== Research

QDL EM COorporation

Distributed Cache Manager and API

Jm Challenger Arun lyengar

Snail IBM T.J Watson Research Center Snail IBM T. J. Watson Research Center
30 Sawmill River Road. 30 Sawmill River Road.
Hawthorne, NY 10532 Hawthorne, NY 10532

email challngr@watson.ibm.com emall aruni@watson.ibm.com

Phone Tidline 863-7175 Phone Tidline 863-6468
external 914-784-7175 external 914-784-6468

Fax 914-784-7595 Fax 914-784-7595

Contents
® Overview

® Building the cache manager
O Getting Source
O Build Prerequisites
O Compiling
O Instaling
O Verifying
® Configuring the Cache Manager
O Concepts
O The cache-manager Stanza
O Trace Flag Definitions
O Cache Definition Stanzas
The cacheadm Command
® [nterpreting the Log
® Statistics
O Initialization Record
O Termination Record
O Statistics Record
O StatisticsAPI's
Cache Coherency
® Application Program Interface

Overview
Description
Structures

B CacheHandle Structure
CacheStringList Structure
CacheToken Structure
CacheStatToken Structure
CacheDisp Structure
CacheRC Structure
CByteString Structure
CacheAddDependency()
CacheAppend()
CacheBuffer()
CacheBufferToken()
CacheClear()
CacheClose()
CacheDeleteDependency()
CacheFile()
CacheFileToken()
CacheFlush()
CacheFreeToken()
CacheGetBuffer()
Cachelnit()
CachelnvalidateRecord()
CacheOpen()
CachePurge()
CacheRead()
CacheSetBuffer()
CacheShowDependentK eys()
CacheStream()
CacheStreamToken()
CacheStringListFree()
CacheStringListReset()
CacheStringListNext()
CacheSwitch()
CacheWrite()
CacheTerm()
CacheGetStats()
CacheFreeStatToken()
® Sample Configuration File

00O

(oNONONONONONG)

Overview

The cache manager provides multi-threaded management of multiple caches within a single process.
Each cache is completely independent of the others and may be configured to enforce differing policies.

Although completely general in nature, the cache manager has been designed with the intention of
managing cached, dynamically generated HTML pages for WWW sites.

A cached object such asan HTML page could have been constructed from several other data aggregates
such as database tables. The cache manager allows these relationships to be specified. Each cached item
may have alist of dependencies associated with it. For example, an item on a dependency list for a
cached HTML page might represent a database table whose value affects the contents of the page. The
cache provides an API function for specifying that the database table has been updated. This causes all
cached objects which depend on the table to be invalidated. Using this mechanism, a routine which
performs updates to a database can update the cache without knowing the specific URL’ swhich are
affected by the update.

The cache manager is designed to work in a networked environment in which asingle cache is shared
among multiple processes on multiple machines.

An API is provided to enable applications to communicate with the cache manager. Functions to manage
tokens, data, and perform cache administration are provided.

Building the cache manager and API

Getting source

Current source for the Cache Manager is freely available but we must track distribution. Please contact
Jim Challenger at challngr@watson.ibm.com. Current source statusis:

® Source- AlX 4.1.4 (compressed tar, 2.5M)
® Source - Windows NT 4.0 (in progress, available 3Q 1997)

Distributions include all source, makefiles, and tools required for building.

Build Prerequisites
To build the cache manager as distributed the following software is regired:
® GNU make.
® Flex, from the Free Software Foundation.
® AlX 4.140rAlX 3.25
® Optionally, Bison, fromt the Free Software Foundation

The makefiles are constructed for gmake, from the Free Software Foundatation. It is straightforward to
convert them to work with IBM make, but converted makefiles are not part of this distribution.

A copy of gmake and flex are provided in the source directory with the cache manager for convenience.

Compiling
The cache manager consists of three compoents:

1. A thread package, providing operating system independence,
2. A transaction framework, called the ** daemon framework’’, providing network independence, and
3. the cache manager itself.

The source is organized into three directories, thread, daemon, and cachemgr. There are severa build
options available:

1. Default. This uses a cooperative threading model and the GNU version of yacc, ‘‘bison’’. This
version is not appropriate for product-level work because of the use of bison; however, bison
provides better diagnostics than most versions of yacc, and is recommended for devel opment
work.

