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Abstract—Disruption Tolerant Networks (DTNs) are characterized by low node density, unpredictable node mobility and lack of global
network information. Most of current research efforts in DTNs focus on data forwarding, but only limited work has been done on
providing efficient data access to mobile users. In this paper, we propose a novel approach to support cooperative caching in DTNs,
which enables the sharing and coordination of cached data among multiple nodes and reduces data access delay. Our basic idea is
to intentionally cache data at a set of Network Central Locations (NCLs), which can be easily accessed by other nodes in the network.
We propose an efficient scheme which ensures appropriate NCL selection based on a probabilistic selection metric and coordinates
multiple caching nodes to optimize the tradeoff between data accessibility and caching overhead. Extensive trace-driven simulations
show that our approach significantly improves data access performance compared to existing schemes.
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1 INTRODUCTION

Disruption Tolerant Networks (DTNs) [14] consist of mo-
bile devices which contact each other opportunistically.
Due to the low node density and unpredictable node
mobility, only intermittent network connectivity exists in
DTNs, and the subsequent difficulty of maintaining end-
to-end communication links makes it necessary to use
“carry-and-forward” methods for data transmission. Ex-
amples of such networks include groups of individuals
moving in disaster recovery areas, military battlefields,
or urban sensing applications [11]. In such networks,
node mobility is exploited to let mobile nodes carry
data as relays and forward data opportunistically when
contacting others. The key problem is therefore how to
determine the appropriate relay selection strategy.
Although forwarding schemes have been proposed in

DTNs [4], [1], [13], there is limited research on providing
efficient data access to mobile users, despite the im-
portance of data accessibility in many mobile applica-
tions. For example, it is desirable that Smartphone users
can find interesting digital content from their nearby
peers. In Vehicular Ad-hoc Networks (VANETs), the
availability of live traffic information will be beneficial
for vehicles to avoid traffic delays.
In these applications, data is only requested by mobile

users whenever needed, and requesters do not know
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data locations in advance. The destination of data is
hence unknown when data is generated. This communi-
cation paradigm differs from publish/ subscribe systems
[36], [25], in which data is forwarded by broker nodes to
users according to their data subscriptions. Appropriate
network design is needed to ensure that data can be
promptly accessed by requesters in such cases.
A common technique used to improve data access

performance is caching, i.e., to cache data at appropriate
network locations based on query history, so that queries
in the future can be responded with less delay. Although
cooperative caching has been studied for both web-based
applications [15] and wireless ad-hoc networks [35], [33],
[16], [38] to allow sharing and coordination among mul-
tiple caching nodes, it is difficult to be realized in DTNs
due to the lack of persistent network connectivity. First,
the opportunistic network connectivity complicates the
estimation of data transmission delay, and furthermore
makes it difficult to determine appropriate caching loca-
tions for reducing data access delay. This difficulty is also
raised by the incomplete information at individual nodes
about query history. Second, due to the uncertainty
of data transmission, multiple data copies need to be
cached at different locations to ensure data accessibility.
The difficulty in coordinating multiple caching nodes
makes it hard to optimize the tradeoff between data
accessibility and caching overhead.
In this paper, we propose a novel scheme to address

the aforementioned challenges and to efficiently sup-
port cooperative caching in DTNs. Our basic idea is
to intentionally cache data at a set of Network Central
Locations (NCLs), each of which corresponds to a group
of mobile nodes being easily accessed by other nodes
in the network. Each NCL is represented by a central
node, which has high popularity in the network and is
prioritized for caching data. Due to the limited caching
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Fig. 1. Caching strategies in different network environments. Data 𝑑1 generated by node 𝐴 is requested by nodes 𝐷
and 𝐸, and 𝑑2 generated by node 𝐵 is requested by node 𝐹 . A solid line in Figure 1(a) between nodes indicates a
wireless link, and a dotted line in Figure 1(b) indicates that two nodes opportunistically contact each other.

buffer of central nodes, multiple nodes near a central
node may be involved for caching, and we ensure that
popular data is always cached nearer to the central nodes
via dynamic cache replacement based on query history.
Our detailed contributions are listed as follows:

∙ We develop an efficient approach to NCL selection
in DTNs based on a probabilistic selection metric.
The selected NCLs achieve high chances for prompt
response to user queries with low overhead in net-
work storage and transmission.

∙ We propose a data access scheme to probabilistically
coordinate multiple caching nodes for responding to
user queries. We furthermore optimize the tradeoff
between data accessibility and caching overhead, to
minimize the average number of cached data copies
in the network.

∙ We propose a utility-based cache replacement
scheme to dynamically adjust cache locations based
on query history, and our scheme achieves good
tradeoff between the data accessibility and access
delay.

The rest of this paper is organized as follows. In
Section 2 we briefly review existing work. Section 3
provides an overview of our approach and highlights
our motivation of intentional caching in DTNs. Sec-
tion 4 describes how to appropriately select NCLs in
DTNs. Section 5 describes the details of our proposed
caching scheme, and Section 6 proposes load balancing
techniques among NCLs. The results of trace-driven
performance evaluations are shown in Section 7, and
Section 8 concludes the paper.

2 RELATED WORK

Research on data forwarding in DTNs originates from
Epidemic routing [34] which floods the entire network.
Some later studies focus on proposing efficient relay se-
lection metrics to approach the performance of Epidemic
routing with lower forwarding cost, based on prediction
of node contacts in the future. Some schemes do such
prediction based on their mobility patterns, which are
characterized by Kalman filter [8] or semi-Markov chains
[37]. In some other schemes, node contact pattern is
exploited as abstraction of node mobility pattern for

better prediction accuracy [4], [24], based on the experi-
mental [7] and theoretical [5] analysis of the node contact
characteristics. The social network properties of node
contact patterns, such as the centrality and community
structures, have also been also exploited for relay selec-
tion in recent social-based data forwarding schemes [9],
[22], [20].
The aforementioned metrics for relay selection can be

applied to various forwarding strategies, which differ in
the number of data copies created in the network. While
the most conservative strategy [32] always keeps a single
data copy and Spray-and-Wait [31] holds a fixed number
of data copies, most schemes dynamically determine the
number of data copies. In Compare-and-Forward [12], a
relay forwards data to another node whose metric value
is higher than itself. Delegation forwarding [13] reduces
forwarding cost by only forwarding data to nodes with
the highest metric.
Data access in DTNs, on the other hand, can be

provided in various ways [28]. Data can be disseminated
to appropriate users based on their interest profiles [18].
Publish/ subscribe systems [36], [25] were used for data
dissemination, where social community structures are
usually exploited to determine broker nodes. In other
schemes [24], [2] without brokers, data items are grouped
into pre-defined channels, and are disseminated based
on users’ subscriptions to these channels.
Caching is another way to provide data access. Coop-

erative caching in wireless ad-hoc networks was studied
in [35], in which each node caches pass-by data based
on data popularity, so that queries in the future can
be responded with less delay. Caching locations are
selected incidentally among all the network nodes. Some
research efforts [27], [21] have been made for caching
in DTNs, but they only improve data accessibility from
infrastructure network such as WiFi Access Points (APs)
[21] or Internet [27]. Peer-to-peer data sharing and access
among mobile users are generally neglected.
Distributed determination of caching policies for min-

imizing data access delay has been studied in DTNs [29],
[23], assuming simpified network conditions. In [29], it
is assumed that all the nodes contact each other with the
same rate. In [23], users are artificially partitioned into
several classes such that users in the same class are iden-



3

tical. In [19], data is intentionally cached at appropriate
network locations with generic data and query models,
but these caching locations are determined based on
global network knowledge. Comparatively, in this paper
we propose to support cooperative caching in a fully
distributed manner in DTNs, with heterogeneous node
contact patterns and behaviors.

