
1

Enhanced Clients for Data Stores and Cloud
Services

Arun Iyengar, Fellow, IEEE

Abstract—Data stores and cloud services are typically accessed using a client-server paradigm wherein the client runs as part of an
application process which is trying to access the data store or cloud service. This paper presents the design and implementation of
enhanced clients for improving both the functionality and performance of applications accessing data stores or cloud services. Our
enhanced clients can improve performance via multiple types of caches, encrypt data for providing confidentiality before sending
information to a server, and compress data for reducing the size of data transfers. Our clients can perform data analysis to allow
applications to more effectively use cloud services. They also provide both synchronous and asynchronous interfaces. An
asynchronous interface allows an application program to access a data store or cloud service and continue execution before receiving
a response which can significantly improve performance.
We present a Universal Data Store Manager (UDSM) which allows an application to access multiple different data stores and provides
a common interface to each data store. The UDSM also can monitor the performance of different data stores. A workload generator
allows users to easily determine and compare the performance of different data stores.
We also present NLU-SA, an application for performing natural language understanding and sentiment analysis on text documents.
NLU-SA is implemented on top of our enhanced clients and integrates text analysis with Web searching. We present results from
NLU-SA on sentiment on the Web towards major companies and countries. We also present a performance analysis of our enhanced
clients.

Index Terms—data store client, database client, cloud service client, cognitive service client, Web service client, caching, client
caching, sentiment analysis.

F

1 INTRODUCTION

Data stores are typically accessed using a client-server
paradigm in which clients run as part of an application
program and communicate with data store servers. Cloud
services are accessed using a similar client-server paradigm.
There is often little support provided for data store and
cloud service clients. It is incumbent on application writers
to provide features beyond the basics. This paper addresses
the problem of providing enhanced clients for data stores
and cloud services which improve both functionality and
performance.

A broad range of data stores are currently available
including SQL (relational) databases, NoSQL databases,
caches, and file systems. An increasing number of data
stores are available on the cloud and through open source
software. There clearly is a need for software which can
easily provide access to multiple data stores as well as
compare their performance. One of the goals of this work
is to address this need.

A second goal of this work is to improve data store
performance. Latencies for accessing data stores are often
high. Poor data store performance can present a critical
bottleneck for users. For cloud-based data stores where
the data is stored at a location which is distant from the
application, the added latency for communications between
the data store server and the applications further increases

• Arun Iyengar is with IBM’s T.J. Watson Research Center, Yorktown
Heights, NY, 10598

data store latencies [1], [2]. Techniques for improving data
store performance such as caching are thus highly desirable.

A related issue is that there are benefits to keeping
data sizes small; compression can be a key component for
achieving this. Client-based compression is important since
not all servers support compression. Even if servers have
efficient compression capabilities, client-side compression
can still improve performance by reducing the number of
bytes that need to be transmitted between the client and
server. In cloud environments, a data service might charge
based on the size of objects sent to the server. Compressing
data at the client before sending the data to the server can
save clients money in this type of situation.

A third goal of this work is to help applications more
effectively use cloud services which are not necessarily data
stores, such as natural language processing services. Our
work can improve both the functionality and performance
of these types of applications.

A fourth goal of this work is to provide data confi-
dentiality as it is critically important to many users and
applications. Giving users the means to encrypt data may
be essential either because a data store lacks encryption
features or data is not securely transmitted between the
application and data store server. For certain applications,
encryption at the client is a necessity as the data store
provider simply cannot be trusted to be secure. There have
been many serious data breaches in recent years in which
confidential data from hundreds of millions of people have
been stolen. Some of the widely publicized data breaches
have occurred at the US government, Equifax, Yahoo!, An-
them, Democratic National Committee, eBay, Home Depot,

2

Cloudant Server
Object Storage

Server
OpenStack API

Cassandra Server

Cloudant
client

Object
Storage
client

Cassandra
Client

Fig. 1: Data stores are typically accessed using clients. This
work focuses on enhancing the functionality of clients.

JP Morgan Chase, Sony, and Target.
Data stores are often implemented using a client-server

paradigm in which a client associated with an application
program communicates with one or more servers using a
protocol such as HTTP (Figure 1). Clients provide interfaces
for application programs to access servers. Some but not
all data stores are cloud-based. This paper focuses on pro-
viding multiple data store options, improving performance,
and providing data confidentiality by enhancing data store
clients. We also provide enhanced clients for cloud services
which are not necessarily data stores. No changes are re-
quired to servers or cloud services. That way, our techniques
can be used by a broad range of data stores and cloud
services. Requiring changes to a server or cloud service
would entail significantly higher implementation costs and
would seriously limit the number of data stores and cloud
services our techniques could be applied to.

We present architectures and implementations of clients
which provide enhanced functionality such as caching,
encryption, compression, asynchronous (nonblocking) in-
terfaces, and performance monitoring. We also present a
universal data store manager (UDSM) which gives appli-
cation programs access to a broad range of data store
options along with the enhanced functionality for each data
store. Caching, encryption, compression, and asynchronous
(nonblocking) interfaces are essential; users would benefit
considerably if they become standard features of data store
clients. Unfortunately, that is not the case today. Research in
data stores often focuses on server features with inadequate
attention being paid to client features.

The use of caching at the client for reducing latency is
particularly important when data stores are remote from
the applications accessing them. This is often the case when
data is being stored in the cloud. The network latency
for accessing data at geographically distant locations can
be substantial [3]. Client caching can dramatically reduce
latency in these situations. With the proliferation of cloud
data stores that is now taking place, caching becomes in-
creasingly important for improving performance.

Our enhanced data store clients and UDSM are archi-
tected in a modular way which allows a wide variety of
data stores, caches, encryption algorithms, and compression
algorithms. Widely used data stores such as Cloudant (built
on top of CouchDB), OpenStack Object Storage, and Cassan-
dra have existing clients implemented in commonly used
programming languages. Popular language choices for data
store clients are Java, Python, and Node.js (which is actually

a JavaScript runtime built on Chrome’s V8 JavaScript en-
gine). These clients handle low level details such as commu-
nication with the server using an underlying protocol such
as HTTP. That way, client applications can communicate
with the data store server via method (or other type of
subroutine) calls in the language in which the client is
written. Examples of such clients include the Cloudant Java
client [4], the Java library for OpenStack Storage (JOSS) [5],
and the Java Driver for Apache Cassandra [6] (Figure 1).

The UDSM is built on top of existing data store clients.
That way, we do not have to re-implement features which
are already present in an existing client. The UDSM allows
multiple clients for the same data store if this is desired.

It should be noted that client software for data stores is
constantly evolving, and new clients frequently appear. The
UDSM is designed to allow new clients for the same data
store to replace older ones as the clients evolve over time.

A key feature of the UDSM is a common key-value inter-
face which is implemented for each data store supported by
the UDSM. If the UDSM is used, the application program
will have access to both the common key-value interface
for each data store as well as customized features of that
data store that go beyond the key-value interface, such as
SQL queries for a relational database. If an application uses
the key-value interface, it can use any data store supported
by the UDSM since all data stores implement the interface.
Different data stores can be substituted for the key-value
interface as needed.

The UDSM and enhanced clients provide a synchronous
(blocking) interface to data stores and cloud services for
which an application will block while waiting for a response
to a request. They also provide an asynchronous (nonblock-
ing) interface to data stores and cloud services wherein an
application program can make a request and not wait for the
request to return a response before continuing execution.
The asynchronous interface is important for applications
which do not need to wait for all data store or cloud service
operations to complete before continuing execution and can
often considerably reduce the completion time for such
applications.

Most existing data store clients only provide a syn-
chronous interface and do not offer asynchronous opera-
tions on the data store. A key advantage to our UDSM is
that it provides an asynchronous interface to all data stores
it supports, even if a data store does not provide a client
with asynchronous operations on the data store.

