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Abstract 

We present a highly available system for environments such as stock trading, 

where high request rates and low latency requirements dictate that service 

disruption on the order of seconds in length can be unacceptable. After a node 

failure, our system avoids delays in processing due to detecting the failure or 

transferring control to a back-up node. We achieve this by using multiple primary 

nodes which process transactions concurrently as peers. If a primary node fails, 

the remaining primaries continue executing without being delayed at all by the 

failed primary. Nodes agree on a total ordering for processing requests with a 

novel low overhead wait-free algorithm that utilizes a small amount of shared 

memory accessible to the nodes and a simple compare-and-swap like protocol 

which allows the system to progress at the speed of the fastest node. We have 

implemented our system on an IBM z990 zSeries eServer mainframe and show 

experimentally that our system performs well and can transparently handle node 

failures without causing delays to transaction processing. The efficient 

implementation of our algorithm for ordering transactions is a critically important 

factor in achieving good performance. 

Keywords: computer-driven trading, fault tolerance, high availability, total 

ordering algorithm, transaction processing. 



1. Introduction 

Transaction-processing systems such as those for stock exchanges need to be 

highly available. Continuous operation in the event of failures is critically 

important. Failures for any length of time can cause lost business resulting in both 

revenue losses and a decrease in reputation. In the event that a component fails, 

the systems must be able to continue operating with minimal disruption. 

This paper presents a highly available system for environments such as stock 

trading, where high request rates and low latency requirements dictate that service 

disruptions on the order of seconds in length can be unacceptable. A key aspect of 

our system is that processor failures are handled transparently without 

interruptions to normal service. There are no delays for failure detection or having 

a back-up processor take over for the failed processor because our architecture 

eliminates the need for both of these steps. 

A standard method for making transaction processing systems highly available 

is to provide a primary node and at least one secondary node which can handle 

requests. In the event that the primary node fails, requests can be directed to a 

secondary node which is still functioning. This approach, which we refer to as the 

primary-secondary approach (which is also known as active-passive high 

availability), has at least two drawbacks for environments such as stock trading. 

The first is that stock trading requests must be directed to specific nodes due to the 

fact that the nodes have local in-memory state information typically not shared 

between the primary and secondary for handling specific transactions. For 

example, a primary node handling trades for IBM stocks would have information 

in memory specifically related to IBM stocks. If a buy or sell order for IBM stock 

is directed to a secondary node, the secondary node would not have the proper 

state information to efficiently process the order. The primary node should store 

enough information persistently to allow stock trading for IBM to continue on 

another node should it fail. However, the overhead for the secondary node to 

 2



obtain the necessary state information from persistent storage would cause delays 

in processing trades for IBM stock which are not acceptable. The second problem 

with the primary-secondary approach is that there can be delays of several seconds 

for detecting node failures during which no requests are being processed. For 

systems which need to be continuously responsive under high transaction rates, 

these delays are a significant problem. Therefore, other methods are desirable for 

maintaining high availability in transaction processing systems which handle high 

request rates and need to be continuously responsive in the presence of failures. 

Our system handles failures transparently without disruptions in service. A key 

feature of our system is that we achieve redundancy in processing by having 

multiple nodes executing transactions as peers concurrently. If one node fails, the 

remaining ones simply continue executing. There is no need to transfer control to 

a secondary node after a failure because all of the nodes are already primaries. A 

key advantage to our approach is that after a primary failure, there is no lost time 

waiting for the system to recover from the failure. Other primaries simply 

continue executing without being slowed down by the failure of one of them. 

One of the complications with our approach is that the primaries can receive 

requests in different orders. A key component of our system is a method for the 

primaries to agree upon a common order for executing transactions, known as the 

total ordering, without incurring significant synchronization overhead. We do this 

by means of a limited amount of shared memory accessible among the nodes, and 

a simple but efficient synchronization protocol. 

The overall concept of the primary-primary approach has been proposed 

previously [18] and is also known as active-active high availability. However, 

previous methods proposed for achieving total ordering among requests are often 

complex and not wait-free. In our work, we show how to achieve total ordering of 

requests using a relatively simple wait-free protocol. In addition, we have 

implemented and thoroughly tested our system using a stock trading application. 
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A considerable effort is needed to go from ideas proposed in past papers to an 

efficient working system. 

The key contributions of this paper include the following: 

• We show how the primary-primary approach can be used for transaction 

processing applications such as stock trading in which the primary nodes 

must agree upon a common order for processing the requests. 

• We have developed and implemented a new efficient wait-free algorithm 

for nodes in a distributed environment receiving messages in different 

orders to agree on a total ordering for those messages. This algorithm is 

used by our system to determine the order for all nodes to execute 

transactions and makes use of a small amount of shared memory among 

the nodes. The total ordering algorithm imposes little overhead and 

proceeds at the rate of the fastest node; it is not slowed down by slow or 

unresponsive nodes. 

• We have implemented our approach on an IBM z990 zSeries. 

Experimental results show that our system achieves fast recovery from 

failures and good performance. Average latencies for handling transactions 

are well below 10 milliseconds. The efficient total ordering algorithm is a 

critically important factor in achieving this performance. 

2. System Architecture 

Our system makes use of multiple nodes for high availability. Each node 

contains one or more processors. Nodes have some degree of isolation so that a 

failure of one node would not cause a second node to fail. For example, they run 

different operating systems and generally do not share memory to any significant 

degree. In our implementation, nodes can communicate and synchronize via a 

small amount of shared memory. 
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2.1. Traditional Primary-Secondary Architecture 

For environments such as stock trading, response times have to be extremely 

fast. Therefore, state information needed to perform transaction processing is 

cached in the main memories of nodes handling transactions. A key drawback of 

the primary-secondary approach of having a back-up node take over in case the 

primary node fails is that the back-up node will not have the necessary state 

information in memory in order to restart processing right away. There are also 

delays in detecting failures. A common method for detecting failures is to 

periodically exchange heart beat messages between nodes and listen for failed 

responses. It is generally not feasible to set the timeout period before a node is 

declared failed to too small an interval (e.g. less than several seconds) due to the 

risk of erroneously declaring a functioning node down. This means that it often 

takes several seconds to detect a failure. The delays that would be incurred in 

detecting the failure of a primary node and getting a secondary node up and 

running by obtaining the necessary state information from persistent storage are 

thus often too high using this conventional high availability approach. 

For this reason, it is essential to have at least two nodes with updated in-

memory data structures for handling orders for the stock. That way, if one of the 

nodes fails, the other node will still be functioning and can continue handling 

trades for the stock. 