3 OVERVIEW

3.1 Motivation

A requester queries the network for data access, and the
data source or caching nodes reply to the requester with
data after having received the query. The key difference
between caching strategies in wireless ad-hoc networks
and DTNs is illustrated in Figure 1. Note that each node
has limited space for caching. Otherwise, data can be
cached everywhere, and it is trivial to design different
caching strategies.
The design of caching strategy in wireless ad-hoc

networks benefits from the assumption of existing end-
to-end paths among mobile nodes, and the path from a
requester to the data source remains unchanged during
data access in most cases. Such assumption enables any
intermediate node on the path to cache the pass-by data.
For example, in Figure 1(a), 𝐶 forwards all the three
queries to data sources 𝐴 and 𝐵, and also forwards data
𝑑1 and 𝑑2 to the requesters. In case of limited cache
space, 𝐶 caches the more popular data 𝑑1 based on
query history, and similarly data 𝑑2 is cached at node
𝐾 . In general, any node could cache the pass-by data
incidentally.
However, the effectiveness of such an incidental

caching strategy is seriously impaired in DTNs, which
do not assume any persistent network connectivity. Since
data is forwarded via opportunistic contacts, the query
and replied data may take different routes, and it is
difficult for nodes to collect the information about query
history and make caching decision. For example, in
Figure 1(b), after having forwarded query 𝑞2 to 𝐴, node
𝐶 loses its connection to 𝐺, and cannot cache data 𝑑1
replied to requester 𝐸. Node 𝐻 which forwards the
replied data to 𝐸 does not cache the pass-by data 𝑑1
either, because it did not record query 𝑞2 and considers
𝑑1 less popular. In this case, 𝑑1 will be cached at node
𝐺, and hence needs longer time to be replied to the
requester.
Our basic solution to improve caching performance

in DTNs is to restrain the scope of nodes being in-
volved for caching. Instead of being incidentally cached
“anywhere”, data is intentionally cached only at spe-
cific nodes. These nodes are carefully selected to ensure
data accessibility, and constraining the scope of caching
locations reduces the complexity of maintaining query
history and making caching decision.

3.2 Network Model

Opportunistic contacts in DTNs are described by a net-
work contact graph 𝐺(𝑉,𝐸), where the stochastic contact

Fig. 2. The big picture of intentional caching

process between a node pair 𝑖, 𝑗 ∈ 𝑉 is modeled as
an edge 𝑒𝑖𝑗 ∈ 𝐸. We assume that node contacts are
symmetric; i.e., node 𝑗 contacts 𝑖 whenever 𝑖 contacts 𝑗,
and the network contact graph is therefore undirected.
The characteristics of an edge 𝑒𝑖𝑗 ∈ 𝐸 are determined by
the properties of inter-contact time among nodes. Similar
to previous work [1], [39], we consider the pairwise node
inter-contact time as exponentially distributed. Contacts
between nodes 𝑖 and 𝑗 then form a Poisson process with
contact rate 𝜆𝑖𝑗 , which is calculated in real time from
the cumulative contacts between nodes 𝑖 and 𝑗 since the
network starts. In the rest of this paper, we call the node
set {𝑗∣𝜆𝑖𝑗 > 0} ⊆ 𝑉 as the contacted neighbors of 𝑖.

3.3 The Big Picture

We consider a general caching scenario, in which each
node may generate data with a globally unique iden-
tifier1 and finite lifetime, and may also request other
data by sending queries with a finite time constraint.
In practice, such scenario could correspond to various
types of disaster environments, which contain mobile
users being rescued after hurricane, fire accidents, or
earthquake. In these scenarios, the cellular 3G infrastruc-
ture may usually be unavailable, or provide too limited
bandwidth to transmit data traffic. Instead, mobile users
rely on their opportunistic contacts for accessing data,
which can be live weather report, traffic condition, or
government rescue plan. Similarly, a platoon of soldiers
in the military battlefield may lose the satellite connec-
tion due to enemy attacks, and have to distribute battle
reports via their opportunistic contacts.
In these scenarios, either a data item or a query is

described by a set of keywords over a keyword space
[18], so that caching nodes can determine the appropriate
data that a user is interested in. In these scenarios, data
requesters are randomly distributed in the network. We
focus on efficiently utilizing the available node buffer
to optimize the overall caching performance, which is
measured by the successful ratio and delay for mobile
users to access different data items.
Our basic idea is to intentionally cache data only at

a specific set of NCLs, which can be easily accessed by
other nodes in the network. Queries are forwarded to

1. We assign the identifier of each data item as combination of
data source’s ID and an non-decreasing sequence number, which is
maintained by data source and increases whenever a new data item is
generated by the source.
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Fig. 3. Opportunistic path

NCLs for data access2. The big picture of our proposed
scheme is illustrated in Figure 2. Each NCL is repre-
sented by a central node, which corresponds to a star in
Figure 2. The push and pull caching strategies conjoin
at the NCLs. The data source 𝑆 actively pushes its
generated data towards the NCLs, and the central nodes
𝐶1 and 𝐶2 of NCLs are prioritized for caching data. If
the buffer of a central node 𝐶1 is full, data is cached at
another node 𝐴 near 𝐶1. Multiple nodes at a NCL may
be involved for caching, and a NCL hence corresponds
to a connected subgraph of the network contact graph
𝐺, as the dashed circles illustrated in Figure 2. Note that
NCLs may be overlapping with each other, and a node
being involved for caching may belong to multiple NCLs
simultaneously. A requester 𝑅 pulls data by querying
NCLs, and data copies from multiple NCLs are returned
to ensure prompt data access. Particularly, some NCL
such as 𝐶2 may be too far from 𝑅 to receive the query
on time, and does not respond with data. In this case,
data accessibility is determined by both node contact
frequency and data lifetime.
Nodes in DTNs are well motivated to contribute their

local resources for caching data, because the cached data
provides prompt data access to the caching nodes them-
selves. As illustrated by Figure 2, since the central nodes
representing NCLs are prioritized for caching data, the
closer a requester is to a central node, the sooner its
queries are responded by the corresponding NCL. The
delay for responding to queries generated from central
nodes is, obviously, the shortest.

4 NETWORK CENTRAL LOCATIONS

In this section, we describe how to select NCLs based on
a probabilistic metric evaluating the data transmission
delay among nodes in DTNs; we validate the applicabil-
ity of such metric in practice based on the heterogeneity
of node contact pattern in realistic DTN traces. Further-
more, we propose detailed methods for selecting NCLs
in practice based on different availability of network
information.

4.1 NCL Selection Metric

We first define the multi-hop opportunistic connection
on network contact graph 𝐺 = (𝑉,𝐸).
Definition 1: Opportunistic path
A 𝑟-hop opportunistic path 𝑃𝐴𝐵 = (𝑉𝑃 , 𝐸𝑃 ) be-

tween nodes 𝐴 and 𝐵 consists of a node set 𝑉𝑃 =
{𝐴,𝑁1, 𝑁2, ..., 𝑁𝑟−1, 𝐵} ⊂ 𝑉 and an edge set 𝐸𝑃 =
{𝑒1, 𝑒2, ..., 𝑒𝑟} ⊂ 𝐸 with edge weights {𝜆1, 𝜆2, .., 𝜆𝑟}. Path

2. Note that our scheme is different from publish/ subscribe system,
in which published data is forwarded to subscribers instead of being
cached by brokers.

weight 𝑝𝐴𝐵(𝑇 ) is the probability that data is opportunistically
transmitted from 𝐴 to 𝐵 along 𝑃𝐴𝐵 within time 𝑇 .
An opportunistic path is illustrated in Figure 3. As

described in Section 3.2, the inter-contact time 𝑋𝑘 be-
tween nodes 𝑁𝑘 and 𝑁𝑘+1 on 𝑃𝐴𝐵 follows exponen-
tial distribution with probability density function (PDF)
𝑝𝑋𝑘

(𝑥) = 𝜆𝑘𝑒
−𝜆𝑘𝑥. Hence, the time needed to transmit

data from 𝐴 to 𝐵 is 𝑌 =
∑𝑟

𝑘=1 𝑋𝑘 following a hypoex-
ponential distribution [30], such that

𝑝𝑌 (𝑥) =
𝑟∑

𝑘=1

𝐶
(𝑟)
𝑘 𝑝𝑋𝑘

(𝑥), (1)

where the coefficients 𝐶(𝑟)
𝑘 =

𝑟∏
𝑠=1,𝑠∕=𝑘

𝜆𝑠

𝜆𝑠−𝜆𝑘
.