The UDSM also provides monitoring capabilities as well
as a workload generator which allows users to easily deter-
mine the performance of different data stores and compare
them to pick the best option.

While caching can significantly improve performance,
the optimal way to implement caching is not straightfor-
ward. There are multiple types of caches currently available
with different performance trade-offs and features [7], [8],
[9], [10], [11]. Our enhanced clients can make use of multiple
caches to offer the best performance and functionality. We
are not tied to a specific cache implementation. As we de-
scribe in Section 3, it is important to have implementations
of both an in-process cache as well as a remote process cache
like Redis [7] or memcached [8] as the two approaches are
applicable to different scenarios and have different perfor-

3

mance characteristics. We provide key additional features on
top of the base caches such as expiration time management
and the ability to encrypt or compress data before caching
it.

The way in which a cache such as Redis is integrated
with a data store to properly perform caching is key to
achieving an effective caching solution. We have developed
three types of integrated caching solutions on top of data
stores. They vary in how closely the caching API calls are
integrated with the data store client code. We discuss this
further in Section 3.

Our paper makes the following key contributions:

• We present the design and implementation of en-
hanced data store clients which improve perfor-
mance and security by providing integrated caching,
encryption, and compression. We have written a
library for implementing enhanced data store clients
and made it available as open source software [12].
This is the first paper to present caching, encryption,
and compression as being essential features for data
store clients and to describe in detail how to imple-
ment these features in data store clients in a general
way. Our enhanced data store clients are being used
by IBM customers.

• We have generalized our enhanced clients to sup-
port applications using cloud services which are not
necessarily data stores. An open source version of
our enhanced clients for supporting cloud services
such as IBM’s Natural Language Understanding is
available [13] and is being used by customers. We
are not aware of any other software which provides
similar functionality.

• We present NLU-SA, an application for performing
natural language understanding and sentiment anal-
ysis on text documents. NLU-SA is implemented
on top of our enhanced clients and integrates text
analysis with Web searching. We also provide new
results on sentiment for major companies and coun-
tries expressed on the Web which were collected by
NLU-SA. We are not aware of any other software
which provides the same functionality as NLU-SA.
Furthermore, the results on sentiment analysis that
we report from using NLU-SA are novel.

• We present the design and implementation of a
universal data store manager (UDSM) which allows
application programs to access multiple data stores.
The UDSM allows data stores to be accessed with
a common key-value interface or with an interface
specific to a certain data store. The UDSM provides
the ability to monitor the performance of different
data stores as well as a workload generator which
can be used to easily compare the performance of
data stores. The UDSM also has features provided by
our enhanced clients so that caching, encryption, and
compression can be used to enhance performance
and security for all of the data stores supported by
the UDSM. The UDSM provides both a synchronous
(blocking) and asynchronous (nonblocking) interface
to all data stores it supports, even if a data store
fails to provide a client supporting asynchronous op-

Enhanced Data Store Client

Enhanced Client

Application Program

Encryption
Module

Compression
Module

In-process
cache

Remote process
cache

Data Store Server

Fig. 2: Enhanced data store client.

erations on the data store. Asynchronous interfaces
are another commonly ignored feature which should
become a standard feature of data store clients. The
UDSM is available as open source software [14] and
is being used by IBM customers. We are not aware of
any other software which provides the full function-
ality of our UDSM or is designed the same way.

• We present key issues that arise with client-side
caching and offer multiple ways of implementing
and integrating caches with data store clients.

• We present performance results from using our en-
hanced clients and UDSM. The results show the high
latency that can occur with cloud-based data stores
and the considerable latency reduction that can be
achieved with caching. The latency from remote
process caching can be a problem and is signifi-
cantly higher than latency resulting from in-process
caching. We also quantify the performance gains that
can be achieved using asynchronous interfaces.

The remainder of this paper is structured as follows.
Section 2 presents the overall design of our enhanced clients
and UDSM. Section 3 presents some of the key issues
with effectively implementing client-side caching. Section 4
presents NLU-SA, an application we have written on top
of our enhanced clients which performs natural language
understanding and sentiment analysis. Section 5 presents
a performance evaluation of several aspects of our system.
Section 6 presents related work. Finally, Section 7 concludes
the paper.

2 DESIGN AND IMPLEMENTATION OF ENHANCED
CLIENTS

2.1 Enhanced Clients for Data Stores

Our enhanced data store clients are built on top of a data
store client library (DSCL) which handles features such
as caching, encryption, compression, and delta encoding
(Figure 2). For important features, there is an interface and
multiple possible implementations. For example, there are
multiple caching implementations which a data store client
can choose from. A Java implementation of the DSCL is
available as open source software [12]. A guide for using
this DSCL is also available [15].

Commonly used data stores such as Cloudant, Open-
Stack Object Storage, Cassandra, etc. have clients in widely

4

used programming languages which are readily available as
open source software [4], [5], [6]. These clients make it easy
for application programs to access data stores since they can
use convenient function/method calls of a programming
language with properly typed arguments instead of dealing
with low level details of a protocol for communicating with
a data store.

While existing clients for data stores handle the standard
operations defined on that data store, they generally do
not provide enhanced features such as caching, encryption,
compression, performance monitoring, and a workload gen-
erator to test the performance of a data store. Our DSCL and
UDSM provide these enhanced features and are designed to
work with a wide variety of existing data store clients.

Our DSCL can have various degrees of integration with
an existing data store client. In a tight integration, the data
store client is modified to make DSCL calls at important
places in the client code. For example, DSCL calls could
be inserted to first look for an object in a cache when a
data store client queries a server for an object. DSCL API
calls could also be inserted to update (or invalidate) an
object in a cache when a data store client updates an object
at a server. More complicated series of API calls to the
DSCL could be made to achieve different levels of cache
consistency. A similar approach can be used to enable a data
store client to perform encryption, decryption, compression,
and/or decompression transparently to an application.

Tight integration of a data store client with the DSCL
requires source code modifications to the data store client.
While this is something that software developers of the data
store client should be able to, it is not something that a
typical user of the client can be expected to do. However,
tight integration is not required to use the DSCL with a
data store client. The DSCL has explicit API calls to allow
caching, encryption, and compression. Users can thus use
the DSCL within an application independently of any data
store. The advantage to a tight integration with a data store
is that the user does not have to make explicit calls to the
DSCL for enhanced features such as caching, encryption,
and compression; the data store client handles these opera-
tions automatically. In a loosely coupled implementation in
which the data store client is not modified with calls to the
DSCL, the user has to make explicit DSCL calls to make use
of enhanced features.

Optimal use of the DSCL is achieved with a tight
coupling of the DSCL with data store clients along with
exposing the DSCL API to give the application fine grained
control over enhanced features. In some cases, it may be
convenient for an application to make API calls to client
methods which transparently make DSCL calls for enhanced
features. In other cases, the application program may need
to explicitly make DSCL calls to have precise control over
enhanced features.

The size of data transfers between the client and server
can sometimes be reduced by delta encoding in which a
client communicates an update to a server as a difference
between the current and previous version of a data ob-
ject [16]. If this difference between the current and previous
version of the object is smaller than the current object itself
after compression, delta encoding results in fewer bytes
communicated between the client and server. The use of

Enhanced Client

Application Program

Cloud
Data Store

Cloud NLP
Service

Cloud
Service 3

Fig. 3: We provide enhanced clients for a variety of cloud
applications.

delta encoding for enhanced clients is presented in [17].