To build this version, cd to the top directory, and run
gnake

2. Use a cooperative thread model, using operating system supplied yacc. To build this version,
cd to the top directory and run

gnmake use_yacc

3. Useapreemptive thread model, with bison. This uses the pthread interface.

gnmake pt hread
4. Use a preemptivethread model, with yacc:
gmake pthread_yacc

When the build is complete, the cachemgr directory will contain several files:

® cachemgrd - the cache manager

® cache api.shr.o - an AlX shared library with the API calls documented below.
® libcache.a- an AlX (nonshared) library with the API calls documented below
® test cached - atest program to verify the build and basic function.

|nstalling

To install the cache manager, perform the following steps:

® Create adirectory on afile system large enough to contain the cache manager executables and
logs. A minimum of ten megabytes is recommended.

® Copy thefiles created during the build process to your new directory.

® Create a configuration file.

® Create adirectory for each cache named in the configuration file.

Installation is complete. To start the cache manager, issue the command,
cachermgrd -c <config file>

where config_fileisthe name of your configuration file. Verify successful startup by checking the cache
manager 1og.

Verifying
To verify installation,

Create asmall file (which can be overwritten) in some directory,

Configure two caches called test1 and test2,

(re)Start the cache manager.

Verify that the caches were correctly configured and were started by checking the cache manager
log.

Run the command

WP

o1

test _cached -f1 <fil enane>

where filename is the name of the file you created.

Several messages will be printed by the verification routine, some of which are deliberate error
messages. Verification is successful if the last message is

cache verification was successful
The test_cached program accepts several parameters:
test _cached [-h hostnane] [-p port] [-f1 fileid] [-cl cacheid] [-c2 cacheid] [-to

where

-h isthe hostname where the cacheis running, if different from where test_cached isrun.
-p isthe port the cache is configured on, if different from the default (7175).

-f1 isthe name of asmall file to be used to verify the file APIs.

-c1 isan alternate cacheid to be used for testing other than ‘“test1’’.

-c2 isan alternate cacheid to be used for testing other than ‘‘test2’.

-to isthe communications timout to be used, other than the default of 30 seconds.

Configuring the Cache Manager

Concepts

The configuration file consists of a series of named stanzas. One stanza per cache must be defined, as
well as one stanzafor the cache manager itself.

A stanza consists of alabel followed by a series of statements, one per line, enclosed in braces.
Example:

cacheO {
caching = on
memsize = 10MB

}
The cache-manager stanza

The cache-manager stanza defines the parameters of the manager itself: network information, logging
status, tracing status. This stanzais required and must be labeled cache-manager.

Keywords accepted in the cache-manager stanza are:

log This defines the name of the file used for cache manager logging. Thisis
optional and if not specified, messages are written to the console. Thislog
shows activity for al transactions for all caches and is intended primarily for
debugging and problem analysis. For logging on a per-cache basis, use
tran_log. Example:

| og=/ u/ cached/ | ogs/ cached. | og

port This specifies the TCP/IP port which is listened to by the cache manager for
incoming requests. Thisisoptional, and if not specified, is determined by (a)
checking /etc/services for the name *‘ibm-cachemgrd’’; if not found, (b) use
the default port 7175. Example:

port=7177

connection-timeout specifies the maximum length of time in seconds the cache manager should
allow a pending read to be left active. If thistime is exceeded the connection
isdropped. Thisis optional, and defaults to 30 seconds. Example:

connecti on-ti meout =60

logging Specifies whether 1ogging should be done. It should be specified as either
‘‘yes’ or ‘‘on’’ toindicate logging isrequired, or as‘‘no’’ or *‘off’’ to
specify logging should not be performed. Thisis optional, and if not
specified, defaultsto *‘no’’ . Example:

| oggi ng=yes

wrap-log Specifies whether the log should be wrapped. This should be specified as
yesor no. Thisisoptional, and if not specified, defaultsto no. If specified as
yes, the current log is closed when it reaches its maximum size (see log-size,
below), has .old appended to its name, and anew log is opened. Only one
generation of log is maintained (that is, existing .old files are overwritten).
Example:

wr ap- | og=yes

log-size. Specifies the maximum size in bytes to which alog is allowed to grow, if
wrap-log is specified. Thisisoptional, and if not specified, defaultsto
64000. Example:

| 0g-si ze=100k

trace-flags This specifies the level of messagesto be written to the log. Thisis optional
and if not specified, only cache manager startup and shutdown messages are
logged. Example:

trace-flags= D OPEN D READ D FRAMEWORK

Trace Flag Definitions

Trace flags are intended for diagnostic use and can provide considerable information about the inner
workings of the cache manager.