From Eq. (1), the path weight is written as

𝑝𝐴𝐵(𝑇 ) =

∫ 𝑇

0

𝑝𝑌 (𝑥)𝑑𝑥 =

𝑟∑
𝑘=1

𝐶
(𝑟)
𝑘 ⋅ (1− 𝑒−𝜆𝑘𝑇 ), (2)

and the data transmission delay between two nodes 𝐴
and 𝐵, indicated by the random variable 𝑌 , is measured
by the weight of the shortest opportunistic path between
the two nodes. In practice, mobile nodes maintain the
information about shortest opportunistic paths between
each other in a distance-vector manner when they come
into contact.
The metric 𝐶𝑖 for a node 𝑖 to be selected as a central

node to represent a NCL is then defined as follows:

𝐶𝑖 =
1

∣𝑉 ∣ ⋅
∑
𝑗∈𝑉

𝑝𝑖𝑗(𝑇 ), (3)

where we define that 𝑝𝑖𝑖(𝑇 ) = 0. This metric indicates the
average probability that data can be transmitted from a
random node to node 𝑖 within time 𝑇 . From Eq. (3), it
is obvious that the value of 𝐶𝑖 decreases exponentially
when 𝑇 decreases.

TABLE 1
Trace summary

Trace Infocom05 Infocom06 MIT Reality UCSD
Network type Bluetooth Bluetooth Bluetooth WiFi
No. devices 41 78 97 275
No. contacts 22,459 182,951 114,046 123,225

Duration (days) 3 4 246 77
Granularity (secs) 120 120 300 20
Avg. inter-contact 3.43 1.83 84.13 47.17

time (hours)

4.2 Trace-based Validation

The practical applicability of the aforementioned NCL
selection metric is based on the heterogeneity of node
contact patterns, such that nodes in DTNs differ in
their popularity and few nodes contact many others
frequently. In this section, we validate this applicability
using realistic DTN traces.
These traces record contacts among users carrying

mobile devices in conference sites and university cam-
puses. The mobile devices, including Mica2 sensors or
smartphones, are distributed to users being participated
into the experiment. Devices equipped with Bluetooth
interface periodically detect their peers nearby, and a
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(a) Infocom05 (b) Infocom06 (c) MIT Reality (d) UCSD

Fig. 4. Values of NCL selection metric on realistic DTN traces

contact is recorded when two devices move close to each
other. Devices equipped with WiFi interface search for
nearby WiFi Access Points (APs) and associate them-
selves to APs with the best signal strength. A contact
is recorded when two devices are associated to the same
AP. The detected contacts are recorded in the local stor-
age of mobile devices. After the experiment ends, these
devices are called back so that the recorded contacts are
processed and analyzed. The traces are summarized in
Table 1.
We calculate pairwise node contact rates based on their

cumulative contacts during the entire trace. According
to Eq. (2), inappropriate values of 𝑇 make 𝐶𝑖 close to
0 or 1. Instead, values of 𝑇 are adaptively determined
in different traces to ensure the differentiation of NCL
selection metric values of nodes. 𝑇 is set as 1 hour for
the two Infocom traces, 1 week for the MIT Reality trace,
and 3 days for the UCSD trace.
The results in Figure 4 show that the distributions of

NCL selection metric values are skewed in all traces,
and the metric values of few nodes are much higher
than that of others. This difference can be up to tenfold,
and suggests that our proposed NCL selection metric
efficiently indicates the heterogeneity of node contact
pattern. Hence, this metric ensures the selected NCLs
can be easily accessed by other nodes.

4.3 Practical NCL Selection

In this section, we propose methods for selecting the
required 𝐾 NCLs in practice based on the NCL selection
metric proposed in Section 4.1. We consider 𝐾 as a pre-
defined parameter determined by the network perfor-
mance requirements, which will be discussed later in
Section 5.5 in more detail.
In general, network information about the pairwise

node contact rates and shortest opportunistic paths
among mobile nodes are required to calculate the metric
values of mobile nodes according to Eq. (3). However,
the maintenance of such network information is expen-
sive in DTNs due to the lack of persistent end-to-end
network connectivity. As a result, we will first focus
on selecting NCLs with the assumption of complete
network information from the global perspective. After-
wards, we propose distributed NCL selection methods
which efficiently approximate global selection results

and can operate on individual nodes in an autonomous
manner.

4.3.1 Global Selection
When global network knowledge about the pairwise
node contact rates and shortest opportunistic paths
among mobile nodes are available, central nodes rep-
resenting NCLs can be selected sequentially by the net-
work administrator before data access. Let ℕ𝐶 denote
the set of selected central nodes; every time the node in
𝑉 ∖ ℕ𝐶 with the highest metric value is selected as the
next central node, until the required 𝐾 central nodes are
selected. In particular, we exclude the set ℕ𝐶 of existing
central nodes from calculating 𝐶𝑖 in Eq. (3), i.e.,

𝐶𝑖 =
1

∣𝑉 ∖ ℕ𝐶 ∣ ⋅
∑

𝑗∈𝑉 ∖ℕ𝐶

𝑝𝑖𝑗(𝑇 ). (4)

By doing so we ensure that the selected central nodes
will not be clustered on the network contact graph. The
parameter 𝑇 used in Eq. (4) is determined by the aver-
age node contact frequency. This parameter is generally
trace-dependent and was discussed in Section 4.2 for
different DTN traces.
A network warm-up period is reserved for nodes to

collect information and calculate their pairwise contact
rates as described in Section 3.2, and central nodes are
selected after the warm-up period ends. Data is unable to
be intentionally cached at the NCLs during the warm-up
period. Instead, data is incidentally cached by nodes in
the network, as described in Section 3.1, for data access.
In particular, every requester sends queries directly to
the data source, and caches the received data locally for
responding other pass-by queries in the future.
After the central nodes representing NCLs are se-

lected, the network administrator is responsible for no-
tifying each node in the network about the information
of NCLs via cellular or satellite links. Since each node
is only notified about the identifiers of central nodes,
this notification is cost-effective without producing no-
ticeable communication overhead, even in cases where
the central nodes frequently change. Note that the central
nodes are selected due to their popularity in the network,
rather than their computation or storage capabilities.
Therefore, in general we assume that the central nodes
have similar capabilities in computation, data transmis-
sion and storage with other nodes in DTNs. Later in
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Section 6, we will furthermore study load balancing
among central nodes when their local resources are
depleted.

4.3.2 Distributed Selection

When global network knowledge is unavailable, a node
maintains information about pairwise contact rates and
shortest opportunistic paths to other nodes via op-
portunistic contacts. According to Definition 1 of the
opportunistic path, Lemma 1 formally shows that the
distributed maintenance of opportunistic paths in DTNs
cannot be done in an iterative manner.
Lemma 1: There does not exist a function 𝑓(𝜆, 𝑇 ), such

that for any opportunistic path 𝑃𝐴𝐵 = (𝐴,𝑁1, ..., 𝑁𝑟−1, 𝐵)
with edge weights {𝜆1, 𝜆2, ..., 𝜆𝑟},

𝑝𝐴𝐵(𝑇 ) = 𝑝𝐴𝑁𝑟−1(𝑇 )⊗ 𝑓(𝜆𝑟, 𝑇 ),

where ⊗ can be any arbitrary arithmetic operation.
Proof: The difficulty of calculating 𝑝𝐴𝐵(𝑇 ) in an

iterative manner mainly comes from the properties of the
coefficients 𝐶(𝑟)

𝑘 in Eq. (2). When a new edge (𝑁𝑟−1, 𝐵)
with weight 𝜆𝑟 is added into a path 𝐴𝑁𝑟−1, such coeffi-
cients are modified as

𝐶
(𝑟)
𝑘 =

⎧⎨
⎩
𝐶

(𝑟−1)
𝑘 ⋅ 𝜆𝑘

𝜆𝑟−𝜆𝑘
, 𝑘 ∕= 𝑟

𝑟−1∏
𝑠=1

𝜆𝑠

𝜆𝑠−𝜆𝑟
, 𝑘 = 𝑟

(5)

We have two observations from Eq. (5). First, each
coefficient 𝐶(𝑟)