2.2 Enhanced Clients for Cloud Services

Our enhanced clients are of particular value for applications
accessing cloud services. We provide enhanced clients for
applications using cloud services in addition to data stores
(Figure 3). For example, there are several services accessible
over the Web related to artificial intelligence and cognitive
computing, including those from IBM [18], Microsoft [19],
Amazon [20], and Google [21]. These services are typically
accessed over HTTP and often return data in a standard
format such as JSON or XML. Our enhanced clients wrap
HTTP calls to Web services in method, function or proce-
dure calls in a programming language such as Java. That
way, an application can invoke a cloud service using a
method, function, or procedure instead of having to having
to make HTTP requests in the exact format required by the
Web service. Our clients also handle failures and timeouts
resulting from HTTP requests.

We have developed a number of features specifically for
cloud services which perform natural language processing
(NLP) such as IBM’s Natural Language Understanding ser-
vice [22]. These services typically analyze single documents
at a time. Application programs must then analyze results
from each individual document. Our enhanced clients can
perform analyses on multiple documents by sending re-
quests for each individual document to one or more Web
services and aggregating and analyzing the results from the
Web services calls. We provide the ability to store results
persistently at the client, which can be used to avoid redun-
dant calls to a Web service.

Our enhanced clients integrate Web searching with NLP.
It is possible to perform Web searches on a wide variety of
topics and analyze the results from the Web searches using
NLP techniques. The Web searches can be restricted to news
stories.

An open source version of our enhanced clients for
supporting cloud services such as IBM’s Natural Language
Understanding is available [13] and is being used by cus-
tomers. In Section 4, we describe an application for natural
language understanding and sentiment analysis which has
been implemented using our enhanced clients.

5

Universal Data Store Manager
(UDSM)

Application Program

Common Interface to Data Stores

Performance Monitor

Workload Generator

Encryption

Compression

File System

SQL Store (s)

NoSQL
Store (s)

Cache (s)

Fig. 4: Universal data store manager.

2.3 Universal Data Store Manager
Existing data store clients typically only work for a single
data store. This limitation is a key reason for developing our
Universal Data Store Manager (UDSM) which allows appli-
cation programs to access multiple data stores including file
systems, SQL (relational) databases, NoSQL databases, and
caches (Figure 4).

The UDSM provides a common key-value interface. Each
data store implements the key-value interface. That way, it is
easy for an application to switch from using one data store
to another. The key-value interface exposed to application
programs hides the details of how the interface is actually
implemented by the underlying data store.

In some cases, a key-value interface is not sufficient. For
example, a MySQL user may need to issue SQL queries
to the underlying database. The UDSM allows the user to
access native features of the underlying data store when
needed. That way, applications can use the common key-
value interface when appropriate as well as all other capa-
bilities of the underlying data store when necessary.

A key feature of the UDSM is the ability to monitor
different data stores for performance. Users can measure
and compare the performance of different data stores. The
UDSM collects both summary performance statistics such
as average latency as well as detailed performance statistics
such as past latency measurements taken over a period of
time. It is often desirable to only collect latency measure-
ments for recent requests. There is thus the capability to
collect detailed data for recent requests while only retaining
summary statistics for older data. Performance data can be
stored persistently using any of the data stores supported
by the UDSM.

The UDSM also provides a workload generator which
can be used to generate requests to data stores in order
to determine performance. The workload generator allows
users to specify the data to be stored and retrieved. The
workload generator automatically generates requests over
a range of different request sizes specified by the user. The
workload generator can synthetically generate data objects
to be stored. Alternatively, users can provide their own data
objects for performance tests either by placing the data in
input files or writing a user-defined method to provide
the data. The workload generator also determines read
latencies when caching is being used for different hit rates

specified by the user. Additionally, the workload generator
also measures the overhead of encryption and compression.

The workload generator is ideal for easily comparing the
performance of different data stores across a wide range
of data sizes and cache hit rates. Performance will vary
depending on the client, and the workload generator can
easily run on any UDSM client. The workload generator was
a critical component in generating the performance data in
Section 5. Data from performance testing is stored in text
files which can be easily imported into data visualization
and analysis tools.

A Java implementation of the UDSM is available as open
source software [14]. A guide for using this UDSM is also
available [23]. This UDSM includes existing Java clients for
data stores such as the Cloudant Java client [4] and the Java
library for OpenStack Storage (JOSS) [5]. Other data store
clients, such as the Java Driver for Apache Cassandra [6],
could also be added to the UDSM. That way, applications
have access to multiple data stores via the APIs in the
existing clients. It is necessary to implement the UDSM
key-value interface for each data store; this is done using
the APIs provided by the existing data store clients. The
UDSM allows SQL (relational) databases to be accessed via
JDBC. The key-value interface for SQL databases can also be
implemented using JDBC.

The common key-value interface serves a number of
useful purposes. It hides the implementation details and
allows multiple implementations of the key-value interface.
This is important since different implementations may be
appropriate for different scenarios. In some cases, it may
be desirable to have a cloud-based key-value store. In other
cases, it may be desirable to have a key-value store imple-
mented by a local file system. In yet other cases, it may be
desirable to have a cache implementation of the key-value
interface such as Redis or memcached. Since the applica-
tion accesses all implementations using the same key-value
interface, it is easy to substitute different key-value store
implementations within an application as needed without
changing the source code.

Another advantage of the key-value interface is that
important features such as asynchronous interfaces, perfor-
mance monitoring, and workload generation can be per-
formed on the key-value interface itself, automatically pro-
viding the feature for all data stores implementing the key-
value interface. Once a data store implements the key-value
interface, no additional work is required to automatically
get an asynchronous interface, performance monitoring, or
workload generation for the data store. In our Java imple-
mentation of the UDSM, applying important features to all
data store implementations in the same code is achieved by
defining a

public interface KeyValue<K,V> {

which each data store implements. The code which im-
plements asynchronous interfaces, performance monitoring,
and workload generation takes arguments of type
KeyValue<K,V> rather than an implementation of
KeyValue<K,V>. That way, the same code can be applied
to each implementation of KeyValue<K,V>.

The UDSM provides data encryption and compression in
a similar fashion as the DSCL. The DSCL can be used to pro-

6

vide integrated caching for any of the data stores supported
by the UDSM. In addition, the key-value interface allows
UDSM users to manually implement caching without using
the DSCL. The key point is that via the key-value interface,
any data store can serve as a cache or secondary repository
for one of the other data stores functioning as the main data
store. The user would make appropriate method calls via
the key-value interface to maintain the contents of a data
store functioning as a cache or secondary repository.

2.4 Asynchronous Interfaces to Data Stores and Cloud
Services

Most interfaces to data stores and cloud services are syn-
chronous (blocking). An application will access a data store
or service via a method or function call and wait for the
method or function to return before continuing execution.
Performance can often be improved via asynchronous (non-
blocking) interfaces wherein an application can access a data
store (to store a data value, for example) or service and con-
tinue execution before the call to the interface returns. Our
enhanced clients offer both synchronous and asynchronous
interfaces to data stores and services.

The asynchronous interface allows applications to con-
tinue executing after a call to a method A to access a data
store or service by using a separate thread for invoking
method A. Since creating a new thread is expensive, our
enhanced clients use thread pools in which a given number
of threads are started up when the client is initiated and
maintained throughout the lifetime of the client. A method
invoked via an asynchronous interface is assigned to one
of the existing threads in the thread pool which avoids
the costly creation of new threads to handle asynchronous
method calls. Users can specify the thread pool size via a
configuration parameter.

The Java enhanced client implementation implements
asynchronous calls using the ListenableFuture interface [24].
Java provides a Future interface which can be used to
represent the result of an asynchronous computation. The
Future interface provides methods to check if the compu-
tation corresponding to a future is complete, to wait for the
computation to complete if it has not finished executing, and
to retrieve the result of the computation after it has finished
executing. The ListenableFuture extends the Future interface
by giving users the ability to register callbacks which are
code to be executed after the future completes execution.
This feature is the key reason that we use ListenableFutures
instead of only Futures for implementing asynchronous
interfaces. In Section 5, we evaluate the performance of both
synchronous and asynchronous interfaces and quantify the
significant performance improvements that can be achieved
using asynchronous interfaces.