One way to achieve high availability would be to have a primary node 

handling requests for a stock in a certain order and to have the primary node send 

the ordered sequence of requests that it is processing to a secondary node. The 

secondary node then executes the transactions in the same order as the primary 

node but a step or two behind the primary node. The secondary node would avoid 

performing many updates to persistent storage already performed by the primary 

node since the whole reason for the secondary node executing transactions is to 

keep its main memory updated. 
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While this approach eliminates some of the overhead of simply having a cold 

standby taking over for the primary, it still incurs some overhead for both 

detecting the failed primary node and handling the failover from the primary node 

to the secondary node. As we mentioned previously, detecting the failed primary 

node can take several seconds. The secondary node also needs to figure out 

exactly where the primary node failed in order to continue processing at exactly 

the right place. If the failover procedure is not carefully implemented, the 

secondary node could either repeat processing the primary node has already done 

or leave out some of the processing the primary node performed before failing; 

either of these two scenarios results in incorrect behavior. 

Our system avoids the problems of both detecting failures and transferring 

control from a failed node to a back-up node by having multiple primary nodes 

executing the same sequence of transactions as peers concurrently. Normally, two 

primary nodes would be sufficient. If failure of more than one node within a short 

time period is a concern, more than two primaries can be used. In the event that a 

primary node fails, the remaining primaries keep executing without being 

hindered by the failed primary. We now describe our architecture in more detail. 

2.2. Our Primary-Primary Architecture 

We depict the overall primary-primary stock exchange trading architecture in 

Figure 1. 

 
Figure 1. Primary-Primary Architecture 
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An electronic stock exchange, as illustrated by the shaded ellipse area in the 

diagram, typically consists of 3 tiers,  

 
• Gateways (GW) collect buy/sell requests from clients (e.g., traders and 

brokers) and perform preprocessing such as validation. 

• Execution Venues (EV) are the heart of the stock exchange. They carry out 

the actual trading by matching incoming requests against an in-memory 

list of outstanding requests, which is called an order book. Each EV is 

implemented by a node. By the nature of the stock trading transaction, the 

state of the EV is completely determined by the order of incoming requests 

it processes. 

• History Recorder (HR) is used for persistently storing the result of every 

trade carried out by the EVs. It is typically implemented by a file system or 

database management system (DBMS). It is essential to store the result of 

computations persistently so that information is not lost in the event of a 

system failure.  

 
A typical stock trading transaction involves the following steps: 

 
• GWs receive trade requests from clients, persistently store the requests, 

and send the requests to EVs. Different EVs may receive requests from 

GWs in different orders. Therefore, there is the need to agree on a total 

ordering for the requests. 

• EVs agree on a total ordering for the requests by communicating with the 

sequencer. In our implementation, the sequencer includes a limited amount 

of shared memory that EVs can use for communication. 

• EVs process the requests by matching them against the order books, and 

send the results to HRs. 

• HRs persistently store the results and notify EVs. 
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• Upon receiving acknowledgements from HRs, EVs notify GWs of trade 

completion. 

• Upon receiving acknowledgements from EVs, GWs notify the clients of 

trade completion. 

 
Each of the tiers has its own recovery mechanism, and working together, they 

make the entire system fault tolerant. We first briefly describe the recovery 

mechanism of GW and HR, and then in more detail the recovery mechanism of 

EV. The main focus of this paper is on EV recovery so we only mention GW and 

HR recovery briefly.  

GWs must persistently store every incoming trade request before they can 

notify clients of the reception of their requests and send the requests to the EVs. If 

a GW fails before persistently storing a request, the client would fail to receive an 

acknowledgement for the request and would thus know to resend the request. 

GWs typically employ DBMS in order to take advantage of DBMS fault tolerant 

features. File systems can also be used and may offer better performance but 

fewer features. 

HRs, like GWs, typically also employ DBMS. In order to improve 

performance, HRs may use “group commit” instead of committing every single 

trade individually. However, this raises the possibility that a group of trade results 

can be lost if a HR fails. This danger is guarded against by requiring that: (1) a HR 

cannot notify an EV of trade completion until all trade results in the group have 

been committed; and (2) an EV cannot notify a GW of trade completion until it 

has been notified by the HR. So in the event that a HR fails, the three tiers can 

coordinate to have the GWs replay those trades for which a trade completion was 

not received. DBMS failures can be minimized by using conventional techniques 

for highly available DBMS such as replication. 
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Let us now turn our attention to the fault tolerance of EVs. Today’s stock 

exchanges typically employ a primary-secondary architecture (not what is 

depicted in the diagram) that, at a high level, works as follows: 

 
• All incoming trade requests are sent to a primary EV, which also acts as 

the sequencer. 

• A secondary EV “eavesdrops” on the traffic between the EV and the HR in 

order to learn the ordering of trade requests and duplicate the primary 

EV’s processing. 

• In the event that the primary EV fails, the secondary EV initiates a 

recovery protocol to coordinate with the GWs and HRs and takes over as 

the primary. 

 
It is evident that with a primary-secondary architecture, from the time the 

primary EV fails until the time the secondary EV takes over, no trade request is 

being processed therefore causing disruption. Due to the fact that the secondary 

EV needs to first detect the failure of the primary EV, plus the time it takes to 

complete the recovery protocol, the disruption can be on the order of seconds. In 

today’s electronic stock exchange, EVs are typically processing trade requests at a 

rate of tens of thousands per second for one symbol and hundreds of thousands 

per second aggregated across all symbols. Thus, it is extremely costly for a stock 

exchange to have seconds of disruption. In fact, primary EV failure is one of the 

main causes of disruption in stock exchanges today. Our primary-primary 

architecture avoids this problem by transparently handling an EV failure without 

delays in normal processing. 

As illustrated in the architecture diagram, the overall system, at a high level, 

works as follows: 
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• Multiple primary EVs exist. We describe how our system works for two 

primary EVs. It can easily be extended to handle more primary EVs.  

• All incoming trade requests are sent to both primary EVs. 

• Both primary EVs process trade requests concurrently, using a sequencer 

to negotiate an ordering of trade requests agreed upon by both. 

• In the event that one of the primary EV fails, the other simply continues as 

if nothing happened. 

 
With the primary-primary architecture, one primary EV need not act upon the 

failure of the other; neither need it carry out a recovery protocol (as other 

components in the system will detect and restart the failed primary). The only 

“disruption” when one primary EV fails is that it may be processing several trade 

requests ahead of the other so the live EV will first “catch up” in processing those 

trade requests before new trade requests will be processed. 