𝑘 (𝑘 ∕= 𝑟) is updated by multiplying a dis-
tinct value 𝜆𝑘

𝜆𝑟+1−𝜆𝑘
. Second, calculation of 𝐶(𝑟)

𝑟 involves
all the edge weights 𝜆1, ..., 𝜆𝑟−1. Both of them make it
impossible to calculate 𝑝𝐴𝐵(𝑇 ) solely from 𝑝𝐴𝑁𝑟−1(𝑇 )
and 𝜆𝑟.
Instead, a node 𝑖 needs to maintain the complete op-

portunistic paths to other nodes in the network. Initially,
each node only has the information about its contacted
neighbors. When a node 𝐴 contacts another node 𝐵, they
exchange and update their opportunistic path tables.
More specifically, for a record of node 𝐶 in 𝐵’s table,
if 𝐶 has not been recorded at 𝐴, 𝐴 adds this record into
its own table. Otherwise, if the path to 𝐶 recorded by 𝐵
has larger weight than that recorded by 𝐴, 𝐴 updates its
local record about 𝐶.
Being similar with global NCL selection, a network

warm-up period is reserved for nodes to exchange
and maintain necessary information about opportunistic
paths to others. However, a longer warm-up period is
needed for distributed NCL selection because multi-
hop opportunistic data transmission is required for dis-
tributed maintenance of such information.
Afterwards, each node in the network autonomously

calculates the value of its NCL selection metric according
to Eq. (3) and broadcasts this value to the network.
After a pre-defined broadcasting period, a node having
received these values then selects the nodes with the 𝐾
highest metric values as the central nodes representing
NCLs.

Fig. 5. Inconsistency in distributed NCL selection when
𝐾 = 3

However, due to the uncertainty of opportunistic data
transmission in DTNs, the broadcasting range of a par-
ticular node may not cover the entire network. Such
broadcasting range in DTNs can be formally bounded
by the following lemma:
Lemma 2: Suppose that node 𝐴 broadcast its metric value

at time 𝑡0 and 𝕊𝐴(𝑡0, 𝑡) denotes the set of nodes which have
received 𝐴’s information by time 𝑡0 + 𝑡. We have

ℙ(∣𝕊𝐴(𝑡0, 𝑡)∣ ≥ 𝑛) ≥ (1− 𝑒−ℎ𝐺𝑡)𝑛−1, (6)
where

ℎ𝐺 = min
𝑈⊂𝑉

∑
𝑖∈𝑈,𝑗∈𝑉 ∖𝑈 𝜆𝑖𝑗

min(∣𝑈 ∣, ∣𝑉 ∖ 𝑈 ∣) (7)

is an invariant only depending on the characteristics of the
network contact graph.

Proof: Letting 𝑇𝑘 be the time by which at least 𝑘
nodes in the network have received the information of
node 𝐴, i.e., 𝑇𝑘 = inf{𝑡, s.t.∣𝕊𝐴(𝑡0, 𝑡)∣ ≥ 𝑘}, we can easily
have

ℙ(𝑇𝑘 − 𝑇𝑘−1 ≤ 𝑡) = 1− 𝑒−Λ𝑡,

which means that the random variable 𝑇𝑘−𝑇𝑘−1 is expo-
nentially distributed with parameter Λ =

∑
𝑖∈𝑆,𝑗∈𝑉 ∖𝑆 𝜆𝑖𝑗 ,

and 𝑆 = 𝕊𝐴(𝑡0, 𝑇𝑘−1). According to definition of ℎ𝐺 in
Eq. (7),

Λ ≥ ℎ𝐺 ⋅min(∣𝑆∣, ∣𝑉 ∖ 𝑆∣) ≥ (𝑘 − 1)ℎ𝐺,

and hence we have

ℙ(∣𝕊𝐴(𝑡0, 𝑡)∣ ≥ 𝑘) ≥ 1− ℙ(

𝑘−1∑
𝑗=1

𝑋𝑗 ≥ 𝑡), (8)

where 𝑋𝑗 is exponentially distributed with parameter
𝑗ℎ𝐺. This lemma is then proved via induction over 𝑘
based on Eq. (8).
From Lemma 2, we can see that the metric value of

a particular node can only be broadcasted to the entire
network after a sufficiently long period of time. In this
case, the distributed NCL selections made at individ-
ual nodes may be inconsistent. Such inconsistency is
illustrated in Figure 5, where the numbers in brackets
indicate the values of nodes’ NCL selection metric. Due
to the limited time for broadcasting, node 𝐴 is unaware
of 𝐶4 which has a high metric value of 0.75, and hence
selects 𝐶3 with a lower metric value as the central node
when 𝐾 = 3. This sub-optimal selection 𝐴 made then
becomes inconsistent with 𝐵’s selections.
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(a) Infocom05 (b) Infocom06 (c) MIT Reality (d) UCSD

Fig. 6. Sub-optimality of distributed NCL selection on realistic DTN traces

Based on Lemma 2, we have the following theorem
which evaluates the occurrence probability of such in-
consistency.
Theorem 1: After a broadcasting period 𝑇 , the probability

that the NCL selections made by two arbitrary nodes 𝐴 and
𝐵 in the network are inconsistent is no larger than 1− (1−
2𝑝(1 − 𝑝))𝐾 , where 𝐾 is the pre-defined number of NCLs,
and

𝑝 =

𝑁∑
𝑛=1

(1 − 𝑒−ℎ𝐺𝑇 )𝑛−1 ⋅ (1− 𝑛

𝑁
) (9)

Proof: Suppose that 𝑁1, ..., 𝑁𝐾 are the central nodes
being selected with global network information. For each
𝑁𝑖, if the information of its metric value has been re-
ceived by 𝑛 nodes after the broadcasting period 𝑇 , node
𝐴 has the probability 1 − 𝑛/𝑁 for not having received
such information. Therefore, 𝑝 in Eq. (9) indicates the
probability that the information of 𝑁𝑖 has not been
received by node 𝐴, according to Lemma 2.
It is easy to see that the same probability 𝑝 also applies

to node 𝐵. As a result, 1− 2𝑝(1− 𝑝) provides an upper
bound on the probability that the NCL selections made
by nodes 𝐴 and 𝐵 are inconsistent on any 𝑁𝑖 for 1 ≤
𝑖 ≤ 𝐾 , and this theorem is therefore proved.
The inconsistency illustrated in Figure 5 can generally

be solved by two methods. The first and more straight-
forward method is to extend the broadcasting period,
so that each node is aware of the metric values of all
the other nodes in the network. However, this method
may be impractical in some mobile applications with
strict requirements of timeliness. Another alternative is
to opportunistically correct sub-optimal NCL selections
when nodes contact each other. More specifically, each
node maintains the list of its selected central nodes and
their metric values. They exchange such information
whenever they contact other and replace the selected
central nodes if better ones are found. For example in
Figure 5, node 𝐴 is able to find out that 𝐶4 is a better
choice as a central node when it contacts node 𝐵.
At last, we evaluate the performance of distributed

NCL selection using realistic DTN traces. Due to the
aforementioned inconsistency, central nodes selected by
individual nodes may be sub-optimal, and we evaluate
this sub-optimality at a node 𝑖 as 1

𝐾

∑𝐾
𝑗=1 ∣𝐼𝑗 − 𝑗∣, where

the 𝑗-th central node selected by node 𝑖 has the 𝐼𝑗 -

th largest metric value in the network3. The average
sub-optimality over all the nodes in the network with
different broadcasting periods 𝑇 is shown in Figure 6.
In general, Figure 6 shows that the performance of dis-
tributed NCL selection is closely related with the length
of 𝑇 . The selected central nodes are far from optimal
when 𝑇 is small, but will be quickly improved when 𝑇
increases. When 𝑇 is sufficiently large, the performance
of distributed NCL selection closely approximates that
of global selection.
Figure 6 shows that the sub-optimality of selected cen-

tral nodes generally increases with the value of𝐾 , which
is consistent with our theoretical expectation in Theorem
1. However, by comparing Figure 6 with Figure 4, we
notice that this sub-optimality may also be diminished
if the value of 𝐾 is appropriately selected to reflect the
heterogeneity of network contact pattern. For example,
Figure 4(b) shows that the metric values of 5 nodes are
much higher than those of other nodes in the Infocom06
trace. Correspondingly, the sub-optimality of distributed
NCL selection can be reduced as shown in Figure 6(b)
when the value of 𝐾 is changed from 3 to 5. Similar
cases are also found in all the other traces.