Trace flags should be specified as a blank-delimited list. Supported flags are:

D ALL Enable all trace flags.

D ADMIN L og administrative command execution.
D_ALLOCATE Log storage allocation info.

D _API (Not used yet)

D CLEAR Log cache clear operations.

D CLOSE Log cache (datum) close operations.

D FRAMEWORK Log operations specific to the underlying network framework layer.
D MANAGER L og operations specific to the cache manager as opposed to any specific

cache.
D _OPEN Log cache (datum) opens.
D _PURGE Log cache purge operations
D READ Log cache read operations.

D_STATISTICS (Currently unused)

D TIMING Enable timing of events.
D TRANSACTION Enable messages relating to the transaction mechanism.
D WRITE Log cache write operations.

Cache Definition Stanzas

Each cache which is managed by the cache manager must be defined in the configuration file. Valid
keywords include:

caching specifies whether this cache is to be enabled when the cache manager
starts. It should be specified as yes or no. The default isyes. If set to no,
the cache is defined in the cache manager but not activated. It may be
activated later via the cacheadm command. Example:

cachi ng=yes

fs-size specifies the maximum space that may be used in the filesystem by objects
in this cache. When exceeded, the cache manager will delete sufficient
items, starting with the oldest, to bring total space occupied by the cache
within bounds. Y ou may effectively disable automatic purging of entries
by setting this to alarge number; however, if the physical filesystem space
is exceeded, attempts to add new entries to cache will fail. Units may be
specified as nnB for nn bytes, nnKB for kilobytes, or nnM for megabytes.
The default is fs-size=0 (no caching to disk). Example:

f ssi ze=64MB

mem-size specifies the maximum amount of memory that may be used by all of the
objectsin this cache. When exceeded, the cache manager will delete
sufficient items, starting wit the oldest, bo bring total space occupied by
the cach within bounds. Y ou may effectively disable automatic purging of
entries by setting this to alarge number; however, if the cachemgrd
process consumes too much space the operating system may terminate it.
Units may be specified as nnB for nn bytes, nnKB for kilobytes, or nnMB
for megabytes. The default is IMB. Example:

mem si ze=1000KB

lifetime specifies the maximum length of time an item may be held in cache. When
exceeded, the item is marked expired. The item is not deleted from cache
unlessthe fssize (if it is cached on disk) or memsize (if it is cached in
memory) limits are reached. Items marked expired are deleted before all
other itemsif memsize or fssize limits are reached. Lifetime checking may
be disabled with the check expiration keyword. Units may be specified as
nnS for nn seconds, nnM for minutes, or nnH for hours. The default is5
minutes. Example:

check-expiration

datum-memory-limit

datum-disk-limit

stat-interval

I eset-stat-counters

I oot

l'ifeti me=600S

specifies whether lifetime checking should be performed. The default is
yes. If set to no items are never marked expired. The default is 60 seconds.
Example:

check- expi rati on=no

specifies the maximum size a specific data item may occupy within the
memory cache. If an item istoo large for memory, the file cacheis
checked, and if it will fit there, is placed in the filesystem instead. If it
does not fit in the filesystem, the attempt to cache the item will fail. If the
item is smaller than datum_memory_limit but no room existsin the
memory cache, the oldest items are deleted from the memory cache to
accommodate the new item. Units may be expressed in bytes(B),
kilobytes(KB), or megabytes(MB). The default is 1KB. Example:

dat um nenory-1imt=200KB

specifies the maximum space in the file cache an item may occupy. No
object larger than thiswill be accepted for caching. If the object is smaller
than datum_disk_limit but no space remainsin the file cache, the oldest
items are deleted to accommodate the new item. Units may be expressed
in bytes(B), kilobytes(KB), or megabytes(MB). The default is-1 (no
limit). Example:

datumdi sk-1imt=1MB

specifies the time between creation of statistics records. If set to zero, no
statistics records are written. Units may be nnS for nn seconds, nnM for
minutes, or nnH for hours. The default isO (don’t collect statistics).
Example:

stat-interval =1M

specifies whether or not statistics counters should be reset to 0 each time
they are written to the log file. The default is yes. Example:

reset - st at - count er s=no

specifies the name of the directory to hold the cache items. On startup, the
filesystem containing this directory must be at least as large as fssize or
the cache will not be started. root may be specified as a path relative to
that in which the cache manager was started, or an absolute path. This
parameter is required. Example:

r oot =/ u/ cached/ caches/ cache0

stat-file

hashing

tran-log

tran-logging

wrap-tran-log

tran-log-size.

specifies the name of the file to be used for logging statistics for this
cache. This parameter isrequired if stat-interval > 0. Example:

stat-fil e=/u/cached/| ogs/cache0. stats

specifies whether dependency structures should be maintained for this
cache. If not specified, the default is off . Example:

hashi ng=on

This defines the name of the file used for transaction logging on a strictly
per-cache basis. Cache transaction log files are separate from cache
manager log files which are used to log overall cache manager activity.
This parameter is optional and if not specified, atransaction log for the
cacheis not created. Example:

tran-1og=/u/ cached/ | ogs/ cacheO. | og

Specifies whether transaction logging for the cache should be turned on
when the cache manager first starts up. This parameter isignored unless a
valid transaction log file is specified viathe tran-log parameter. It should
be specified as either *‘yes” or ‘*on’’ to indicate logging is required, or as
““no’’ or ‘*off’’ to specify logging should not be performed. The parameter
isoptional, and if not specified, defaultsto ‘*no’’. Transaction logging can
be turned on or off while the cache manager daemon is running viathe
cacheadm command (provided a valid tran-log parameter was specified in
the configuration file). Example:

tran-1 oggi ng=yes

Specifies whether the transaction log should be wrapped. This should be
specified asyes or no. Thisisoptional, and if not specified, defaults to
yes. If specified asyes, the current log is closed when it reachesits
maximum size (see tran-log-size, below), has .old appended to its name,
and anew log is opened. Only one generation of log is maintained (that is,
existing .old files are overwritten). Example:

wr ap-tran-| og=yes

Specifies the maximum size in bytes to which atransaction log is allowed
to grow, if wrap-tran-log is specified. Thisis optional, and if not specified,
defaults to 64000. Example:

tran-| og-si ze=100k

The cacheadm Command

Use the cacheadm command to stop the cache manager, flush a specific cache, query a specific cache,
enable or disable logging and logging flags, and start and stop statistics gathering. All parameters may
be abbreviated to the minimum unique set of characters. The syntax of the cacheadm command is

— activate

— deactivate

—flags =flags=

—flugh

all ———
|:url 1] = —
cacheid <idz——

— cacheadm Guery
L silen‘[J I—hnstname <:h>—| L port <:p:>J Ldependency <depz—

where

activate

deactivate

cacheid
flags

flush

—url <url=
—purge L
dependency <dep>—

off
—statistics{ |—

ne
|—inter\fal <iint>J

— terminate

means ‘‘ activate the specified cache’’. If the cacheis already active, nothing is done.

If a cache transaction log is being maintained, a transaction record in the following
format is generated:

<date> <time> cacheadm activate

means * ‘ deactivate the specified cache’’. If the cache is already inactive nothing is
done. All pending operations are completed and no new ones accepted. When the last
operation is complete, the cache is marked inactive.