3 CACHING

Our enhanced data store clients use three types of caching
approaches. In the first approach, caching is closely inte-
grated with a particular data store. Method calls to retrieve
data from the data store can first check if the data are
cached, and if so, return the data from the cache instead
of the data store. Methods to store data in the data store

can also update the cache. Techniques for keeping caches
updated and consistent with the data store can additionally
be implemented. This first caching approach is achieved by
modifying the source code of a data store client to read,
write, and maintain the cache as appropriate by making
appropriate method calls to the DSCL.

We have used this first approach for implementing
caching for Cloudant. The source code for this implementa-
tion is available from [25]. We have also used this approach
for implementing caching for OpenStack Object Storage by
enhancing the Java library for OpenStack Storage (JOSS) [5].
While this approach makes things easier for users by adding
caching capabilities directly to data store API methods, it
has the drawback of requiring changes to the data store
client source code. In some cases, the client source code may
be proprietary and not accessible. Even if the source code
is available (e.g. via open source), properly modifying it
to incorporate caching functionality can be time consuming
and difficult.

The second approach for implementing caching is to pro-
vide the DSCL to users and allow them to implement their
own customized caching solutions using the DSCL API. The
DSCL provides convenient methods allowing applications
to both query and modify caches. The DSCL also allows
cached objects to have expiration times associated with
them; later in this section, we will describe how expiration
times are managed. It should be noted that if the first
approach of having a fully integrated cache with a data
store is used, it is still often necessary to allow applications
to directly access and modify caches via the DSCL in order
to offer higher levels of performance and data consistency.
Hence, using a combination of the first and second caching
approaches is often desirable.

The third approach for achieving caching is provided by
the UDSM. The UDSM key-value interface is implemented
for both main data stores as well as caches. If an application
is using the key-value interface to access a data store, it is
very easy for the application writer to store some of the
key-value pairs in a cache provided by the UDSM. Both
the main data store and cache share the same key-value
interface. This approach, like the second approach, requires
the application writer to explicitly manage the contents of
caches. Furthermore, the UDSM lacks some of the caching
features provided by the DSCL such as expiration time man-
agement. An advantage to the third approach is that any
data store supported by the UDSM can function as a cache
or secondary repository for another data store supported by
the UDSM; this offers a wide variety of choices for caching
or replicating data.

The DSCL also supports multiple different types of
caches via a Cache interface which defines how an appli-
cation interacts with caches. There are multiple implemen-
tations of the Cache interface which applications can choose
from.

There are two types of caches. In-process caches store
data within the process corresponding to the applica-
tion [26]. That way, there is no interprocess communication
required for storing the data. For our Java implementations
of in-process caches, Java objects can directly be cached.
Data serialization is not required. In order to reduce over-
head when the object is cached, the object (or a reference

7

to it) can be stored directly in the cache. One consequence
of this approach is that changes to the object from the
application will change the cached object itself. In order to
prevent the value of a cached object from being modified by
changes to the object being made in the application, a copy
of the object can be made before the object is cached. This
results in overhead for copying the object.

Another approach is to use a remote process cache [27].
In this approach, the cache runs in one or more processes
separate from the application. A remote process cache can
run on a separate node from the application as well. There
is some overhead for communication with a remote process
cache. In addition, data often has to be serialized before
being cached. Therefore, remote process caches are generally
slower than in-process caches (as shown in Section 5). How-
ever, remote process caches also have some advantages over
in-process caches. A remote process cache can be shared by
multiple clients, and this feature is often desirable. Remote
process caches can often be scaled across multiple processes
and nodes to handle high request rates and increase avail-
ability.

There are several caches that are available as open
source software which can be used in conjunction with our
DSCL. Redis [7] and memcached [8] are widely used remote
process caches. They can be used for storing serialized
data across a wide range of languages. Clients for Redis
and memcached are available in Java, C, C++, Python,
Javascript, PHP, and several other languages.

Examples of caches targeted at Java environments in-
clude the Guava cache [9], Ehcache [10], and OSCache [11].
A common approach is to use a data structure such as a
HashMap or a ConcurrentHashMap with features for thread
safety and cache replacement. Since there are several good
open source alternatives available, it is probably better to
use an existing cache implementation instead of writing an-
other cache implementation unless the user has specialized
requirements not handled by existing caches.

Our DSCL allows any of these caches to be plugged into
its modular architecture. In order to use one of these caches,
an implementation of the DSCL Cache interface needs to
be implemented for the cache. We have implemented DSCL
Cache interfaces for a number of caches including redis and
the Guava cache.

The DSCL allows applications to assign (optional) ex-
piration times to cached objects. After the expiration time
for an object has elapsed, the cached object is obsolete and
should not be returned to an application until the server
has been contacted to either provide an updated version or
verify that the expired object is still valid. Cache expiration
times are managed by the DSCL and not by the underly-
ing cache. There are a couple of reasons for this. Not all
caches support expiration times. A cache which does not
handle expiration times can still implement the DSCL Cache
interface. In addition, for caches which support expiration
times, objects whose expiration times have elapsed might
be purged from the cache. We do not always want this
to happen. After the expiration time for a cached object
has elapsed, it does not necessarily mean that the object is
obsolete. Therefore, the DSCL has the ability to keep around
a cached object o1 whose expiration time has elapsed. If o1 is
requested after its expiration time has passed, then the client

Cache Expiration Method

o1 cached,
expires at
7:00 AM

o1 remains in
cache

7:00 AM
o1 requested,

get-if-modified-since
request sent to

server

6:00 AM 7:04 AM

new value of o1
stored in cache

Expiration time
for o1 updated

Not modified

Modified, server sends new value of o1

LRU (or greedy-dual-size) replaces objects when cache is full

Fig. 5: Handling cache expiration times.

might have the ability to revalidate o1 in a manner similar
to an HTTP GET request with an If-Modified-Since header.
The basic idea is that the client sends a request to fetch o1
only if the server’s version of o1 is different than the client’s
version. In order to determine if the client’s version of o1
is obsolete, the client could send a timestamp, entity tag, or
other information identifying the version of o1 stored at the
client. If the server determines that the client has an obsolete
version of o1, then the server will send a new version of o1
to the client. If the server determines that the client has a
current version of o1, then the server will indicate that the
version of o1 is current (Figure 5).

Using this approach, the client does not have to receive
identical copies of objects whose expiration times have
elapsed even though they are still current. This can save
considerable bandwidth and improve performance. There is
still latency for revalidating o1 with the server, however.

If caches become full, a cache replacement algorithm
such as least recently used (LRU) or greedy-dual-size [28]
can be used to determine which objects to retain in the cache.

Some caches such as redis have the ability to back up
data in persistent storage (e.g. to a hard disk or solid-state
disk). This allows data to be preserved in the event that a
cache fails. It is also often desirable to store some data from
a cache persistently before shutting down a cache process.
That way, when the cache is restarted, it can quickly be
brought to a warm state by reading in the data previously
stored persistently.

The encryption capabilities of the DSCL can also be used
in conjunction with caching. People often fail to recognize
the security risks that can be exposed by caching. A cache
may be storing confidential data for extended periods of
time. That data can become a target for hackers in an inse-
cure environment. Most caches do not encrypt the data they
are storing, even though this is sometimes quite important.

Remote process caches also present security risks when
an application is communicating with a cache over an
unencrypted channel. A malicious party can steal the data
being sent between the application and the cache. Too often,
caches are designed with the assumption that they will be
deployed in a trusted environment. This will not always be
the case.

For these reasons, data should often be encrypted before
it is cached. The DSCL provides the capability for doing
so. There is some CPU overhead for encryption, so privacy

8

needs need to be balanced against the need for fast execu-
tion.