5 CACHING SCHEME

In this section, we present our cooperative caching
scheme. Our basic idea is to intentionally cache data
at a set of NCLs which can be promptly accessed by
other nodes. Our scheme consists of the following three
components:

1) When a data source generates data, it pushes data
to central nodes of NCLs which are prioritized to
cache data. One copy of data is cached at each
NCL. If the caching buffer of a central node is
full, another node near the central node will cache
the data. Such decisions are automatically made
based on buffer conditions of nodes involved in
the pushing process.

2) A requester multicasts a query to central nodes of
NCLs to pull data, and a central node forwards the
query to the caching nodes. Multiple data copies
are returned to the requester, and we optimize

3. We have 𝐼𝑗 = 𝑗 for ∀𝑗 if the optimal central nodes are selected.
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Fig. 7. Determining caching location at NCLs

the tradeoff between data accessibility and trans-
mission overhead by controlling the number of
returned data copies.

3) Utility-based cache replacement is conducted
whenever two caching nodes contact and ensures
that popular data is cached nearer to central nodes.
We generally cache more copies of popular data to
optimize the cumulative data access delay. We also
probabilistically cache less popular data to ensure
the overall data accessibility.

5.1 Caching Location

Whenever a node 𝑆 generates new data, 𝑆 pushes the
data to NCLs by sending a data copy to each central
node representing a NCL. We use the opportunistic path
weight to the central node as relay selection metric
for such data forwarding, and a relay forwards data
to another node with a higher metric than itself. This
“Compare-and-Forward” strategy has been widely used
in the literature [10], [9] for efficient data forwarding.
According to Definition 1 on opportunistic path, this
strategy probabilistically ensures that each forwarding
reduces the remaining delay for data to be delivered to
the central node.
For newly generated data, the initial caching locations

are automatically determined during the forwarding
process based on node buffer conditions. The caching
locations are then dynamically adjusted by cache re-
placement described in Section 5.4 according to query
history. In general, data is forwarded to and cached at
central nodes. This forwarding process only stops when
the caching buffer of the next relay is full4, and data is
cached at the current relay in such cases. In other words,
during the data forwarding process towards central
nodes, relays carrying data are considered as temporal
caching locations of the data.
Such determination of caching location is illustrated

in Figure 7, where the solid lines indicate opportunistic
contacts used to forward data, and the dashed lines indi-
cate data forwarding stopped by node buffer constraint.
Central node 𝐶1 is able to cache data, but data copies
to 𝐶2 and 𝐶3 are stopped and cached at relays 𝑅2

4 and
𝑅3

3 respectively, because neither 𝐶2 nor 𝑅3
4 has enough

buffer to cache data. Note that the caching location at

4. Since the data is newly generated and has not been requested yet,
no cache replacement is necessary at the relay.

Fig. 8. Pulling data from the NCLs

a NCL may not be the contacted neighbor of a central
node, like the case of nodes 𝑅3

3 in Figure 7.
From this strategy, it is easy to see that the set of

caching nodes at each NCL forms a connected subgraph
of the network contact graph at any time during data
access. This property essentially facilitates the delivery
of user queries to the caching nodes, which is described
in Section 5.2.

5.2 Queries

We assume that any node may request data, and hence
data requesters are randomly distributed in the network.
A requester multicasts a query with a finite time con-
straint to all the central nodes to pull data, and existing
multicast schemes in DTNs [20] can be exploited for this
purpose.
After having received the query, a central node imme-

diately replies to the requester with data if it is cached
locally5. Otherwise, it broadcasts the query to the nodes
nearby. This process is illustrated in Figure 8. While the
central node 𝐶1 is able to return the cached data to 𝑅
immediately, the caching nodes 𝐴 and 𝐵 only reply to
𝑅 after they receive the query from central nodes 𝐶2

and 𝐶3, respectively. The query broadcast finishes when
query expires. Each caching node at NCLs maintains up-
to-date information about query history, which is used
in Section 5.4 for cache replacement.

5.3 Probabilistic Response

As shown in Figure 8, multiple data copies are replied
to the requester from NCLs to ensure that the requester
receives data before query expires. However, only the
first data copy received by the requester is useful, and
all the others are essentially useless and waste network
resources. The major challenge for solving this problem
arises from the intermittent network connectivity in
DTNs. First, it is difficult for caching nodes to promptly
communicate with each other, and hence the optimal
number of data copies returned to the requester cannot
be determined in advance. Second, a relay carrying a
data copy does not know the locations of other data
copies being returned, and therefore cannot determine
whether the requester has received data.

5. Particularly, if a caching node is selected as the relay during
multicasting of a query, it directly sends the cached data to the
requester, without forwarding the query to the central node.
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Fig. 9. Probability for deciding data response

In this section, we propose a probabilistic scheme
to address these challenges and optimize the tradeoff
between data accessibility and transmission overhead.
Our basic idea is that, having received the query, a
caching node probabilistically decides whether to return
the cached data to the requester. Different strategies are
used for this decision, according to the availability of
network contact information.
We assume that a query is generated with a time

constraint 𝑇𝑞, and it takes 𝑡0 < 𝑇𝑞 for it to be forwarded
from requester 𝑅 to caching node 𝐶. If 𝐶 knows the
information about the shortest opportunistic paths to all
the nodes in the network, 𝐶 can determine whether to
reply data to 𝑅 with the probability 𝑝𝐶𝑅(𝑇𝑞 − 𝑡0). Ac-
cording to Eq. (2), 𝑝𝐶𝑅(𝑇𝑞 − 𝑡0) indicates the probability
that data can be transmitted from 𝐶 to 𝑅 within the
remaining time 𝑇𝑞 − 𝑡0 for responding to the query.
Otherwise, 𝐶 only maintains information about short-

est opportunistic paths to central nodes, and it is difficult
for 𝐶 to estimate the data transmission delay to 𝑅.
Instead, the probability for deciding data response is
calculated only based on the remaining time 𝑇𝑞−𝑡0. This
probability should be proportional to 𝑇𝑞 − 𝑡0, and we
calculate this probability as a Sigmoid function 𝑝𝑅(𝑡),
where 𝑝𝑅(𝑇𝑞) = 𝑝max ∈ (0, 1] and 𝑝𝑅(0) = 𝑝min ∈
(𝑝max/2, 𝑝max). This function is written as

𝑝𝑅(𝑡) =
𝑘1

1 + 𝑒−𝑘2⋅𝑡 , (10)

where 𝑘1 = 2𝑝min, 𝑘2 = 1
𝑇𝑞

⋅ ln( 𝑝max

2𝑝min−𝑝max
). The quantities

𝑝max and 𝑝min in Eq. (10) are user-specified parameters
of the maximum and minimum response probabilities.
As an example, the sigmoid function with 𝑝min = 0.45,
𝑝max = 0.8, and 𝑇𝑞 = 10 hours is shown in Figure 9.

5.4 Cache Replacement

For each data item in the network, the locations where
it is cached are dynamically adjusted via cache replace-
ment. This replacement is based on data popularity,
and generally places popular data nearer to the central
nodes of NCLs. Traditional cache replacement strate-
gies such as LRU, which removes the least-recently-
used data from cache when new data is available, are
ineffective due to its over-simplistic consideration of data
popularity. Greedy-Dual-Size [6] calculates data utility
by considering data popularity and size simultaneously,

but cannot ensure optimal selection of cached data. We
improve previous work by proposing a probabilistic
cache replacement strategy, which appropriately selects
the data to be cached and heuristically balances between
the cumulative data accessibility and access delay.