A single EV can handle multiple stock symbols. While requests for a single 

stock symbol are processed sequentially, requests corresponding to different stock 

symbols can be processed concurrently using multiple threads or multiple 

processes. Each stock symbol on the EV has its own order book and is processed 

independently. For simplicity, our discussions and examples in Sections 3 and 4 

use one stock symbol on a pair of primary EVs. However, we have implemented 

multiple stock symbols on the same EV, and we provide performance results for 

multiple symbols in Section 6. 

It is also possible to scale the system further by having multiple pairs of 

primary EVs. The sequencer in our scheme does not adversely affect the 

scalability of the stock trading system since a different sequencer can be used for a 

different pair of primary EVs.  

 
 

 A, B C

EV1
AB EV1

C

primary 

A,B Csequencer 

A, B C

A, B B, C C, A 

EV1 EV2 EV3

primary 

A B C sequencer

primary 

EVB2PB

AB
P
 EVB2PB

C
P
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The diagram above shows two different ways in which our system can be 

scaled to multiple EVs.  In the figure on the left, each primary-primary pair 

processes the same set of symbols. Requests for symbols A, B, and C each 

consume close to 50% of the capacity of a node. Therefore, a maximum of two 

symbols can be processed on the same primary.  

By contrast, the figure on the right illustrates the fact that symbols can be 

distributed across primary nodes in a flexible fashion. It is not necessary to have 

two primaries that handle exactly the same set of symbols. The key requirement is 

to have each symbol handled by at least two primaries, e.g., EV1 and EV2 for 

symbol B, EV1 and EV3 for symbol A, etc.  It is not necessary for EV1 and  EV2 

(or EV1 and EV3) to both handle identical sets of symbols. This approach can 

allow more efficient utilization of processors and fewer primaries. In the example 

above, only three primary nodes are needed for the system on the right while the 

system on the left uses four primary nodes.   

Keen readers will notice that in our primary-primary architecture, the 

sequencer can potentially be a single point of failure. Key to our design is to 

handle failover of the sequencer transparently from the EVs. We achieve this by 

using a fault tolerant system for the sequencer. Our implementation uses fault-

tolerant IBM hardware called the Coupling Facility [4] that runs two sequencers 

simultaneously and handles failover transparently in case one of them fails. This 

logical “single reliable sequencer” view to a pair of EVs is important. If we had 

exposed multiple sequencers to the EVs, the EVs would have to explicitly manage 

the failover of the sequencers resulting in a more complex protocol. Handling 

sequencer failover transparently from the EVs allows us to design a total ordering 

algorithm that requires simple logic in the sequencer. As a result, the sequencer is 

well-suited to be efficiently implemented with a highly reliable system. 

A key reason the sequencer is fault tolerant is that the algorithm it uses is 

relatively simple and thoroughly tested.  When a more complicated component 
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such as an EV is implemented on fault-tolerant hardware, the component would 

still be susceptible to software failures.  It is also possible to implement the 

sequencer on fault-tolerant hardware such as HP NonStop (formerly Tandem) [1]. 

However, a key reason for using the coupling facility is the low latency 

communication that exists between EVs and the coupling facility.   

3. The Total Ordering Algorithm 

In the primary-primary architecture, all peer EVs must process incoming trade 

requests in exactly the same order. However, when multiple GWs multicast trade 

requests to multiple EVs, there is no guarantee that all EVs will receive the trade 

requests in the same order. Therefore, there must be a mechanism to work out a 

total ordering amongst all peer EVs. 

Our total ordering algorithm is applicable not just to our stock trading system 

but also to other scenarios in which multiple nodes which may receive messages 

in different orders need to agree on a total ordering for the messages; such 

algorithms have been referred to as total order broadcast and multicast algorithms 

[2]. Our total ordering algorithm employs a centralized sequencer as a rendezvous 

point for peer EVs to negotiate a total ordering for processing trade requests, 

regardless of how each individual EV sees its local ordering of incoming trade 

requests. The main difference between our algorithm and the traditional unicast-

broadcast and broadcast-broadcast [2] variants of fixed sequencer algorithms is 

that, as shown in the figure below, our algorithm involves no communication 

between the senders and the sequencer, only communication between the 

receivers and the sequencer. In an environment such as stock exchanges where the 

number of senders far exceeds the number of receivers, our algorithm is 

advantageous in terms of reducing the load on the sequencer. 

 
 
 

 sender 

sequencersequencersequencer

sender sender

unicast-broadcast our algorithmbroadcast-broadcast
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Another advantage of our algorithm is that the logic of generating the next 

sequence number is in the receivers rather than in the sequencer. As we can see in 

the detailed description of the algorithm below, the sequencer in our algorithm is 

essentially a shared-memory like passive entity that implements a compare-and-

swap like protocol. This further reduces the complexity of the sequencer. The 

simplicity makes it relatively easy to both analyze and test the sequencer for 

correctness; it also facilitates a very efficient and fault-tolerant implementation of 

the sequencer. 

A third advantage of our algorithm, compared to past algorithms in which the 

receiving nodes agree on a total ordering, is that our algorithm allows the system 

to progress at the speed of the fastest receiver and can proceed rapidly even in the 

presence of slow receivers. In many previous algorithms, multiple receivers must 

provide input before an ordering decision can be made [2]. A key problem with 

many multi-party agreement protocols is that they require some form of vote or 

action by all (or by a quorum) of parties, making them highly sensitive to response 

times.  A delay or failure to respond by a single party can slow down the entire 

system. The delays that these algorithms introduce are problematic for transaction 

processing systems with low latency requirements. We avoid these delays in our 

algorithm by immediately assigning a sequence number to the first correct request 

by a node asking for the sequence number. 

The use of a small amount of shared memory for communication between the 

nodes results in a considerably faster sequencer than algorithms which exchange 

messages between nodes such as those described in [2]. We quantify the overhead 

imposed by our sequencer in Section 6. 

The basic idea of our algorithm is simple: each EV competes to propose to the 

sequencer its own local ordering as the total ordering, and whichever gets to the 

sequencer first (the leader) wins. The losers (the followers) must shuffle their 

local ordering to conform to the leader. We use an example to illustrate the idea. 
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Assume two gateways, GW1 and GW2, are multicasting trade requests to two 

peer execution venues, EV1 and EV2. GW1 multicasts trade requests p0, p1, p2; and 

GW2 multicasts trade requests q0, q1, q2. Let’s further assume that EV1 sees the 

incoming trade requests as q0, q1, p0, p1, q2, p2 and EV2 sees the incoming trade 

requests as p0, p1, q0, p2, q1, q2. So initially, the local ordering at EV1 and EV2, and 

the total ordering at the sequencer are as follows (dashed box indicates received 

but not yet processed trade requests): 

 

 
 
 
 
 
 
 
We now show how EV1 and EV2 compete to negotiate a total ordering through 

the sequencer. At each step of the example, we will give the state of the local 

ordering at EV1 and EV2, and the total ordering at the sequencer. 