The DSCL compression capabilities can also be used to
reduce the size of cached objects, allowing more objects to be
stored using the same amount of cache space. Once again,
since compression entails CPU overhead, the space saved
by compression needs to be balanced against the increase in
CPU cycles resulting from compression and decompression.

4 USING ENHANCED CLIENTS FOR NATURAL
LANGUAGE UNDERSTANDING AND SENTIMENT
ANALYSIS

Our enhanced clients can be used by a wide variety of
applications for improving both functionality and perfor-
mance. In this section, we describe an application we have
built using our enhanced clients which performs natural
language understanding and sentiment analysis on text doc-
uments. Our application is known as NLU-SA based on the
first letters of natural language understanding and sentiment
analysis. We also present the results of using NLU-SA to
analyze Web documents for sentiment over a period of time.

NLU-SA uses our enhanced clients to invoke cloud-
based NLP services. The cloud-based NLP services will
typically analyze a single text document at a time. NLU-SA
aggregates multiple text documents, passes each document
to a cloud-based NLP service, and aggregates and analyzes
the results from the cloud-based NLP service. One of the
key use cases we have implemented is analyzing the results
from Web searches.

NLU-SA can summarize the contents of several docu-
ments. For example, Tables 1 and 2 illustrate the types of
analyses that can be performed on search queries. NLU-SA
invoked a Web search engine to obtain the top 50 URLs
resulting from a query on “United States” on September
24, 2017 made from Yorktown Heights, New York. The
corresponding Web documents were analyzed by NLU-
SA sending each URL to IBM’s Alchemy Language Web
service. NLU-SA analyzes the results from each invocation
of Alchemy Language to produce aggregate results across
all documents. NLU-SA can also be used with other Web
services performing base NLP functions instead of IBM’s
Alchemy Language.

Table 1 shows the top 10 disambiguated entities based on
a relevance score. A disambiguated entity is an item such as
a person, place, or organization that is present in the input
text and has been properly identified [29]. The relevance
score indicates how relevant an entity is to one or more
documents. While the relevance score is correlated with
how many times the entity appears in the documents, the
correlation is not perfect, as can be seen in the tables. Entities
also have a sentiment score associated with them. Sentiment
scores are a quantification of attitudes, opinions, or feelings
expressed in the text being analyzed to the entity [30].
Sentiment scores range from -1 to 1 with 0 being neutral
and higher scores representing more favorable sentiment
towards the entity.

Table 2 shows the top 10 concepts based on a relevance
score.

We have used NLU-SA to study sentiment expressed
in Web documents and how it changes over a period of

TABLE 1: Top 10 disambiguated entities sorted by relevance
from Web documents on the United States.

Disambiguated Entity Occurrences Relevance Sentiment

United States 688 21.223 -0.223
Facebook 21 3.366 0.470

Washington, D.C. 31 2.789 -0.003
Canada 41 2.324 0.040

Federal govt. of the US 34 2.311 -0.124
Donald Trump 20 2.154 -0.215
New York City 23 2.090 -0.184

United States Congress 51 2.082 -0.156
Hawaii 37 1.902 0.248

North America 20 1.899 0.047

TABLE 2: Top 10 concepts sorted by relevance from Web
documents on the United States.

Concept Occurrences Relevance

United States 28 21.002
U.S. state 16 8.286

US President 14 7.991
Federal govt. of the US 9 5.429

Washington, D.C. 11 5.255
US Constitution 9 4.875

US Congress 7 3.883
New York City 7 3.783

Puerto Rico 6 3.357
World War II 5 3.269

several weeks. For the experimental results we are about
to present, NLU-SA obtained several URLs from a query to
a Web search engine for an entity such as Canada. Each of
the URLs obtained from the Web search engine was then
passed to IBM’s Alchemy Language Web service which
calculates the sentiment for the entity (such as Canada) by
analyzing the Web document corresponding to the URL.
NLU-SA determines a single sentiment value for the entity
over all URLs returned by the search query by computing
an average of the sentiment values returned by Alchemy
Language weighted by the number of occurrences of the
entity in each Web document.

Figure 6 shows the sentiment expressed for four major
technology companies (referred to as Tech 1, Tech 2, Tech 3,
and Tech 4) and a major financial company (referred to as
Finance) in the first 50 documents obtained by a Web search
on the company name. The results were obtained over a
32-day period starting on June 30 and ending on July 31 of
2017. There are clear differentiations between the companies
with Tech 3 finishing first followed by Tech 2, Tech 1, Tech
4, and the financial company respectively.

Figure 7 shows the sentiment expressed for the same
companies over the same time period in the first 50 news
stories obtained from Web searches restricted to news stories
for a query comprised of the company name. The financial
company finishes lower than the other companies. For the
technology companies, the differentiations in sentiment are
less clear cut than in Figure 6. This is because news stories
are ephemeral and constantly changing. By contrast, the
documents obtained from a general Web search do not
change as much from day to day.

Figure 8 shows the sentiment expressed for Canada,
China, Germany, Russia, and the United States in the first

9

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 5 10 15 20 25 30

Se
nt

im
en

t
Sc

or
e

Day

Sentiment Scores, Regular Search

Tech 1
Tech 2
Tech 3
Tech 4

Finance

Fig. 6: Sentiment for companies in text documents returned
from Web searches on the company name.

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 5 10 15 20 25 30

Se
nt

im
en

t
Sc

or
e

Day

Sentiment Scores, News Stories

Tech 1
Tech 2
Tech 3
Tech 4

Finance

Fig. 7: Sentiment for companies in news stories from Web
searches on the company name.

50 documents obtained by a Web search on the country
name over the same 32-day period. One of the surprising re-
sults is the relatively favorable sentiment expressed towards
China compared with the relatively unfavorable sentiment
expressed towards the United States and Canada. The Web
searches were made in Yorktown Heights, New York.

Figure 9 shows the sentiment expressed for the same
countries over the same time period in the first 50 news
stories obtained from Web searches restricted to news stories
for a query comprised of the country name. Once again,
the relatively favorable sentiment expressed towards China
compared with other countries stands out.

NLU-SA can use different search engines. Figure 10
shows the sentiment expressed for the five companies in the
first 50 documents obtained by searches on the company
name on August 13, 2017. Search engine 1 is a major search
engine which we also used for the other experimental results
contained in this section. Search engine 2 is another major
search engine which competes with Search engine 1. While

-0.4

-0.2

 0

 0.2

 0.4

 5 10 15 20 25 30

Se
nt

im
en

t
Sc

or
e

Day

Sentiment Scores, Regular Search

Canada
China

Germany
Russia

United States

Fig. 8: Sentiment for countries in text documents from Web
searches on the country name.

-0.4

-0.2

 0

 0.2

 0.4

 5 10 15 20 25 30

Se
nt

im
en

t
Sc

or
e

Day

Sentiment Scores, News Stories

Canada
China

Germany
Russia

United States

Fig. 9: Sentiment for countries in news stories from Web
searches on the country name.

the values differ somewhat when different search engines
are used, the relative rankings of the companies do not
change.

We performed sentiment analysis on documents ob-
tained from Web searches on the two search engine names.
Both search engines support the fact that Search engine 1 has
more favorable sentiment on the Web than Search engine 2.
In fact, Search engine 2 returns documents with a higher
difference in sentiment in favor of Search engine 1 over
Search engine 2 than the documents returned by Search
engine 1. While this seems to suggest that neither search
engine is biasing its search results to favor itself over the
other search engine, more analysis would be needed before
definitive statements along these lines can be made.