5.4.1 Data Popularity
The popularity of a data item is probabilistically esti-
mated based on the past 𝑘 requests to this data during
time period [𝑡1, 𝑡𝑘]. We assume that such occurrences of
data requests follow a Poisson distribution with the pa-
rameter 𝜆𝑑 = 𝑘/(𝑡𝑘 − 𝑡1), and data popularity is defined
as the probability that this data will be requested again in
the future before data expires. If data 𝑑𝑖 expires at time
𝑡𝑒, its popularity is 𝑤𝑖 = 1 − 𝑒−𝜆𝑑⋅(𝑡𝑒−𝑡𝑘). To calculate
𝑤𝑖, a node only needs to recursively maintain two time
values about the past occurrences of data requests, and
therefore will only incur negligible space overhead.

5.4.2 Basic Strategy
Cache replacement opportunistically occurs whenever
two caching nodes 𝐴 and 𝐵 contact. The two nodes ex-
change their cached data to optimize the cumulative data
access delay6. We collect the cached data at both nodes
into a selection pool 𝕊 = {𝑑1, ..., 𝑑𝑛}, and formulate cache
replacement as follows:

max

𝑛∑
𝑖=1

𝑥𝑖𝑢𝑖 +

𝑛∑
𝑗=1

𝑦𝑗𝑣𝑗

s.t.
𝑛∑
𝑖=1

𝑥𝑖𝑠𝑖 ≤ 𝑆𝐴,

𝑛∑
𝑗=1

𝑦𝑗𝑠𝑗 ≤ 𝑆𝐵

𝑥𝑖 + 𝑦𝑖 ≤ 1, for ∀𝑖 ∈ [1, 𝑛],

(11)

where 𝑥𝑖, 𝑦𝑖 ∈ [0, 1] indicate whether data 𝑑𝑖 is cached
at node 𝐴 and 𝐵 after replacement, respectively. 𝑠𝑖
indicates size of data 𝑑𝑖, and 𝑆𝐴 and 𝑆𝐵 are the buffer
sizes of 𝐴 and 𝐵. 𝑢𝑖 = 𝑤𝑖 ⋅ 𝑝𝐴 and 𝑣𝑖 = 𝑤𝑖 ⋅ 𝑝𝐵 indicate
the utility of data 𝑑𝑖 at 𝐴 and 𝐵 to cumulative caching
performance, where 𝑤𝑖 is popularity of data 𝑑𝑖; 𝑝𝐴 and
𝑝𝐵 are the weight of the shortest opportunistic path to
the corresponding central node.
This formulation places popular data to caching nodes

near the central nodes. It is NP-hard since the standard
0-1 knapsack problem can reduce to this problem. We
propose a heuristic to approximate the solution of this
problem.
Without loss of generality we assume that 𝑝𝐴 > 𝑝𝐵 ,

and node 𝐴 is prioritized to select its data to cache from
𝕊 by solving the following problem extracted from Eq.
(11):

max

𝑛∑
𝑖=1

𝑥𝑖𝑢𝑖

s.t.
𝑛∑
𝑖=1

𝑥𝑖𝑠𝑖 ≤ 𝑆𝐴.

(12)

6. Since nodes only exchange data when they contact, it is unneces-
sary for a caching node to actively remove obsolete data from its local
cache.
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(a) Normal cache replacement

(b) Possible data removal

Fig. 10. Cache replacement

Afterwards, node 𝐵 selects data to cache from the
remaining part of 𝕊 by solving a similar problem to Eq.
(12). Since 𝑆𝐴 and 𝑠𝑖 in Eq. (12) are usually integers in
numbers of bytes, this problem can be solved in pseudo-
polynomial time 𝑂(𝑛⋅𝑆𝐴) using a dynamic programming
approach [26].
This replacement process is illustrated in Figure 10,

where initially node 𝐴 caches data 𝑑1, 𝑑2 and 𝑑3, and
node 𝐵 caches data 𝑑4, 𝑑5, 𝑑6 and 𝑑7. The two nodes
exchange and replace their cached data upon contact,
based on the data utility values listed as 𝑢𝐴 and 𝑢𝐵 . As
shown in Figure 10(a), since 𝑝𝐴 > 𝑝𝐵 , node 𝐴 generally
caches the popular data 𝑑4, 𝑑5 and 𝑑7, and leaves data
𝑑2 and 𝑑3 with lower popularity to node 𝐵.
In cases of limited cache space, some cached data with

lower popularity may be removed from caching buffer.
In Figure 10(b), when the sizes of caching buffer of nodes
𝐴 and 𝐵 decrease, 𝐴 does not have enough buffer to
cache data 𝑑7, which is instead cached at node 𝐵. Data
𝑑6 with the lowest popularity will then be removed from
cache, because neither node 𝐴 nor 𝐵 has enough space
to cache it.

5.4.3 Probabilistic Data Selection

The aforementioned removal of cached data essentially
prioritizes popular data during cache replacement, but
may impair the cumulative data accessibility. The ma-
jor reason is that, according to our network modeling
in Section 3.2, the data accessibility does not increase
linearly with the number of cached data copies in the
network. More specifically, the data accessibility will in-
crease considerably if the number of cached data copies
increases from 1 to 2, but the benefit will be much smaller
if the number increases from 10 to 11. In such cases,
for the example shown in Figure 10(b), caching 𝑑1 at
node 𝐴 may be ineffective, because the popular 𝑑1 may
already be cached at many other places in the network.
In contrast, removing 𝑑6 out from the cache of node 𝐵
may greatly impair the accessibility of 𝑑6, because there

Algorithm 1: Probabilistic Data Selection at node 𝐴
among the data set 𝕊

𝑖min = argmin
𝑖
{𝑠𝑖∣𝑑𝑖 ∈ 𝕊, 𝑥𝑖 == 0}1

while 𝕊 ∕= ∅ && 𝑆𝐴 > 𝑠𝑖min do2

𝑉max = GetMax(𝕊, 𝑆𝐴)3

𝕊′ = 𝕊4

while 𝕊′ ∕= ∅ && 𝑉max > 0 do5

𝑖max = argmax
𝑖

{𝑢𝑖∣𝑑𝑖 ∈ 𝕊′}6

if SelectData(𝑑𝑖max)==true && 𝑉max ≥ 𝑠𝑖max7

then
𝑥𝑖max = 18

𝕊 = 𝕊 ∖ 𝑑𝑖max9

𝑆𝐴 = 𝑆𝐴 − 𝑠𝑖max , 𝑉max = 𝑉max − 𝑠𝑖max10

𝕊′ = 𝕊′ ∖ 𝑑𝑖max11

𝑖min = argmin
𝑖
{𝑠𝑖∣𝑑𝑖 ∈ 𝕊, 𝑥𝑖 == 0}12

may be only few cached copies of 𝑑6 due to its lower
popularity.
In other words, the basic strategy of cache replacement

only optimizes the cumulative data access delay within
the local scope of the two caching nodes in contact.
Such optimization at the global scope is challenging in
DTNs due to the difficulty of maintaining knowledge
about the current number of cached data copies in the
network, and we instead propose a probabilistic strategy
to heuristically control the number of cached data copies
at the global scope.
The basic idea is to probabilistically select data to

cache when the problem in Eq. (12) is solved by a
dynamic programming approach. More specifically, if
data 𝑑𝑖 is selected by the dynamic programming algo-
rithm, it has probability 𝑢𝑖 to be cached at node 𝐴. This
algorithm is described in detail in Algorithm 1, where
GetMax(𝕊, 𝑆𝐴) calculates the maximal possible value of
the items in the knapsack via dynamic programming,
and SelectData(𝑑𝑖max) determines whether to select data
𝑑𝑖max to cache at node 𝐴 by conducting a Bernoulli exper-
iment with probability 𝑢𝑖max . Such probabilistic selection
may be iteratively conducted multiple times to ensure
that the caching buffer is fully utilized. By proposing
this probabilistic strategy, we still prioritize the popular
data with higher utility during the caching decision, but
also enable the data with less popularity to have non-
negligible chance to be cached.