 

1. When EV1 receives q0, it proposes to the sequencer that it would like q0 to be 

processed at the 1st position of the total ordering. Similarly, when EV2 

receives p0, it proposes to the sequencer that it would like p0 to be processed at 

the 1st position of the total ordering. Assume EV1 gets to the sequencer first 

and wins (indicated by the arrowed line from EV1 to the sequencer). So the 

sequencer takes q0 at its 1st position and, when EV2 comes to propose p0, tells 

EV2 that its proposal is rejected and it should process q0 instead. So EV2 

shuffles q0 in front of p0, p1 (shown in bold font) to conform to EV1 (solid box 

indicates processed trade requests): 

 
 
 

 

q0 q1 p0 p1 q2 p2EV1

      sequencer

p0 p1 q0 p2 q1 q2EV2

q0 q1 p0 p1 q2 p2EV1

q0 p0 p1 p2 q1 q2

q0sequencer      

EV2
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2. After both EV1 and EV2 process q0, EV1 proposes q1 and EV2 proposes p0. 

Assume this time EV2 wins and the sequencer takes p0 at its 2nd position and 

tells EV1 to process p0 instead of q1. So EV1 shuffles p0 in front of q1 to 

conform to EV2: 

 
 
 
 
 
 
 
 

3. Assume that, after processing p0, EV2 wins in proposing both p1 and p2 for the 

3rd and 4th position of the total ordering. So when EV1 proposes q1, it is told to 

process p1 instead and has to shuffle p1 in front of q1 to conform to EV2: 

 
 
 
 
 
 
 
 

4. When EV1 proposes q1 after processing p1, it is told to process p2 instead and 

has to shuffle p2 in front of q1, q2 to conform to EV2: 

 
 
 
 
 
 
 
 
 
We can see that at this point, the local ordering on EV1 and EV2 are exactly the 

same. For processing q1 and q2, it doesn’t really matter which EV wins the 

q0 p0 q1 p1 q2 p2EV1

q0 p0 p1 p2 q1 q2

q0 p0     

EV2

sequencer

q0 p0 p1 q1 q2 p2EV1

q0 p0 p1 p2 q1 q2

q0 p0 p1 p2   

EV2

sequencer

q0 p0 p1 p2 q1 q2EV1

q0 p0 p1 p2 q1 q2

q0 p0 p1 p2   sequencer

EV2
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proposal. So the total ordering negotiated through the sequencer is: q0, p0, p1, p2, 

q1, q2. 

Because our algorithm allows the system to progress at the speed of the fastest 

EV, one EV may fall behind the leader by a significant amount. We must bound 

this “distance” between the leader and other EVs. Otherwise, if the leader fails, it 

will take too long for the followers to “catch up”, thus effectively causing a 

disruption. We solve this problem by limiting the amount of memory the 

sequencer uses to store total ordering numbers assigned. Instead of storing the 

entire history of total ordering numbers assigned such as [0, ∞], the sequencer will 

only store a fix-sized sliding window such as [n, n+100]. This means that when 

n+100 has been assigned to the leader, request n-1 will be removed. If the 

follower is behind the leader by more than 100 requests and tries to propose a 

request for n-1, the sequencer will notify the follower that it is too far behind and 

some action should be taken (e.g., kill the follower and restart a new one). 

A follower EV can typically catch up with the leader EV due to the fact that it 

does less processing than the leader EV; it can "observe" what the leader EV has 

done and can skip redundant processing. For example, when an EV sends a trade 

to the HR to be stored persistently, it needs to wait for a reply from the HR to 

confirm that the trade has indeed been stored persistently. This reply from the HR 

is multicast to all EVs. Therefore, a follower EV, while processing trade i, can 

"observe" that trade j (>i) has been stored persistently by the leader EV. 

Therefore, it doesn't need to send trades before j to HR for persistence. As another 

example, a leader EV will take a snapshot of its order book and send it to the HR 

to be stored persistently periodically. A follower EV can also "observe" that a 

leader EV has persistently stored a snapshot of the order book up to a certain trade 

and can skip doing that itself. 

To detect whether a trade request has been proposed and received a position in 

the total ordering, the sequencer does not need to check a list of trade requests. 
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Each transaction has a unique [gateway ID, gateway sequence number] pair. The 

gateway sequence number is a monotonically increasing number assigned by the 

gateway from which the request originates. Therefore, the sequencer only needs to 

check the highest gateway sequence number seen so far to detect any duplicates 

from that gateway. In addition, a hashing function can be used to quickly find out 

what total ordering number has been assigned to a request with this particular 

[gateway ID, gateway sequence number] pair. 

4. Non-Disruptive Failover 

There are two ways an EV can fail. One is what we call hard failure, where the 

EV completely stops processing trade requests due to hardware or software 

failure. Hard failure can be detected through conventional mechanisms such as 

heart beats and determining that the EV is not being responsive. The other is what 

we call soft failure, where the EV continues to process trade requests but, due to 

system load, etc., is falling behind the leader EV further and further. Soft failure is 

detected through the sliding window of requests maintained by the sequencer 

described at the end of the previous section. 

Regardless of how an EV fails, by the nature of our primary-primary 

architecture, other peer EVs continue unaffected. The only effect is that there is 

one fewer EV competing for the total ordering via the sequencer. Therefore, as 

long as there is still one working EV left, failure of one or more peer EVs causes 

no disruption at all to the processing of trade requests. 

However, this is only half of the high-availability story. When an EV fails, a 

new one must be started and synchronized with the working ones in order to 

maintain the level of availability. This process must also be done without any 

disruption to the working EVs. We now describe how this is accomplished. To 

keep the description simple and without loss of generality, our system consists of 

one GW, two EVs (EV1 and EV2), and one HR. Assume EV2 failed at some point 

and we start a new one. 
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(1) Assume, as shown in the figure above, when EV2 starts, EV1 has received 

trade requests up to k, and has processed trade requests up to j. Therefore, EV2 can 

receive all trade requests after k, but needs to recover all trade requests up to k. 

 
 
 
 
 
 
(2) Periodically, EV1 takes a checkpoint of its entire order book and sends it to 

the HR. Assume the last checkpoint EV1 took included trade requests up to i, as 

shown in the figure above. By asking HR for the latest checkpoint, EV2 can 

immediately recover all trades occurred up to i. Now it needs to recover trade 

requests between i and k. 