If a cache transaction log is being maintained, a transaction record in the following
format is generated:

<date> <ti me> cacheadm deacti vate

specifies which of the managed caches the command pertains to (for relevant
commands).

specifies the state of the named flags should be toggled. The flags are specified asa
blank delimited list of flags as described below.

means flush the cache.

hostname

port
purge

query

silent

statistics

This command invokes the Cache API functions Cachelnit, CacheClear, and
CacheTerm. If a cache transaction log is being maintained, transaction records from
these API calls are generated.

specifies the host where the cache is running, if different from the machine where
cacheadm isissued.

specifies the cache port, if different from the default (7175).

specifies that a specific item should be purged from cache. If url is specified, the item
with akey matching url is purged. Thisis accomplished by invoking the AP
functions Cachel nit, CachelnvalidateRecord, and CacheTerm. If dependency is
specified, all items with the associated dependency are purged and their keys written
to stdout. Thisis accomplished by invoking the API functions Cachel nit, CachePurge,
and CacheTerm.

If a cache transaction log is being maintained, transaction records from the API calls
are generated.

returns data about a cache, if only the cacheid is specified. Query returnsthe list of
cache keys associated with the dependency list if depenendency is provided. Thisis
accomplished by invoking the API calls Cachelnit, CacheQueryDependentKeys, and
CacheTerm. Query returns information about a specific cached item if url is
specified. Thisis accomplished by invoking the API calls Cachelnit,
CacheQueryKey, and CacheTerm. Query returns information about all itemsif all is
specified. Thisis accomplished by invoking the API calls Cachel nit, CacheQueryAll,
and CacheTerm.

The all optionsisintended for use by other programs which will format or interpret
the results. Each line contains the following information: the item key, the item age,
the item length, the item creation date, the item expiration date, and the date the item
was last referenced. All dates are in standard Unix integer time format.

"cache query al" is very expensive and should be used sparingly.

If a cache transaction log is being maintained, the exact format of transaction records
depend upon the parameters passed. If only the cacheid is specified, atransaction
record in the following format is generated:

<dat e> <ti me> cacheadm query

Otherwise, transaction records from the API calls which are invoked are generated.

instructs cacheadm not to issue any messages to the console (other than fatal error
messages).
enables and disables logging of statistics gathering for a specific cache. The cacheid

parameter is required with thisoption. If an interval is specified with statistics on the
interval between updatesis set or reset to the specified number of seconds.

If a cache transaction log is being maintained, enabling logging of statistics resultsin
atransaction record in the following format:

terminate
tranlogging

<date> <ti me> cacheadm stat_activate
Disabling logging of statistics results in a transaction record in the following format:
<dat e> <ti nme> cacheadm stat deactivate

means terminate the cache manager.

enables and disables transaction logging for a specific cache. The cacheid parameter
isrequired with this option. This command will only have an effect if avalid
transaction log for the cache was specified in the configuration file via the tran-log
parameter.

Enabling transaction logging results in a transaction record in the following format:
<dat e> <ti me> cacheadm tranl oggi ng_activate
Disabling transaction logging results in a transaction record in the following format:

<date> <ti me> cacheadm tranl oggi ng_deacti vate

Cache Manager Log flags

The log flags described in this section are only applicable to cache manager logs and not to cache
transaction logs. The log flags correspond directly with the trace flags which are set in the configuration
file. This provides away to dynamically modify the logging level without restarting the cache. Most log
flags can be turned on by specifying the first character as a plus sign (+) or turned off by specifying a
minus sign (-). For example:

cacheadm -1 +D WRITE -D TI M NG

This example turns on tracing of all cache write activities, and turns off the transaction timing code.

Validflagsare:
D ALL Turn on all trace flags.
D_NONE Turn off al trace flags.
[+]-]D_ADMIN Turn on(+) or off(-) tracing of administration commands.
[+|-]D_ALLOCATE Turn on(+) or off(-) tracing of storage alocation.
[+|-]D_CLOSE Turn on(+) or off (-) tracing of object close commands.

[+]-]D_FRAMEWORK Turnon(+) or off(-) tracing of low-level communication activities. This

isusually used only for debugging by the cache developers asit can be
difficult to interpret the messages without source listings.

[+|-]D_MANAGER Turn on(+) or off (-) tracing of cache management functions.
[+|]-]D_OPEN Turn on(+) or off (-) tracing of object open commands.
[+]-]D_PURGE Turn on(+) or off(-) tracing of object purge operations.

[+|-]D_READ Turn on(+) or off(-) tracing of object read operations.