Figure 11 shows the sentiment expressed for Canada,
China, Germany, Russia, and the United States in the first 50
documents obtained by both search engines on the country
name on August 13, 2017. Germany finishes highest based
on Search engine 1 documents, while China is highest based

10

-0.2

-0.1

 0

 0.1

 0.2

Tech1 Tech2 Tech3 Tech4 Fin

Se
nt

im
en

t
Sc

or
e

Comparison of Different Search Engines

Search Engine 1
Search Engine 2

Fig. 10: Sentiment for companies in text documents from
Web searches on the company name using different search
engines.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

CAN CHN DEU RUS USA

Se
nt

im
en

t
Sc

or
e

Comparison of Different Search Engines

Search Engine 1
Search Engine 2

Fig. 11: Sentiment for countries in text documents from Web
searches on the country name using different search engines.

on Search engine 2 documents. Russia is second based on
Search engine 2 documents but fourth based on Search
engine 1 documents.

Figures 12 - 15 show changes in sentiment over a longer
period of time. Initial values were obtained from the top 50
documents obtained from Web searches on June 30, 2017.
Final values were obtained from the top 50 documents
obtained from Web searches on September 9, 2017.

5 PERFORMANCE EVALUATION

In this section, we present a performance evaluation of
our enhanced clients. We use the UDSM to determine and
compare read and write latencies that a typical client would
see using several different types of data stores. We show
the performance gains that our enhanced data store clients
can achieve with caching. We compare the performance of
asynchronous and synchronous interfaces. We also quantify

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

Tech1 Tech2 Tech3 Tech4 Fin

Se
nt

im
en

t
Sc

or
e

Start and End, Regular Search

June 30
Sept. 9

Fig. 12: Change over time in sentiment for companies in text
documents from Web searches on the company name.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

Tech1 Tech2 Tech3 Tech4 Fin

Se
nt

im
en

t
Sc

or
e

Starting and Ending Sentiment Scores, News

June 30
Sept. 9

Fig. 13: Change over time in sentiment for companies in
news stories from Web searches on the company name.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

CAN CHN DEU RUS USA

Se
nt

im
en

t
Sc

or
e

Start and End, Regular Search

June 30
Sept. 9

Fig. 14: Change over time in sentiment for countries in text
documents from Web searches on the country name.

11

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

CAN CHN DEU RUS USA

Se
nt

im
en

t
Sc

or
e

Starting and Ending Sentiment Scores, News

June 30
Sept. 9

Fig. 15: Change over time in sentiment for countries in news
stories from Web searches on the country name.

the overheads resulting from encryption, decryption, com-
pression, and decompression.

We test the following data stores by using the UDSM to
send requests from its workload generator using the key-
value interface:

• A file system on the client node accessed via standard
Java method calls.

• A MySQL database [31] running on the client node
accessed via JDBC.

• A commercial cloud data store provided by a major
cloud computing company (referred to as Cloud
Store 1).

• A second commercial cloud data store provided by
a major cloud computing company (referred to as
Cloud Store 2).

• A Redis instance running on the client node accessed
via the Jedis client [32].

The Redis instance also acts as a remote process cache. A
Guava cache [9] acts as an in-process cache.

Our enhanced clients and UDSM run on a 2.70GHz
Intel i7-3740QM processor with 16 GB of RAM running a
64-bit version of Windows 7 Professional. Several of the
performance graphs use log-log plots because both the x-
axis (data size in bytes) and y-axis (time in milliseconds)
values span a wide magnitude of numbers. Experiments
were run multiple times. Data points are averaged over 4
runs of the same experiment. We did not find significant
correlations between the types of data read and written
and data store read and write latencies. There was often
considerable variability in the read and write latency for the
experimental runs using the same parameters.

Figure 16 shows the average time to read data as a
function of data size. Cloud Store 1 and 2 show the highest
latencies because they are cloud data stores geographically
distant from the client. By contrast, the other data stores
run on the same machine as the client. Another factor
that could adversely affect performance for the cloud data
stores, particularly in the case of Cloud Store 1, is that the
requests coming from our UDSM might be competing for

 0.1

 1

 10

 100

 1000

 10000

 1000 10000 100000 1x106 1x107 1x108

La
te

nc
y

(m
ill

is
ec

on
ds

)

Object size (bytes)

Read Latency

Cloud Store 1
Cloud Store 2
SQL Database

File System
Redis

Fig. 16: Read latencies for data stores.

server resources with computing tasks from other cloud
users. This may be one of the reasons why Cloud Store
1 exhibited more variability in read latencies than any of
the other data stores. Significant variability in cloud storage
performance has been observed by others as well [2]. The
performance numbers we observed for Cloud Store 1 and
2 are not atypical for cloud data stores, which is a key
reason why techniques like client-side caching are essential
for improving performance.

Redis offers lower read latencies than the file system
for small objects. For objects 50 Kbytes and larger, how-
ever, the file system achieves lower latencies. Redis incurs
overhead for interprocess communication between the client
and server. There is also some overhead for serializing and
deserializing data stored in Redis. The file system client
might benefit from caching performed by the underlying
file system.

Redis offers considerably lower read latencies than
MySQL for objects up to 50 Kbytes. For larger objects, Redis
offers only slightly better read performance, and the read
latencies converge with increasing object size.

Figure 17 shows the average time to write data as a
function of data size. Cloud Store 1 has the highest latency
followed by Cloud Store 2; once again, this is because Cloud
Store 1 and 2 are cloud-based data stores geographically
distant from the client. MySQL has the highest write laten-
cies for the local data stores. Redis has lower write latencies
than the file system for objects of 10 Kbytes or smaller. Write
latencies are similar for objects of 20-100 Kbytes, while the
file system has lower write latencies than Redis for objects
larger than 100 Kbytes.

Write latencies are higher than read latencies across the
data stores; this is particularly apparent for MySQL for
which writes involve costly commit operations. It is also
very pronounced for larger objects with the cloud data
stores and the file system. Write latencies for the file system
and MySQL exhibit considerably more variation than read
latencies.

Figures 18 - 26 show read latencies which can be
achieved with the Guava in-process cache and Redis as a
remote process cache for the cloud data stores. Multiple runs

12

 0.1

 1

 10

 100

 1000

 10000

 100000

 1000 10000 100000 1x106 1x107 1x108

La
te

nc
y

(m
ill

is
ec

on
ds

)

Object size (bytes)

Write Latency

Cloud Store 1
Cloud Store 2
SQL Database

File System
Redis

Fig. 17: Write latencies for data stores.

were made to determine read latencies for each data store
both without caching and with caching when the hit rate
is 100%. From these numbers, the workload generator can
extrapolate performance for different hit rates. Each graph
contains 5 curves corresponding to no caching and caching
with hit rates of 25%, 50%, 75%, and 100%.

The in-process cache is considerably faster than any of
the data stores. Furthermore, read latencies do not increase
with increasing object size because cache reads do not
involve any copying or serialization of data. By contrast,
Redis is considerably slower, as shown in Figure 26. Fur-
thermore, read latencies increase with object size as cached
data objects have to be transferred from a Redis instance to
the client process and deserialized. An in-process cache is
thus highly preferable from a performance standpoint. Of
course, application needs may necessitate using a remote
process cache like Redis instead of an in-process cache.

Figure 25 shows that for the file system, remote process
caching via Redis is only advantageous for smaller objects;
for larger objects, performance is better without using Redis.
This is because the file system is faster than Redis for read-
ing larger objects. Figure 23 shows a similar trend. While
Redis will not result in worse performance than MySQL for
larger objects, the performance gain may be too small to
justify the added complexity.

One of the key features of our enhanced clients is the
presence of both synchronous and asynchronous interfaces.
Asynchronous interfaces are critically important for speed-
ing up a wide range of applications using cloud services or
data stores. For example, NLU-SA spends the vast majority
of its time making calls to Web services for analyzing text
documents. These calls can be made in parallel. A sim-
ple sequential implementation will consume a considerable
amount of time.