 
 
 
 
 
 
(3) For each trade request after j processed by EV1, a persistent storage request 

is sent to HR. The reply from HR, which includes a copy of the original trade 

request, is multicasted to both EV1 and EV2. Therefore, by “listening to” the reply 

from HR, EV2 can recover trade requests between j and k, as shown in the figure 

above. The only missing trade requests now are those between i and j. 
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(4) By asking HR for the hardened trade requests between i and j, EV2 can 

finally recover all missing trade requests, as shown in the figure above. It’s not 

difficult to see that the entire process causes no disruption to EV1. 

Note that the four steps above are how missing trades are recovered in parts 

and “stitched together”. They are not the order in which the missing trades are 

processed. All four steps actually happen concurrently. EV2 can start processing 

trades from i once it receives the checkpointed information. Recovered missing 

trades that are out of sequence are queued. 

5. Prototype Design and Implementation 

To verify the feasibility of our architecture, we have designed and 

implemented a prototype on the IBM zSeries eServer mainframe [3]. The reason 

for choosing the zSeries eServer is that the function of our sequencer is readily 

available with a special hardware called Cross-System Coupling Facility (XCF) 

[4], which allows high performance data sharing across different logical partitions 

(LPARs) of a single eServer or across multiple eServers. The key is to maintain 

the “single reliable sequencer” view to the EVs. 

The prototype consists of the following three functional components needed 
for a stock exchange: 

 
• GW, which generates trade requests for one or more stock symbols; 

• EV, which executes stock trading by maintaining in-memory state known 

as an order book for each stock symbol and matching incoming trade 

requests against the order book; 

• HR, which persistently stores information for all trades to a file system. 

Communications among GW, EV, and HR are through LLM (Low Latency 

Messaging) [5], which is an IBM product that provides reliable and ordered 

multicast and unicast messaging services. The message flow is depicted in the 

figure below (thin dashed lines indicate unicast messages, and thick dashed lines 

indicate multicast messages). 
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(1) Trade request from GW to EV, multicast 

(2) Persistent storage request from EV to HR, unicast 

(3) Persistent storage ack from HR to EV, multicast 

(4) Trade completion from EV to GW, unicast 

(5) Completion ack from GW to EV, multicast 

 
The functions of our sequencer are implemented through the list services 

provided by XCF, which allow applications to share data organized in a list 

structure. List entries can have ID, key, etc., and be kept in sorted order by certain 

attributes. For an EV to propose a total ordering number for a trade request, it 

simply asks XCF to create a list entry with [ID=total ordering number, key=trade 

request]. Using the sample example in section 3, 

• EV1 attempts to create an entry [ID=0, key=q0] 

• EV2 attempts to create an entry [ID=0, key=p0] 

• EV1 gets to XCF first so entry [ID=0, key=q0] is created successfully 

• EV2 gets to XCF next and is informed an entry with ID=0 already exist 

and its current key=q0 

Essentially, the list services allow peer EVs to implement a “compare-and-

swap” protocol to support the total ordering algorithm. The protocol is simple and 

only requires one trip to XCF. 

In our primary-primary architecture, the HR will receive duplicated requests 

from the primary EVs to persistently store the trading information. This is easily 

handled by the monotonically increasing sequence numbers. The HR records the 

highest sequence number that has been persistently stored. It ignores any requests 

having a smaller or equal sequence number. The overhead introduced by this  
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approach is very small. In the next section, we will present the experimental 

results of our prototype. 

6. Experimental Results 

Our experiments are conducted on an IBM zSeries eServer mainframe model 

z990 [3] with a total of 32 1.2GHz CPUs and 256GB memory. Each GW, EV, and 

HR runs in its own LPAR with dedicated CPUs and memory. LPAR is a way to 

virtualize hardware resources such that each partition functions as if it were an 

independent physical machine while transparently sharing hardware resources. In 

our experiments, each GW and HR has 2 CPUs and 2GB memory, and each EV 

has 4 CPUs and 4GB memory. All the LPARs are running z/OS version 1.8, 

IBM’s proprietary mainframe OS. Connectivity among the tiers is through 

HiperSockets [6], which is a direct memory-to-memory copy between two LPARs 

that involves no actual network interface and provides much better performance 

than Gigabit Ethernet. The link between EV and XCF is a special fiber optic link 

called Integrated Cluster Bus (ICB) with speed up to 2GB per second [3]. Our 

testbed is depicted in the diagram below. Note that in our experiments, without 

loss of generality, we did not use separate clients but rather have the GWs 

generate trades directly. 

 
Figure 2: Prototype Testbed 
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6.1. High Availability Characteristics 

We first present the non-disruptive availability results that show the strength of 

our primary-primary architecture. A checkpoint of EV in-memory state 

information is sent to the HR periodically. The checkpoint interval is controllable 

via a tunable parameter. In these experiments, the EVs take a checkpoint after 

every 1024 requests are processed. There is a tradeoff between checkpoint 

overhead and recovery time after a failure (presented next). The more frequently 

we checkpoint, the higher the overhead but the shorter the recovery time. One way 

to mitigate the checkpoint overhead is, instead of saving the entire state, to only 

save the state differences between the two checkpoints. Our prototype saves the 

entire state for simplicity. In our tests, we observed that the typical size of the EV 

in-memory state is about several hundred kilobytes. At the chosen checkpoint 

interval of every 1024 requests, the checkpoint overhead in our tests is negligible. 

 
Figure 3: Availability Test 

Figure 3 shows one GW sending trade requests to two EVs at a throughput of 

roughly 5000 requests per second. Each request is to either buy or sell a certain 

number of shares of a stock symbol. Half of the requests are buy orders, while the 

other half are sell orders. After about 30,000 requests, EV2 fails. After about 

50,000 requests, EV2 is restarted; it then synchronizes with EV1 and resumes 
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processing as before. We can see that during the entire period, EV1 continues to 

process the trade requests at roughly 5000 requests per second as if nothing 

happened. The throughput for EV1 and EV2 closely overlap except during the 

failure and recovery period for EV2.By contrast, using the existing primary-

secondary approach, a failure of the primary may incur a disruption on the order 

of seconds due to the time to detect failure and the time for the secondary to take 

over. 

We now show how long it takes for a newly started EV to synchronize with a 

live EV non-disruptively in the middle of trade processing. Synchronization time 

is the duration from when a new EV is started until it recovers the states of all 

symbols (as described in section 4) and becomes fully operational. Figure 4 shows 

the synchronization time of a GW sending trade requests of a single stock symbol 

to two EVs at different throughput. We can see that the synchronization times for 

all the cases are under 5 milliseconds. 