[+]-]D_TIMING Turn on(+) or off (-) transaction timing messages.
[+]-]D_TRANSACTION Turn on(+) or off(-) tracing of transaction management functions.
[+]-]D_WRITE Turn on(+) or off(-) tracing of object write operations.

| nter preting the cache manager log

Log messages are of the form
date tine action [flagid] (threadid) (cacheid) nessage

where

date isthe date of the message

time is the time of the message

action isal-work description of the type of action which caused the message to be emitted
flagid isal-letter identification of the trace flag which caused the messgae to be emitted
threadid istheid of the thread the action is occurring in

cacheid identifies the cache the action is being performed for

message S the message text

Flagids correspond to trace flags thus:

Code|Flag
D_ALWAYS
D_CLOSE
D_ALLOCATE
D_MANAGER
D_ADMIN
D_OPEN
D_PURGE
D_READ
D_STATISTICS
D_TRANSACTION
D_TIMING
D_WRITE

SIZ|dlwn|o|o|o|Z|Z[r o>

Statistics

Several statistics regarding internal operation are kept and optionally written to the accounting log. A
sepparate log per cache may be maintained, or all statistics may be written to the samelog. Thislogis
configured with the statistics log and statistics interval keyword of the configuration file. Statistics
gathering can be modified without stopping, reconfiguring, and restarting the cache manager with the
cacheadm statistics command. Note however, that changes made via cacheadm statistics are not saved
across restarts of the cache manager.

The statistics log isa plain ascii file suitable for processing or import by spreadsheets or database
programs. Three types of records are written:

® |[nitialization records document the startup of statistics gathering for a particular cache.
® Termination records document the termination of statistics gathering for a particular cache.
@ Statistics records are a blank-delimited set of numbers showing activity within the cache.

I nitialization record

Initialization records are of the form:
nm dd/yy hh:mmss id Initialization: interval n seconds
where
mm/dd/yy isthe month, day, and year that statistics gathering starts.
hh:mm:ss is the hour, minute, and second that statistics gathering starts.

id is the name of the cache the record isfor
n is the collection interval

Termination record

Termination records are of the form:
nm dd/yy hh:mmss id Ternination
where
mm/dd/yy isthe month, day, and year statistics gathering stops.

hh:mm:ss isthe hour, minute, and second statistics gathering stops.
id isthe name of the cache the record isfor.

Statisticsrecord

Statistics records are of the form:

mv dd/yy hh: nmss id

where

<statistics>

mm/dd/yy isthe month, day, and year the record is created.
hh:mm:ss isthe hour, minute, and second the record is created

id is the name of the cache the record isfor

<statistics> isablank-delimited list of statistics gathered for this cache.

Thelist of statistics consists of the following fields, in the following order:

Field #|Contents Description
1 [reads Number of read operations against the cache.
2 |writes Number of write operations against the cache.
3 |closes Number of close operations on objects in the cache.
4 | openread Number of open-read operations on objects in the cache.
5 |openwrite Number of open-write operations on objects in the cache.
6 [open write query Number of open-write-query operations on objects in the cache.
7 |read hits Number of read hits objects in the cache.
8 |writehits Number of write hits on objects in the cache.
9 |lwrite query hits Number of write query hits on objectsin the cache.
10 |initializations Number of new sessions established with this cache.
11 |terminations Number of sessions terminated with this cache.
12 |memory used Amount of memory used by objects in the memory portion of the cache.
13 |/disk used Amount of disk space used by objects in the disk portion of the cache.
14 |memory available Sorrt(i)gr?to?ft rr]r(;eén(rjl(c:)rr?(/e.sti [l available for use by objectsin the memory
15 |disk available ,;n;r?grg;g;giy space still available for use by objectsin the disk portion
16 |memory object count|Number of objects in the memory portion of the cache.
17 |file object count Number of objectsin the disk portion of the cache.
18 |session count Number of sessions currently active against this cache.

The counters for the following items are reinitialized to zero (0) each time arecord is written: reads,
writes, closes, open_read, open_write, open_write_query, read_hits, write_hits, write_query_hits,

initializations, terminations.

Accessing Statistics from an Application Program

An application program communicating with a cache manager can access statistics counters from a
cacheviathe API call
® CacheGetStats.