We now quantify the performance improvements that
can be achieved with asynchronous interfaces. Figure 27
shows the latency for analyzing text documents using IBM’s
AlchemyLanguage NLP Web service with a synchronous
interface. The text documents analyzed were the top 100
Web documents from a Web search for United States on
July 19, 2017 made from Yorktown Heights, New York. The

first n URLs retrieved from the Web search were passed to
Alchemy Language, where n is shown on the X-axis.

Figure 28 shows the latency for the same analysis of text
documents using an asynchronous interface with different
thread pool sizes. The graph shows that the asynchronous
interface is considerably faster than the synchronous inter-
face. As the number of documents analyzed increases, the
asynchronous interface can improve performance by more
than a factor of 10. This is due to the fact that the asyn-
chronous interface can make several calls to Web services in
parallel. Since Alchemy Language can satisfy many requests
concurrently, the asynchronous interface can speed things
up considerably. The thread pool size limits the number of
concurrent requests sent by a client. For our data set, there
was not much of a performance gain by using a thread pool
size larger than 20.

Since Web services calls consume the vast majority of
time spent by NLU-SA, these graphs are indicative of the
overall speedup for NLU-SA which can be achieved using
asynchronous interfaces.

Figure 29 shows the times that an enhanced data store
client requires for encrypting and decrypting data using the
Advanced Encryption Standard (AES) [33] and 128-bit keys.
Since AES is a symmetric encryption algorithm, encryption
and decryption times are similar.

Figure 30 shows the times that an enhanced data store
client requires for compressing and decompressiong data
using gzip [34]. Decompression times are roughly com-
parable with encryption and decryption times. However,
compression overheads are several times higher.

6 RELATED WORK

Clients exist for a broad range of data stores. A small sample
of clients for commonly used data stores includes the Java
library for OpenStack Storage (JOSS) [5], the Jedis client for
Redis [32] and the Java Driver for Apache Cassandra [6].
These clients do not have the capabilities that our enhanced
clients provide. Amazon offers access to data stores such
as DynamoDB via a software development kit (SDK) [35]
which provides compression, encryption, and both syn-
chronous and asynchronous APIs. Amazon’s SDK does
not provide integrated caching, performance monitoring,
or workload generation; we are not aware of other clients
besides our own which offer these features. Furthermore,
we offer coordinated access to multiple types of data stores,
a key feature which other systems lack. Microsoft’s Azure
SDK [36] also does not provide the full range of features
that we provide.

Remote process caches which provide an API to allow
applications to explicitly read and write data as well as to
maintain data consistency were first introduced in [27], [37].
A key aspect of this work is that the caches were an essential
component in serving dynamic Web data efficiently at sev-
eral highly accessed Web sites. Memcached was developed
several years later [8]. Design and performance aspects for
in-process caches were first presented in [26].

There have also been a number of papers which have
studied the performance of cloud storage systems. Dropbox,
Microsoft SkyDrive (now OneDrive), Google Drive, Wuala
(which has been discontinued), and Amazon Cloud drive

13

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000 10000 100000 1x106 1x107

La
te

nc
y

(m
ill

is
ec

on
ds

)

Object size (bytes)

Cloud Store 1 Latency, In-Process Cache

No Caching
25% hit rate
50% hit rate
75% hit rate

100% hit rate

Fig. 18: Cloud Store 1 read latencies with in-process
caching.

 0.1

 1

 10

 100

 1000

 10000

 1000 10000 100000 1x106 1x107

La
te

nc
y

(m
ill

is
ec

on
ds

)

Object size (bytes)

Cloud Store 1 Latency, Remote Cache

No Caching
25% hit rate
50% hit rate
75% hit rate

100% hit rate

Fig. 19: Cloud Store 1 read latencies with remote process
caching.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000 10000 100000 1x106 1x107 1x108

La
te

nc
y

(m
ill

is
ec

on
ds

)

Object size (bytes)

Cloud Store 2 Latency, In-Process Cache

No Caching
25% hit rate
50% hit rate
75% hit rate

100% hit rate

Fig. 20: Cloud Store 2 read latencies with in-process
caching.

 0.1

 1

 10

 100

 1000

 1000 10000 100000 1x106 1x107

La
te

nc
y

(m
ill

is
ec

on
ds

)

Object size (bytes)

Cloud Store 2 Latency, Remote Cache

No Caching
25% hit rate
50% hit rate
75% hit rate

100% hit rate

Fig. 21: Cloud Store 2 read latencies with remote process
caching.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1000 10000 100000 1x106 1x107 1x108

La
te

nc
y

(m
ill

is
ec

on
ds

)

Object size (bytes)

MySQL Latency with In-Process Cache

No Caching
25% hit rate
50% hit rate
75% hit rate

100% hit rate

Fig. 22: MySQL read latencies with in-process caching.

 0.1

 1

 10

 100

 1000 10000 100000 1x106 1x107

La
te

nc
y

(m
ill

is
ec

on
ds

)

Object size (bytes)

MySQL Latency with Remote Cache

No Caching
25% hit rate
50% hit rate
75% hit rate

100% hit rate

Fig. 23: MySQL read latencies with remote process caching.

14

 0.001

 0.01

 0.1

 1

 10

 100

 1000 10000 100000 1x106 1x107 1x108

La
te

nc
y

(m
ill

is
ec

on
ds

)

Object size (bytes)

File System Latency with In-Process Cache

No Caching
25% hit rate
50% hit rate
75% hit rate

100% hit rate

Fig. 24: File system read latencies with in-process caching.

 0.1

 1

 10

 100

 1000 10000 100000 1x106 1x107

La
te

nc
y

(m
ill

is
ec

on
ds

)

Object size (bytes)

File System Latency with Remote Cache

No Caching
25% hit rate
50% hit rate
75% hit rate

100% hit rate

Fig. 25: File system read latencies with remote process
caching.

 0.001

 0.01

 0.1

 1

 10

 100

 1000 10000 100000 1x106 1x107

La
te

nc
y

(m
ill

is
ec

on
ds

)

Object size (bytes)

Redis Latency with In-Process Cache

No Caching
25% hit rate
50% hit rate
75% hit rate

100% hit rate

Fig. 26: Redis read latencies with in-process caching.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(m

ill
is

ec
on

ds
)

Documents Analyzed

Documents Analyzed and Response Time

Fig. 27: Response time for synchronous interface.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(m
ill

is
ec

on
ds

)

Documents Analyzed

Response Time with Multithreading

10 threads
20 threads
30 threads
40 threads

100 threads

Fig. 28: Response time for asynchronous interface for differ-
ent thread pool sizes.

 0.1

 1

 10

 100

 1000 10000 100000 1x106 1x107 1x108

Ti
m

e
(m

ill
is

ec
on

ds
)

Object size (bytes)

Encryption and Decryption Times

Encryption
Decryption

Fig. 29: Encryption and decryption latency.

15

 0.01

 0.1

 1

 10

 100

 1000

 1000 10000 100000 1x106 1x107 1x108

Ti
m

e
(m

ill
is

ec
on

ds
)

Object size (bytes)

Compression and Decompression Times

Compression
Decompression

Fig. 30: Compression and decompression latency.

are compared using a series of benchmarks in [1]. No
storage service emerged from the study as being clearly the
best one. An earlier paper by some of the same authors
analyzes Dropbox [38]. A comparison of Box, Dropbox,
and SugarSync is made in [2]. The study noted significant
variability in service times which we have observed as
well. Failure rates were less than 1%. Data synchronization
traffic between users and cloud providers is studied in [39].
The authors find that much of the data synchronization
traffic is not needed and could be eliminated by better data
synchronization mechanisms. Another paper by some of the
same authors proposes reducing data synchronization traffic
by batched updates [40].

There have been several past works in sentiment anal-
ysis [29], [41], [42]. However, we are not aware of any
existing tools with the capabilities of NLU-SA. In addition,
our empirical results on sentiment for major companies and
countries are new. Methods for supporting data analytics
applications which use cognitive services are presented in
[43].