 
Figure 4: Sync time, 1 symbol 

Figure 5(a) and 5(b) show the synchronization time of a GW sending trade 

requests of 10 stock symbols to two EVs at throughputs of 1000 and 9000 

requests per second. For a throughput of 1000 requests per second, 

synchronization times for each of the 10 symbols are under 30 milliseconds; the 

total synchronization time for all 10 symbols is under 35 milliseconds. For a 
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throughput of 9000 requests per second case, synchronization times for each of 

the 10 symbols are under 700 milliseconds; the total synchronization time for all 

10 symbols is about 800 milliseconds. Since different symbols are recovered 

concurrently, the total synchronization time is only slightly more than the 

individual symbol synchronization time. 

 
Figure 5(a): Sync time, 10 symbols, 1 GW, 1000 rqsts/s 

 
Figure 5(b): Sync time, 10 symbols, 1 GW, 9000 rqsts/s 
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Figure 5(c): Sync time, 10 symbols, 4 GWs, 1000 rqsts/s 

Figure 5(c) shows the synchronization time of 4 GWs sending trade requests of 

10 symbols to two EVs at a throughput of 1000 messages per second. We see that 

there is much more variation in the synchronization time from symbol to symbol, 

ranging from 30 to 121 milliseconds. The variation is due to the fact that with 4 

GWs, the chance of symbols coming to each EV with a different ordering is much 

higher. The total synchronization time for all 10 symbols is about 150 

milliseconds. We remind the readers that for all the cases, there is no disruption to 

the live EV during the synchronization. 

Another important property of our system (or any primary-primary system for 

that matter) is the progress difference between the EVs when processing requests. 

Even though there is no disruption when one of the EV fails, if the failed EV is the 

leader, the follower EV does need to make up the gap between the two before new 

requests can be processed. Therefore, the gap determines the slight delay before 

new requests can be processed when a leader EV fails. Obviously, this delay 

cannot be too large. Otherwise, the delay essentially causes a disruption. 
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Figure 6: Progress difference between two EVs 

We measure the processing speed difference between two EVs at different 

throughput and the results are shown in Figure 6. The tests are done with trade 

results being persistently stored on the HR to be realistic. The figure shows the 

difference of the total ordering sequence number of processed requests on the two 

EVs sampled every 5 seconds during a period of roughly 2 minutes. A positive bar 

means EV1 is ahead of EV2 by that many processed requests, while a negative bar 

means the opposite. When no bar appears at a time mark, it means the two EVs 

are processing a request with exactly the same sequence number. Note that the 

two EVs take turns being the leader. This is a nice property since this means that 

only 50% of the time there will be a delay in processing new requests when an EV 

fails, assuming each EV has an equal chance to be a leader. We also observe that 

at throughput 9000 requests/second, the largest gap is about 21 requests at 100th 

second. This means that if the leader failed, the delay incurred by the follower’s 

making up the gap of 21 requests would be roughly 2.3 milliseconds. 

We also present the maximum and average gap in requests processed between 

two EVs over a long period of time to give a sense of how synchronized the two 

EVs are over time. Table I shows the numbers for a period of 30 minutes with a 

sampling interval of 5 seconds. Max. Gap and Avg. Gap are the maximum and 

average total ordering sequence number difference between the two EVs. Max. 
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Delay and Avg. Delay are the time needed for a follower to make up the gap in 

case the leader fails. Note that for throughput of 5000, Max. Delay and Avg. 

Delay are obtained by dividing Max. Gap and Avg. Gap by 9000, not 5000, 

respectively. This is because 9000 is the maximum processing rate of the EVs 

(reason explained in section 6.2 below), while 5000 is the incoming rate. 

 
Throughput 

(msgs/sec) 
Max. 

Gap (msgs) 
Max. 

Delay (ms) 
Avg. 

Gap (msgs) 
Avg. 

Delay (ms) 
5000 57 6.3 3 0.3 
9000 81 9.0 7 0.8 

Table 1.  Maximum and Average Gap over Time 

 
The numbers in Figure 6 and Table 1 indicate that the two EVs stay closely 

synchronized. This is a key reason why failure of one EV causes no disruption in 

processing the requests. 

6.2. Throughput and Latency Characteristics 

Since end-to-end latency within the system (simply referred to as latency 

hereafter), which is from the time when a GW sends a trade request to the EVs to 

the time when the GW receives a trade completion notification from the EV, is 

one of the key performance measurements, we also present a variety of latency 

related measurements. These measurements show that our prototype can meet 

performance standards required by stock exchanges. Typically, today’s stock 

exchanges require that the latency be less than ten milliseconds. 

We first measure the overhead of our total ordering algorithm (sequencer) 

which uses the XCF. We compare the latency at different throughput with 1 

symbol, 1 GW, and 2 EVs. In our implementation, messages from a single GW 

will be sent to EVs in the same order (although our architecture is capable of 

handling situations when this is not the case). Thus, with only one GW, agreeing 

on a total ordering is not necessary so we can turn off the sequencer (implemented 
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by the XCF) to make the comparison. The “no XCF” case is logically equivalent 

to the traditional primary-secondary approach. Therefore, it provides a 

comparison of our approach to the traditional primary-secondary approach. In 

Figure 7(a) we make the comparison without persistently storing the trade results 

by HR to further isolate the XCF overhead. In Figure 7(b) we make the 

comparison while persistently storing the trade results by HR to show that this 

does not affect the XCF overhead. We can see that in both figures, our total 

ordering algorithm going through XCF adds very little overhead, at most 1.35 

milliseconds (at 9000 requests per second with persistent storage). 

The efficiency of our algorithm for ordering transactions is a critically 

important factor for achieving good performance.  Another key factor is the low 

communication latency between EVs and the XCF. 

A single EV can handle throughputs up to 9000 requests per second before the 

response time becomes unacceptably high. z/OS has a component called USS 

(Unix System Services) which implements a certified UNIX (XPG4 UNIX95) 

environment that makes porting programs written for UNIX to z/OS much easier. 