Cache Coherency

Maintaining coherency of database and cache can be difficult. The principal problem is managing the
many-to-many relationship of database tables to pages. That is, many database tables may participatein
the construction of many different pages.

Both the program which generates the pages and the program which fetches them (httpd) must view the
cache from the point of view of each page’s URL. The database, however, must view the cache from the
point of view of the tables and rows from which each page is constructed. The pagesin cache can be
said to be dependent on the database tables from which they are created.

To solve this problem, the cache manager maintains two different references to a page, its primary key,
and its dependency list.

Each pageisindexed viaits primary key, assigned during a CacheOpen() call. Thisisthe key which the
httpd uses.

After apage is created, the secondary association, or depdendency may optionally be defined. Any
number of dependencies may be defined. A dependency is an arbitrary string associated with each page.
Once defined, a cache item (page) may be purged by referencing this dependency. Many pages may be
associated with the same dependency, in which case, al pages referenced by that dependency are
purged.

In the following diagram, pages 1, 2, and 3 are dependent on "table2". If "table2" which has just been
updated, we can purge these three pages with a single call to CachelnvalidateRecord(... , "Table2").

Cache I:I:I_./.
-)
0)
el -
Lo)
HTML Hash :
Caches Pages Table Dependencies

The following API calls are used to manage dependencies:

CacheAddDependency()
CacheDeleteDependency()
Cachel nvalidateRecord()
CacheShowDependentK eys()
CacheFreeBstringArray()

Application Program Interface

The API isthe only way to communicate with the cache manager. The cacheadm command itself isan
application written the to API. This section describes the API in detail.

The API isdistributed as a shared object. This permits update and modification of the cache manager,
the API, and the protocols without the need for applications to be recompiled. The shared object is
distributed under the name

cache_api .shr.o

API Overview

The basic idea behind the API isto view a cache as afilesystem: one opens an item for read or write,
reads or writes datato it, and closes it. However, the analogy is not complete. It makes no sense to open
an item for read/write; hence open is supported for READ-ONLY and WRITE_ONLY. A third mode,
WRITE_ONLY_WITH_QUERY, described below, is also supported.

If an object existsin cache and is then opened in WRITE_ONLY mode, the object is deleted, its space
freed, and the cache prepares itself to receive a new object in its place.

Some applications may wish to () query the cache to seeif anitem exists, and (b) if it exists, do
nothing, or (c) if it does NOT exist, createaWRITE_ONLY connection so the item can be created. One
way to do thisisto open anitemin READ_ONLY mode, and if the open indicates the object exists,
closeit and reopen it in WRITE_ONLY mode. To avoid the overhead of multiple opens, a special mode,
WRITE_ONLY_WITH_QUERY isimplemented on the open command, which does exactly this, in a
single operation. If theitem exists, theitem is NOT opened but the token is updated to indicate its status.
If it does not exist, theitem isopened in WRITE_ONLY mode so the application can now create it.

To open an item, atoken must be created. That token is passed to the cache manager, and, if the item
exists, is returned updated with all relevant information: date of creation, date of last access, etc. This
information may be ignored, or used by the application to manage cache entries directly, thus enabling
applications to fully implement cache policy.

Two things must be determined before data can be accessed:

1. whereisthe datato be read/written within the application?
2. which cache isto be used?

Specification of which cacheisto be used is done while initiating a session with the cache manager.
Specification of the location of the data is done with the token-creation calls.
There are three token-creation calls:

1. create abuffer token (data comes from a buffer),

2. create a stream token (date comes from an 1/O stream), and

3. create afiletoken (data comes from afile).
The API implements the concept of a session, established between the application and a specific cache.
An application initiates a session with a cache and performs as many operations on data within that
cache asit likes (open, read, close, open, write, close, etc.) The session may be kept permanently open if
desired as the cache manager is multi-threaded. This permits long-running processes (such as web
servers) to maintain contact with the cache manager with a single open. An application may switch its
current sessesion among multiple caches on the same physical connection with a cache switch call.
A set of API callsisimplemented to manage dependencies: create, delete, purge, and query.

A set of API callsisimplemented to permit administrative functions: purge an entry, flush a cache,
terminate the cache manager.