5.5 Discussions

In summary, data access delay of our scheme consists of
three parts: i) the time for query to be transmitted from
requester to central nodes; ii) the time for central nodes
to broadcast query to caching nodes; iii) the time for the
cached data to be returned to requester.
Data access delay is closely related to the number (𝐾)

of NCLs. When 𝐾 is small, the average distance from
a node to the NCLs is longer, which makes the first
and third parts of the delay bigger. Meanwhile, since
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the total amount of data being cached in the network
is small, data is more likely to be cached near to the
central nodes, and the second part of the delay can
be short. In contrast, if 𝐾 is large, the metric values
of some central nodes may not be high, and hence
caching at the corresponding NCLs may be less efficient.
Moreover, when the node buffer constraint is tight, a
caching node may be shared by multiple NCLs. The
NCLs with lower caching effectiveness may disturb the
caching decision of other NCLs and furthermore impair
the caching performance.
It is clear that the number (𝐾) of NCLs is vital to the

performance of our caching scheme. In Section 7.4, we
will experimentally investigate the impact of different
values of 𝐾 on the caching performance in more details.

6 NCL LOAD BALANCING

From the caching scheme proposed in Section 5, we can
see that the central nodes play vital roles in cooperative
caching in DTNs. First, the central nodes cache the most
popular data in the network and respond to the frequent
queries for these data. Second, the central nodes are
also responsible for broadcasting all the queries they
receive to other caching nodes nearby. However, such
functionality may quickly consume the local resources of
central nodes which include their battery life and local
memory. In addition, we would like our caching schemes
to be resilient to failures of central nodes. In this section,
we focus on addressing this challenge, and propose
methods which efficiently migrate the functionality of
central nodes to other nodes in cases of failures or
resource depletion. In general, the methods we present
in this section can be used to adjust the deployment of
central nodes at run-time, such as adding or removing
central nodes according to up-to-date requirements on
caching performance.

6.1 Selecting the New Central Node

When a central node fails or its local resources are
depleted, another node is selected as a new central
node. Intuitively, the new central node should be the
one with the highest NCL selection metric value among
the current non-central nodes in the network. However,
such selection may degrade the caching performance
as illustrated in Figure 11. When the local resources of
central node 𝐶1 are depleted, its functionality is taken
over by 𝐶3. Since 𝐶3 may be far away from 𝐶1, the
queries broadcasted from 𝐶3 may take a long time
to reach the caching nodes 𝐴, and hence reduce the
probability that the requester 𝑅 receives data from 𝐴
on time. From Figure 11, it is easy to see that such
performance degradation is caused by the existing data
being cached at nodes near 𝐶1.
In this case, the distance between the new central

node and 𝐶1 should also be taken into account. More
specifically, with respect to the original central node 𝑗,

Fig. 11. NCL load balancing

we define the metric 𝐶𝑗
𝑖 for a node 𝑖 to be selected as

the new central node as

𝐶𝑗
𝑖 = 𝐶𝑖 ⋅ 𝑝𝑖𝑗(𝑇 ), (13)

where 𝐶𝑖 is the original NCL selection metric defined
in Section 4 and 𝑝𝑖𝑗(𝑇 ) is the weight of the shortest
opportunistic path between node 𝑖 and 𝑗 defined in Eq.
(2).
In practice, an existing central node 𝑗 is responsible for

selecting the new central node 𝑖 when its local resources
are depleted according to the metric defined in Eq.
(13); node 𝑗 also broadcasts a notification to the entire
network indicating the new central node. If node 𝑗 is
unable to do so due to sudden failure, another node
in contact with 𝑗 will be responsible for such selection
and notification. To realize this, node 𝑗 designates one
of its contacted neighbors with the maximum battery
life as its “backup”, and synchronizes this backup node
with all the information that 𝑗 has regarding the contact
capabilities of other nodes. As a result, when node 𝑗
suddenly fails due to resource depletion, this backup
node will be responsible for selecting the new central
node.

6.2 Adjustment of Caching Locations

After a new central node is selected, the data cached at
the NCL represented by the original central node needs
to be adjusted correspondingly, so as to optimize the
caching performance. For example in Figure 11, after the
functionality of central node 𝐶1 has been migrated to
𝐶3, the nodes 𝐴, 𝐵 and 𝐶 near 𝐶1 are not considered
as good locations for caching data anymore. Instead, the
data cached at these nodes needs to be moved to other
nodes near 𝐶3.
This movement is achieved via cache replacement

when caching nodes opportunistically contact each other.
Each caching node at the original NCL re-calculates the
utilities of its cached data items with respect to the newly
selected central node. In general, these data utilities will
be reduced due to the changes of central nodes, and
this reduction moves the cached data to the appropriate
caching locations which are nearer to the newly selected
central node.
Changes in central nodes and subsequent adjustment

of caching locations inevitably affect caching perfor-
mance as shown in Figure 11. However, this performance
degradation will be gradually eliminated over time by
the opportunistic cache replacement. In Section 7, we
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will furthermore evaluate such impact in practice on
realistic DTN traces.

7 PERFORMANCE EVALUATION

We evaluate the performance of our proposed caching
scheme by comparing it with the following schemes:

∙ No Cache, where caching is not used for data access
and each query is only responded by data source.

∙ Random Cache, in which every requester caches the
received data to facilitate data access in the future.

∙ CacheData [35], which is proposed for cooperative
caching in wireless ad-hoc networks, and lets each
relay in DTNs cache the pass-by data based on their
popularity.

∙ Bundle Cache [27], which packs network data as
bundles and makes caching decision on pass-by
data by considering the node contact pattern in
DTNs, so as to minimize the average data access
delay.

Cache replacement algorithms are proposed in Cache-
Data and Bundle Cache, and will also be used in
our evaluations. For Random Cache, LRU is used for
cache replacement. The following metrics are used for
evaluations. Each simulation is repeated multiple times
with randomly generated data and queries for statistical
convergence.

∙ Successful ratio, the ratio of queries being satisfied
with the requested data. This ratio evaluates the
coverage of data access provided by our proposed
caching schemes.

∙ Data access delay, the average delay for getting
responses to queries.

∙ Caching overhead, the average number of data
copies being cached in the network7.

7.1 Experiment Setup

Our performance evaluations are performed on the In-
focom06 and MIT Reality traces. In all the experiments,
central nodes representing NCLs are globally selected
before data and queries are generated. The first half of
the trace is used as warm-up period for the accumulation
of network information and subsequent NCL selection,
and all the data and queries are generated during the
second half of trace.

7.1.1 Data Generation
Each node periodically checks whether it has generated
data which has not expired yet. If not, the node deter-
mines whether to generate new data with probability
𝑝𝐺. Each generated data has finite lifetime uniformly
distributed in range [0.5𝑇, 1.5𝑇 ], and the period for
data generation decision is also set as 𝑇 . In our eval-
uations we fix 𝑝𝐺 = 0.2, and the amount of data in
the network is hence controlled by 𝑇 , as illustrated in

7. We consider the overhead of maintaining node contact informa-
tion as negligible, because only the pairwise contact rates are main-
tained for calculating NCL selection metric, as described in Section
4.1.

(a) Amount of network data (b) Data request probabilities

Fig. 12. Experiment setup

Figure 12(a) for the MIT Reality trace. Similarly, data
size is uniformly distributed in range [0.5𝑠𝑎𝑣𝑔, 1.5𝑠𝑎𝑣𝑔],
and caching buffers of nodes are uniformly distributed
in range [200Mb, 600Mb]. 𝑠𝑎𝑣𝑔 is adjusted to simulate
different node buffer conditions.
Note that in this section, we compare the performance

of our proposed schemes with the existing work. When
𝑇 is large, indicating long inter-contact time among
mobile nodes in the network, our experimental setup
increases the data lifetime accordingly. In this way, we
ensure non-negligible caching performance in the net-
work and furthermore comprehensive performance com-
parisons. We could reasonably infer that the comparison
results we have in this section will still hold, when the
average inter-contact time in the network is reduced and
enables efficient access on data with shorter lifetime.

7.1.2 Query Pattern

Queries are randomly generated at all nodes, and each
query has a finite time constraint 𝑇/2. In particular,
every time 𝑇/2, each node independently determines
whether to generate a query for data 𝑗 with probability
𝑃𝑗 . We assume that query pattern follows a Zipf dis-
tribution which has been proved to describe the query
pattern of web data access [3]. As a result, letting 𝑀
be the number of data items in the network, we have
𝑃𝑗 = 1

𝑗𝑠 /(
∑𝑀

𝑖=1
1
𝑖𝑠 ) where 𝑠 is an exponent parameter.

