ms, and 50ms; and (iii) CoW-P algorithm 

deployed with the same four intervals. A given program 

executes with the same input across all experiments.  

Program execution times are measured, and normalized 

execution times are illustrated in Figure 3. (While 95% 

confidence intervals of execution times are computed, these 

are not presented to avoid cluttering in Figure 3) 

Normalized execution time is computed by dividing 

program execution time by the execution time in the 

corresponding baseline case.  

Workload of a web server. We conduct experiments to 

study how VM-µCheckpoint affects Apache web server 

throughput when the web server runs on the protected guest 

system. Web clients reside on three physical machines with 

each machine hosting 50 clients. These clients request the 

same load of web pages, one request immediately after 

another, from the server simultaneously via a 100Mbps 

LAN. The output-commit mechanism is disabled in these 

experiments, and consequently, we compare our 

performance with Remus results when the output commit is 

also disabled.  

Figure 4 illustrates the measured server throughput as a 

function of checkpoint intervals. The same load of web 

requests is processed in these experiments. The percentages 

indicated along the data points on the graph represent the 

ratio between the throughput measured with the checkpoint 

deployed and the throughput when checkpoint is not 

deployed. 

B.    Results 

The major findings in our experiments are summarized 

below: 

a) VM-µCheckpoint achieves much better performance 

than existing migration-based VM checkpointing. For a 

workload of SPEC CINT 2006 benchmark and a checkpoint 

frequency of 20 times per second (Tck=50ms), an average of 

6.3% overhead is incurred when CoW-P is deployed. With 

the same checkpoint algorithm and checkpoint frequency, 

Apache server throughput is reduced by 17.5%. In contrast, 

Remus [4], a migration-based VM replication/checkpoint 

technique, reports approximately 50% overhead in their 

experiments for the same checkpoint frequency.  

VM-µCheckpoint’s performance varies with the 

workload. Generally, workload applications with larger data 

set have more overhead. For example, milc is a scientific 

application dealing with larger data set while gcc deals with 

smaller data set. As a result, VM-ucheckpoint incurs more 

overhead for milc workload than that for gcc (Figure 3). 

b) The CoW-P algorithm performs much better than 

CoW-B. With CoW-P deployed with 50ms checkpoint 

intervals, Apache throughput is 82.5% of the baseline 

performance, which is larger than the 74.3% when CoW-B 

is deployed. We also measure the number of page faults and 

the checkpoint size (not shown due to space limitations). 

Dirty page prediction and pre-saving effectively reduce page 

faults by 75% when the checkpoint interval is 50ms (details 

can be found in [15]). 
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Figure 3: Experiment results in terms of execution time of SPEC CINT 2006 
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Figure 4: Experiment results in terms of Apache web 

server throughput 

c) Average checkpoint sizes are very small, less than 

2% of the size of the entire system state, when the 

checkpoint interval is 50ms. With CoW-P deployed at a 

checkpoint interval of 50ms, the average checkpoint size is 

654.5 memory pages or 2.6MB, while the size of the entire 

system state during the experiment is up to 206MB. The 

observed maximum checkpoint size is less than 8MB, less 

than 4% of the entire system state size. When the checkpoint 

interval is increased to 1000ms, most checkpoints are less 

than 10,000 pages, and the average size is 2162.4 pages 

(8.6MB, or 4.2% of the entire state). 

C.    Virtual Machine Recovery 

Experiments are conducted a) to test the ability of the 

proposed technique to correctly recover a virtual machine 

and b) to measure the recovery time. In this analysis, we 

consider application failures as a means to error detection. 

For this purpose, a small custom program is developed that 

causes a segmentation failure after executing for a while. 

The instrumented hypervisor-level exception handler then 

issues an “error detected” request via a divided-by-zero 

exception. 

The SPEC CINT 2006 benchmark programs run as the 

workload on the protected virtual machine. The custom 

program is launched to generate a failure while the 

workload is running. The protected virtual machine is then 

rolled back to the last committed checkpoint. The measured 

recovery time ranges from 144ms to 1017ms with the 

average of 639.4ms (the 95% confidence interval is 

639.4ms ± 193.1ms) in our experiments. 

 

VI.    CONCLUSIONS 

This paper proposes VM-µCheckpoint, a lightweight 

VM checkpointing technique that a) addresses the problem 

of checkpoint corruption in high-frequency checkpointing 

and b) minimizes overhead by placing checkpoints in 

memory and performing in-place recovery in a virtual 

environment. We show that it is important to take into 

account the expected times for errors to manifest themselves 

in determining checkpoint intervals. VM-µCheckpoint was 

implemented in the Xen VMM. Experimental results 

showed that the proposed technique achieves much better 

performance than existing techniques based on VM live 

migration. Overhead is low with VM-µCheckpoint:  the 

average program execution time overhead for the SPEC 

CINT 2006 benchmark when VM-µCheckpoint is deployed 

at a checkpoint frequency of 20 times per second is 6.3%. 

Moreover, checkpoint size is small: an average of less than 

2% of the entire system state in our experiments when the 

CoW-P algorithm is applied with 50ms checkpoint intervals. 
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