7 CONCLUSIONS

This paper has presented enhanced clients which improve
both the functionality and performance of applications ac-
cessing data stores or cloud services. Our clients support
caching, data compression, encryption, and provide both
synchronous and asynchronous interfaces. We presented
NLU-SA, an application for performing natural language
understanding and sentiment analysis on text documents.
NLU-SA is built on top of our enhanced clients. We pre-
sented results from NLU-SA on sentiment on the Web
towards major companies and countries. We also presented
a detailed performance analysis of our enhanced clients.

We have also presented a Universal Data Store Manager
(UDSM) which allows applications to access multiple data
stores. The UDSM provides common synchronous and asyn-
chronous interfaces to each data store, performance moni-
toring, and a workload generator which can easily compare
performance of different data stores from the perspective of
the client. Software for implementing enhanced clients and

the UDSM are available as open source software and are
being used by IBM customers.

Most existing data store clients only have basic func-
tionality and lack a rich set of features. Users would sig-
nificantly benefit if caching, encryption, compression, and
asynchronous (nonblocking) interfaces become commonly
supported in data store clients.

8 ACKNOWLEDGMENTS

Rich Ellis and Mike Rhodes provided assistance and support
in developing client-side caching for Cloudant. German
Attanasio Ruiz helped develop the Cognitive Client for
IBM’s Watson Developer Cloud.

REFERENCES

[1] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras, “Bench-
marking Personal Cloud Storage,” in Proceedings of IMC ’13, 2013,
pp. 205–212.

[2] R. Gracia-Tinedo, M. Artigas, A. Moreno-Martinez, C. Cotes, and
P. Garcia-Lopez, “Actively Measuring Personal Cloud Storage,”
in Proceedings of the IEEE 6th International Conference on Cloud
Computing, 2013, pp. 301–308.

[3] J. Dean and P. Norvig, “Latency numbers every programmer
should know,” https://gist.github.com/jboner/2841832.

[4] Cloudant, “Cloudant java client,” https://github.com/cloudant/
java-cloudant.

[5] Javaswift, “JOSS: Java library for OpenStack Storage, aka Swift,”
http://joss.javaswift.org/.

[6] DataStax, “Datastax java driver for apache cassandra,” https://
github.com/datastax/java-driver.

[7] Redis, “Redis home page,” http://redis.io/.
[8] B. Fitzpatrick, “Distributed Caching with Memcached,” Linux

Journal, no. 124, p. 5, 2004.
[9] C. Decker, “Caches explained,” https://github.com/google/

guava/wiki/CachesExplained.
[10] Ehcache, “Ehcache: Java’s most widely-used cache,” http://www.

ehcache.org.
[11] OSCache, “Oscache,” https://java.net/projects/oscache.
[12] IBM, “Data Store Client Library,” https://developer.ibm.com/

code/open/projects/data-store-client-library/.
[13] ——, “Cognitive Client (for IBM’s Watson Developer

Cloud),” https://github.com/watson-developer-cloud/
cognitive-client-java.

[14] ——, “Universal Data Store Manager,” https://developer.ibm.
com/code/open/projects/universal-data-store-manager/.

[15] A. Iyengar, “Enhanced Storage Clients,” IBM Research Division,
Yorktown Heights, NY, Tech. Rep. RC 25584 (WAT1512-042), De-
cember 2015.

[16] F. Douglis and A. Iyengar, “Application-specific Delta-encoding
via Resemblance Detection,” in Proceedings of the USENIX 2003
Annual Technical Conference, 2003, pp. 113–126.

[17] A. Iyengar, “Providing Enhanced Functionality for Data Store
Clients,” in Proceedings of the IEEE 33rd International Conference on
Data Engineering (ICDE 2017), April 2017.

[18] IBM, “Watson Developer Cloud,” https://www.ibm.com/
watson/developercloud/.

[19] Microsoft, “Microsoft Cognitive Services,” https://www.
microsoft.com/cognitive-services.

[20] Amazon, “Amazon AI,” https://aws.amazon.com/amazon-ai/.
[21] Google, “Cloud Natural Language API,” https://cloud.google.

com/natural-language/.
[22] IBM, “Natural Language Understanding,” https://www.ibm.

com/watson/services/natural-language-understanding/.
[23] A. Iyengar, “Universal Data Store Manager,” IBM Research Divi-

sion, Yorktown Heights, NY, Tech. Rep. RC 25607 (WAT1605-030),
May 2016.

[24] Google, “ListenableFutureExplained,” https://github.com/
google/guava/wiki/ListenableFutureExplained.

[25] Cloudant, “Java cloudant cache,” https://github.com/
cloudant-labs/java-cloudant-cache.

16

[26] A. Iyengar, “Design and Performance of a General-Purpose Soft-
ware Cache,” in Proceedings of the 18th IEEE International Perfor-
mance, Computing, and Communications Conference, 1999, pp. 329–
336.

[27] A. Iyengar and J. Challenger, “Improving Web Server Performance
by Caching Dynamic Data,” in Proceedings of the USENIX Sympo-
sium on Internet Technologies and Systems, 1997, pp. 49–60.

[28] P. Cao and S. Irani, “Cost-Aware WWW Proxy Caching Algo-
rithms,” in Proceedings of the USENIX Symposium on Internet Tech-
nologies and Systems, 1997, pp. 193–206.

[29] S. Cucerzan, “Large-Scale Named Entity Disambiguation Based
on Wikipedia Data,” in Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL 2007), June 2007, pp.
708–716.

[30] B. Pang, L. Lee et al., “Opinion mining and sentiment analysis,”
Foundations and Trends R© in Information Retrieval, vol. 2, no. 1–2,
pp. 1–135, 2008.

[31] MySQL, “MySQL home page,” https://www.mysql.com/.
[32] Jedis, “A blazingly small and sane redis java client,” https://

github.com/xetorthio/jedis.
[33] NIST, “Announcing the Advanced Encryption Standard (AES),”

National Institute of Standards and Technology, Tech. Rep. Federal
Information Standards Publication 197, November 2001.

[34] Gzip, “The gzip home page,” http://www.gzip.org/.
[35] Amazon, “AWS SDK for Java,” https://aws.amazon.com/

sdk-for-java/.
[36] Microsoft, “Microsoft Azure Downloads,” https://azure.

microsoft.com/en-us/downloads/.
[37] J. Challenger and A. Iyengar, “Distributed Cache Manager and

API,” IBM Research Division, Yorktown Heights, NY, Tech. Rep.
RC 21004 (94070), 1997.

[38] I. Drago, M. Mellia, M. Munafo, A. Sperotto, R. Sadre, and
A. Pras, “Inside Dropbox: Understanding Personal Cloud Storage
Services,” in Proceedings of IMC ’12, 2012, pp. 481–494.

[39] Z. Li et al., “Towards Network-level Efficiency for Cloud Storage
Services,” in Proceedings of IMC ’14, 2014, pp. 115–128.

[40] ——, “Efficient Batched Synchronization in Dropbox-like Cloud
Storage Services,” in Proceedings of Middleware 2013, 2013, pp. 307–
327.

[41] B. Liu, “Sentiment analysis and opinion mining,” Synthesis lectures
on human language technologies, vol. 5, no. 1, pp. 1–167, 2012.

[42] K. Ravi and V. Ravi, “A survey on opinion mining and sentiment
analysis: tasks, approaches and applications,” Knowledge-Based
Systems, vol. 89, pp. 14–46, 2015.

[43] A. Iyengar, “Supporting Data Analytics Applications Which Uti-
lize Cognitive Services,” in Proceedings of the 37th IEEE International
Conference on Distributed Computing Systems (ICDCS 2017), June
2017.