Values of 𝑃𝑗 with different 𝑠 are shown in Figure 12(b).

7.2 Caching Performance

Caching performance of our scheme is evaluated using
MIT Reality trace. The number (𝐾) of NCLs is set to 8
and query pattern follows a Zipf distribution with 𝑠 = 1.
By default, 𝑇 = 1 week and 𝑠𝑎𝑣𝑔 = 100 Mb. These two
parameters are then adjusted for different performance
evaluation purposes.
The simulation results with different values of 𝑇 are

shown in Figure 13. The successful ratio of data access
is mainly restrained by 𝑇 itself. When 𝑇 increases from
12 hours to 3 months, the successful ratio of all schemes
is significantly improved, because data has more time
to be delivered to requesters before expiration. Since
the selected NCLs are efficient in communicating with
other nodes, our proposed intentional caching scheme
achieves much better successful ratio and delay of
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(a) Successful ratio (b) Data access delay (c) Caching overhead

Fig. 13. Performance of data access with different data lifetime

(a) Successful ratio (b) Data access delay (c) Caching overhead

Fig. 14. Performance of data access with different node buffer conditions

data access. As shown in Figures 13(a) and 13(b), the
performance of our scheme is 200% better than that
of NoCache, and also exhibits 50% improvement over
BundleCache where nodes also incidentally cache pass-
by data. Comparatively, RandomCache is ineffective due
to the random distribution of requesters in the network,
and CacheData is also inappropriate for DTNs due to
the difficulty of maintaining query history.

Meanwhile, Figure 13(c) shows that our scheme only
requires moderate cache size, which is much lower
than that required by RandomCache and BundleCache,
especially when 𝑇 is large. RandomCache consumes the
largest caching buffer, such that each data has 5 cached
copies when 𝑇 increases to 3 months. The major reason
is that each requester blindly caches any received data
until its buffer is filled up. CacheData consumes 30%
less buffer than our scheme, but also leaves a lot of data
uncached which impairs data access performance. We
notice that caching overhead in our scheme also includes
the transmission and storage cost when queries and data
are transmitted between requesters and caching nodes,
and realize that such cost is proportional to data access
delay during which data is carried by relays. Hence,
the cost-effectiveness of our scheme is also supported
by Figure 13(b).

We also evaluated data access performance with dif-
ferent node buffer conditions by adjusting 𝑠𝑎𝑣𝑔 , and the
results are shown in Figure 14. When data size becomes
larger, less data can be cached as shown in Figure
14(c), and data access performance is hence reduced. In
Figures 14(a) and 14(b), when 𝑠𝑎𝑣𝑔 increases from 20Mb

to 200Mb, the successful ratio of our scheme decreases
from 60% to 45%, and data access delay increases from 18
hours to 25 hours. However, the performances of other
schemes even decrease much faster, and the advantage
of our scheme becomes even larger when node buffer
constraint is tight. This is mainly due to the intelligent
cache replacement strategy used in our scheme, which
ensures that the most appropriate data is cached.

7.3 Effectiveness of Cache Replacement

Our proposed cache replacement strategy in Section 5.4
is compared with the traditional replacement strategies
including FIFO and LRU. It is also compared with
Greedy-Dual-Size which is widely used in web caching.
We use MIT Reality trace for such evaluation, and

set 𝑇 as 1 week. The results are shown in Figure 15.
FIFO and LRU leads to poor data access performance
due to improper consideration of data popularity. In
Figure 15(a), when data size is small and node buffer
constraint is not tight, cache replacement will not be
frequently conducted. Hence, the successful ratio of tra-
ditional strategies is only 10%-20% lower than that of our
scheme. However, when data size becomes larger, these
strategies do not always select the most appropriate data
to cache, and the advantage of our scheme rises to over
100% when 𝑠𝑎𝑣𝑔 = 200Mb. Data access delay of FIFO
and LRU also becomes much longer when 𝑠𝑎𝑣𝑔 increases
as shown in Figure 15(b). Greedy-Dual-Size performs
better than FIFO and LRU due to consideration of data
popularity and size, but it is unable to ensure optimal
cache replacement decision.
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(a) Successful ratio (b) Data access delay (c) Cache Replacement overhead

Fig. 15. Performance of data access with different cache replacement strategies

(a) Successful ratio (b) Data access delay (c) Caching overhead

Fig. 16. Performance of data access with different number of NCLs

In Figure 15(c), we also compared the overhead of
those strategies, which is the amount of data exchanged
for cache replacement. Since cache replacement is only
conducted locally between mobile nodes in contact, there
are only slight differences of this overhead among dif-
ferent strategies. Greedy-Dual-Size makes the caching
nodes exchange a bit more data, but this difference is
generally negligible.

7.4 Number of NCLs

In this section, we investigate the impact of different
numbers (𝐾) of NCLs on data access performance using
Infocom06 trace. We set 𝑇 = 3 hours and all the other
parameters remain the same as in Section 7.2.
The simulation results are shown in Figure 16. When

𝐾 is small, it takes longer to forward queries and data
between requesters and caching nodes, and hence data
access performance is reduced. This reduction is particu-
larly significant when 𝐾 < 3. As shown in Figures 16(a)
and 16(b), when 𝐾 is reduced from 2 to 1, the deliv-
ery ratio decreases by 25%, and the data access delay
increases by 30%. In contrast, when 𝐾 is large, further
increase of 𝐾 will not improve data access performance,
because the newly selected central nodes are essentially
not good at communicating with other nodes in the
network. Meanwhile, as shown in Figure 16(c), when
𝐾 is small, increasing 𝐾 will consume considerably
more buffer space for caching. However, this increase
is negligible when 𝐾 is large or node buffer constraint
is tight.

In summary, when node buffer constraint is tight,
smaller 𝐾 is helpful to provide acceptable caching per-
formance with lower overhead. However, too large 𝐾
will not provide any extra benefit, and may even impair
the performance. From Figure 16, we conclude that
𝐾 = 5 is the best choice for Infocom06 trace, which
is consistent with the result of trace-based validation
shown in Figure 4(b).

7.5 Impact of NCL Load Balancing

In this section, we evaluate the impact of NCL load
balancing scheme proposed in Section 6 on caching per-
formance. According to the evaluation results in Section
7.4, we set𝐾 = 8 for theMIT Reality trace and 𝑠𝑎𝑣𝑔 = 100
Mb.
Each central node periodically determines whether to

migrate its functionality to another node with a fixed
probability 𝑝. We set the period of making such decision
to be 10% of the trace length, and the evaluation results
with different values of 𝑝 on the MIT Reality trace are
shown in Figure 17. In general, when the central nodes
change, the existing caching locations become inappro-
priate, and hence the successful ratio of data access
is reduced. As shown in Figure 17(a), such reduction
can be up to 40% when the data lifetime is short, but
will diminish significantly to 10% when there is longer
time for the queries to be forwarded to the caching
nodes. Figure 17(b) also shows that the data access delay
increases accordingly. Moreover, since the cached data
copies are opportunistically moved to more appropriate
network locations after the change of central nodes, the
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(a) Reduction of successful ratio (b) Increase of data access delay (c) Increase of caching overhead

Fig. 17. Impact of NCL load balancing on the caching performance

caching overhead only slightly increases by less than
10%, as shown in Figure 17(c).
The impact of NCL load balancing is also determined

by the frequency of the changes of central nodes. As
shown in Figure 17, the reduction of successful ratio of
data access is sensitive to the value of 𝑝. Especially when
the data lifetime is short, larger value of 𝑝 significantly
magnify the impact on the caching performance. In gen-
eral, the impact of NCL load balancing on the caching
performance is largely determined by the specific net-
work condition and data access pattern.

8 CONCLUSIONS

In this paper, we propose a novel scheme to support
cooperative caching in DTNs. Our basic idea is to inten-
tionally cache data at a set of NCLs which can be easily
accessed by other nodes. We ensure appropriate NCL
selection based on a probabilistic metric; our approach
coordinates caching nodes to optimize the tradeoff be-
tween data accessibility and caching overhead. Extensive
simulations show that our scheme greatly improves the
ratio of queries satisfied and reduces data access delay,
when being compared with existing schemes.
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