In fact, the reliable multicast messaging service LLM we used in our prototype is 

written for UNIX and not supported by z/OS. So we have ported it to USS, and 

our prototype runs on top of LLM in the USS environment. This convenience, 

however, comes at a performance cost. Due to context switching overhead 

resulting from LLM, 9000 requests per second is the highest throughput we can 

achieve. It is possible to add more processors to an EV in order to get higher 

throughput rates. 
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Figure 7(a): Latency w/o persistent storage, 1 symbol 

 
Figure 7(b): Latency with persistent storage, 1 symbol 

We then measure the scaling behavior of our total ordering algorithm in terms 

of the number of stock symbols. We repeat the same measurements in Figure 7(a) 

and 7(b) with 10 symbols, one GW, and two EVs; the results are shown in Figure 

8(a) and 8(b). As shown in the figures, the XCF overhead increased marginally 

(typically fewer than 100 microseconds) for all throughputs except 9000, at which 

point the overhead is 1.23 milliseconds without persistent storage and 1.38 

milliseconds with persistent storage. 
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Figure 8(a): Latency w/o persistent storage, 10 symbols 

 
Figure 8(b): Latency with persistent storage, 10 symbols 

Next we plot the latency distribution for one particular configuration to check 

and make sure that the average latency numbers in figures 7(a) through 8(b) are 

indeed representative. A latency histogram over 20,000 requests for 1 GW 

sending trade requests for one symbol to two EVs at 1000 requests per second is 

shown in Figure 9(a), and the same measurement for 10 symbols is shown in 

Figure 9(b). Note that in Figure 9(b), we only show a histogram for one of the 10 

symbols as the others are quite similar. The bars marked “persist” correspond to 

storing the results persistently. For both cases, the majority of the latency numbers 
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are 1.0 and 1.1 milliseconds with an average between 1.25 and 1.28 milliseconds 

(not shown). 

 

 
Figure 9(a): Latency histogram, 1 symbol 

 
Figure 9(b): Latency histogram, 10 symbols 

Finally, we measure the latency with 2 GWs sending trade requests for one or 

ten symbols at different throughputs. Note that with two GWs, total ordering must 

be turned on so there are no measurements for “no XCF”. The results are shown 

in Figure 10(a) and 10(b). 

 

 31



 
Figure 10(a): Latency with 2 GWs, 1 symbol 

 
Figure 10(b): Latency with 2 GWs, 10 symbols 

The latency numbers with two GWs are fairly similar to those with one GW, 

except at the throughput 9000 requests per second. At this throughput and one 

symbol, latency increased from 2.77 to 3.51 milliseconds without persistent 

storage (27% increase), and from 3.73 to 5.01 milliseconds with persistent storage 

(34% increase); with 10 symbols, latency increased from 5.36 to 11.02 

milliseconds without persistent storage (106% increase), and from 6.44 to 13.02 

milliseconds with persistent storage (102% increase). These numbers reflect the 

fact that with increasing throughput and number of symbols, the chance of the two 

EVs receiving messages from the two GWs in a different order increases; 
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therefore, processing time increases due to the need for the EVs to shuffle their 

queues. 

7. Related Work 

Schneider [18] describes achieving fault tolerant state machines via 

replication; conceptually, this is a primary-primary approach. However, in order 

to achieve total ordering, the three algorithms proposed are of a general nature. 

Logical and real clock based algorithms require clock stability tests, while replica-

generated unique identifiers require a second disseminating phase. None of the 

three algorithms are wait-free. 

Several high availability cluster solutions exist in which a back-up node can 

take over for a primary node after the primary node has been determined to have 

failed. Examples include HACMP from IBM [7], the Microsoft Cluster Service 

[8], and HA-Linux [9]. There can be considerable delays in processing resulting 

from both detecting the node failure and transferring control to the back-up node. 

Our primary-primary architecture avoids these delays. 

The Swiss Exchange system in the 1996-98 timeframe is discussed in [10]. 

This exchange uses a primary-secondary architecture unlike our primary-primary 

architecture. 

A number of total ordering protocols using sequencers have been proposed 

before. Chang [23] is the earliest work we are aware of that proposes a token 

based sequencer scheme for totally ordered broadcast. The approach uses a 

moving sequencer scheme with a token circulating among a list of receivers to 

avoid single point sequencer failures. Kaashoek [25] and an early version of ISIS 

[13] both use a fixed sequencer without a token. A later version of ISIS [24] uses 

a fixed sequencer with a token being held by either a sender or a receiver. Totem 

[22] and Horus [26] both use a moving sequencer with a token circulating among 

a list of senders. They are also known as privilege based protocols since a sender 

can only broadcast when it is granted the privilege to do so, i.e., holding the token. 
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Guerraoui [27] uses a fixed sequencer with backup. The difference between a 

fixed sequencer with backup and a moving sequencer is that the former does not 

move the sequencer during normal operation. Guerraoui [27] also differs from 

previous work in that all nodes are placed in a logical ring for the actual message 

delivery. Unlike our protocol, all these past approaches are distributed protocols 

using message passing without shared memory and are substantially more 

complex than our protocol. 

A comprehensive survey of total order broadcast and multicast algorithms is 

contained in [2]. Our approach has conceptual similarity to the “Destinations 

Agreement Algorithms” summarized in this paper [13, 14, 15, 16]. A key 

difference of our sequencing algorithm is that nodes communicate using a small 

amount of shared memory resulting in faster communication than the previous 

algorithms which use message passing. Another key difference is that our 

sequencing algorithm can progress at the speed of the fastest receiving node. The 

previous algorithms generally require a consensus to be formed among multiple 

nodes which means that slow nodes can delay the process. 

Sinfonia [20] describes a service that allows distributed applications to share 

data in a fault-tolerant, scalable, and consistent manner, hiding much of the 

complexity of designing and implementing distributed protocols with message 

passing. On top of Sinfonia, various distributed services such as SinfoniaGCS, a 

group communication service with total ordering, can be built. Even though 

SinfoniaGCS is designed to be simpler and more efficient than the more complex 

protocols surveyed in [2], it is still substantially more complex than our total 

ordering algorithm. 

Herlihy [19] (and others) have described various algorithms for constructing 

universal consensus wait-free data structures such as queues, heaps, stacks, etc., 

using primitives such as compare-and-swap. A wait-free total ordering algorithm 

can indeed be designed using these data structures. However, we do not need 
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these data structures for our application. A simple compare-and-swap is all that is 

needed to achieve total ordering for our stock trading application. This makes our 

protocol simple and quite efficient. 

Narasimhan [21] describes the Eternal system that provides transparent fault 

tolerance for CORBA applications through active or passive replication. It 

employs the Totem [22] for its total ordering messaging service. As we mentioned 

earlier in this section, Totem is one of several sequencer based protocols which 

have been proposed and is substantially more complex than our total ordering 

algorithm due to its distributed nature. 

A Web-based financial trading system designed to handle bundle orders is 

described in [17]. The paper does not address how to handle high availability and 

recover from failures. 

Considerable work has been done in the area of Byzantine fault tolerance [11, 

12]. Our system is not prone to the same types of failures that Byzantine fault-

tolerant systems are prone to. As a result, our system incurs significantly less 

overhead. 

8. Conclusion 

This paper has presented a highly available system for stock trading. Our 

system uses multiple primary nodes so that if one primary node fails, the 

remaining one (s) can keep executing without disruption. Experimental results 

show that our system can handle failure of a primary node without affecting the 

performance of the other primary node. We also implemented a recovery 

algorithm which allows a failed primary to be restarted and to catch up with a 

running primary relatively quickly. 

Our system uses a new algorithm for determining a common order for 

processing transactions to buy and sell stocks or other commodities. This 

algorithm adds little overhead and is a critical component in achieving good 

performance. Average latencies for processing transactions in our system are 
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significantly below ten milliseconds, a threshold end-to-end latency considered 

acceptable by many electronic exchanges. 

We are continuing this work in a number of ways. We are enhancing our 

system to handle bundled trades in which multiple stock symbols are traded in a 

single atomic transaction. This can require locking multiple EVs concurrently. A 

key challenge is to reduce locking enough to maintain high transaction rates for 

bundled trades. We are also looking at other ways to exploit the coupling facility 

(which was used to implement the sequencer) for other coordinating functions in 

transaction processing. 

Acknowledgment 

The authors would like to thank our colleagues Francis Parr and Paul Dantzig 

for their helpful discussions and constructive comments regarding this work. 

References 

[1] HP Integrity NonStop Computing, Hewlett-Packard, 

http://en.wikipedia.org/wiki/Tandem_Computers 

[2] X. Defago, A. Schiper, and P. Urban, “Total Order Broadcast and 

Multicast Algorithms: Taxonomy and Survey”, ACM Computing Surveys, 

Vol. 36, No. 4, December 2004, pp. 372-421. 

[3] IBM Redbook, “IBM eServer zSeries 990 Technical Guide”, May 2004. 

http://www.redbooks.ibm.com/abstracts/sg246947.html?Open 

[4] IBM Redbook, “z/OS Parallel Sysplex Configuration Overview”, 

September 2006. 

http://www.redbooks.ibm.com/abstracts/sg246485.html?Open 

[5] LLM WebSphere MQ Low Latency Messaging, 

http://www.ibm.com/software/integration/wmq/llm 

[6] IBM Redbook, “HiperSockets Implementation Guide”, March 2007. 

http://www.redbooks.ibm.com/abstracts/sg246816.html?Open 

 36



[7] HACMP High Availability Cluster Multiprocessing Best Practices, IBM 

Corporation, January 2008. 

ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/psw03025gben/PSW03025

GBEN.PDF 

[8] W. Vogels et al, “The Design and Architecture of the Microsoft Cluster 

Service”, Proceedings of the 28th Annual International Symposium on 

Fault-Tolerant Computing, 1998. 

[9] Linux-HA, http://www.linux-ha.org/ 

[10] X. Defago, K. Mazouni, A. Schiper, “Highly Available Trading System: 

Experiments with CORBA”, Proceedings of Middleware ’98. 

[11] L. Lamport, R. Shostak, M. Pease, "The Byzantine Generals Problem", 

ACM Transactions on Programming Languages and Systems, Vol. 4 no. 3, 

July 1982. 

[12] M. Castro, B. Liskov, "Practical Byzantine Fault Tolerance", Proceedings 

of OSDI 1999, New Orleans, February 1999 

[13] K. Birman, T. Joseph, “Reliable communication in the presence of 

failures”, ACM Transactions on Computer Systems, vol. 5 no. 1, February 

1987. 

[14] S.-W Luan, V. D. Gligor, “A fault-tolerant protocol for atomic broadcast”, 

IEEE Transactions on Parallel and Distributed Systems, vol. 1 no. 3, July 

1990. 

[15] T. D. Chandra, S. Toueg, “Unreliable failure detectors for reliable 

distributed systems”, Journal of the ACM, vol. 43 no. 2. 

[16] L. T. Rodrigues, M. Raynal, “Atomic broadcast in asynchronous crash-

recovery distributed systems”, Proceedings of ICDCS 2000. 

[17] M. Fan, J. Stallaert, A. Whinton, “A Web-Based Financial Trading 

System”, IEEE Computer, April 1999. 

 37

http://www.linux-ha.org/


[18] F. B. Schneider, “Implementing Fault-Tolerant Services Using the State 

Machine Approach: A Tutorial”, ACM Computing Surveys, vol. 22, no. 4, 

December 1990, pp. 299-319. 

[19] M. Herlihy, “Wait-free synchronization”, ACM Transactions on 

Programming Languages and Systems, vol. 13, no. 1, 1991, pp. 124-149. 

[20] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis, 

“Sinfonia: a new paradigm for building scalable distributed systems”, 

Proceedings of SOSP 2007. 

[21] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith, “State 

Synchronization and Recovery for Strongly Consistent Replicated CORBA 

Objects”, Proceedings of DSN 2001. 

[22] L. E. Moser, P.M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, C. A. 

Lingley-Papadopoulis, and T. P. Archambault, “The Totem system", 

Proceedings of the 25th International Symposium on Fault-Tolerant 

Computing, pp. 61–66, 1995. 

[23] J. M. Chang and N. F. Maxemchuk. "Reliable broadcast protocols", ACM 

Trans. Computer Systems, 2(3), August 1984, pp. 251-273. 

[24] K. Birman, A. Schiper, and P. Stephenson, "Lightweight Causal and 

Atomic Group Multicast, ACM Transactions on Computer Systems, Vol. 

9, No. 3, August 1991, pp. 272-314. 

[25] M. F. Kaashoek, “Group Communication in Distributed Computer 

System”, Ph.D thesis, Centrale Huisdrukkerij Vrije Universiteit, 

Amsterdam, 1992. 

[26] R. van Renesse, K. Birman, and S. Maffeis, "Horus : a flexible group 

communication system", Communications of the ACM, Vol. 39, No. 4, 

April 1996, pp. 76-83. 

 38



[27] R. Guerraoui, R. R. Levy, B. Pochon, and V. Quema, "High Throughput 

Total Order Broadcast for Cluster Environments", Proceedings of the 

International Conference on Dependable Systems and Networks, pp. 549-

557,Philadelphia, PA, USA, 2006. 

 

 39


	1. Introduction
	2. System Architecture
	2.1. Traditional Primary-Secondary Architecture
	2.2. Our Primary-Primary Architecture

	3. The Total Ordering Algorithm
	4. Non-Disruptive Failover
	5. Prototype Design and Implementation
	6. Experimental Results
	6.1. High Availability Characteristics
	6.2. Throughput and Latency Characteristics

	7. Related Work
	8. Conclusion