Finally, aset of API callsis provided as convenience functions to manage the token, read, and write of
an item within asingle call.

Description

The API consists of two structures, and a set of subroutine calls. To access the definition of these, use
the following #include:

#i nclude ‘' * CacheApi.h"’

The CacheHandle structure is an opague pointer to a structure used by the APl to communicate with the
cache manager. The APl never needs to access any of itsfields directly.

The CacheToken structure is a c-language structure which contains data about a specific cache entry. It
contains the key for the data, maintains an association between a dataitem and a particular cache, and
contains all available data about a datain cache (age of item, etc.)

Structures

CacheHandle

CacheHandle is an opague pointer to a structure that represents a cache.
CacheStringList

CacheStringList is an opague pointer to a structure that represents a key. CacheHandle is an opague
pointer to a structure that represents a cache.

The CacheToken Structure

The CacheToken structure is defined thus;

typedef struct _CacheToken {

char * key;

i nt key | en;

i nt datum | en;
tinme_t creation;
time_t expiration;
tinme_t | ast _access;
CacheHandl e connecti on;

enum CacheRc return_code;
enum CacheDi sp di sp;
} CacheToken;

The CacheStatToken Structure

The CacheStatToken structure is defined thus:

typedef struct _CacheStat Token {

i nt reads;

i nt wites;

i nt cl oses;

i nt open_r eads;
i nt read_hits;

i nt open_writes;
[

nt wite hits;

i nt open_write_queries;

i nt wite query hits;
i nt initializations;
i nt term nati ons;

i nt pur ges;

} CacheSt at Token

CacheDI SP Definition

The CacheDisp constants are defined thus:

enum CacheDi sp{ CacheRQ, /1 open read only
CacheWo, /1 open wite only
CacheNone, /1 not open
CacheDi spMax // max di sp (bounds

/1 checking on xmt)

b
CacheRC Definition

The CacheDisp constants are defined thus:

enum CacheRc { CacheNo, /1 not in cache or can't
/1 be opened or buffer
/1 can’'t be set
CacheExpired, /1 in cache, but expired
CacheFound, /1 found and opened as
/1 request ed
Cachelocked, /1 in cache, but already
/1 open by this process
CacheNA, /1 conmuni cation failure
/1 (check errno)
CacheToolLong, /1 buffer > max
CacheNot User Managed, // user attenpted to
/1 set buffer but the
/1 buffer is being
/1 managed by the AP
CacheRcMax /1 max rc (bounds check
/1 on xmt)

b
CByteString Definition

The CByteString structure is used for accessing the data returned by Cachel nvalidateRecord(),
CacheShowDependentK eys(), and CacheStringListNext(). These structures must be treated as
READ-ONLY and never modified or freed other than by invoking CacheStringListFree().

the key */

typedef struct _CByteString {
*
* length of key */

char * data; /
int |en; /
} CByteString;

All fields are updated by the API only; direct manipulation by applicationsis not supported. The fields
creation, expiration, and last_access are initialized (and there valid) only after the item has been
successfully opened.

CacheAddDependency

Description:
Associate a dependency string with a cached item.
Syntax:
int CacheAddDependency(CacheHandle ch, void *key, int klen, char * dep)

where
ch isthe handle acquired from Cachelnit.
key pointsto string of bytes which matches the key for the item.

klen isthelength of the key
dep isthe dependency to be added

On return, the string dep will be associated within the cache with the item stored under key.

Return Codes
CacheFound The dependency has been set.
CacheNo Theitem key is not found in cache.

CacheNoHashing Hashing is not enabled for this cache.

Example:

#i ncl ude ‘' ‘ CacheAPIl . h’

CééheHandle ch

Cachelnit(‘‘gallifrey,
7175,
‘*cache0 ',

30);

CacheToken *ct CacheStreanToken(* ‘ key3' ', 4, 1, 0;

CacheAddDependency(ch, ‘‘key3 ', 4, "tablel");
CacheTer n(ch)

Transaction L og For mat

Transaction log records are in the following format:

<dat e> <ti me> CacheAddDependency <key> <dep>

CacheDeleteDependency

Description:
Disassociate a dependency string from a cached item.
Syntax:
int CacheDeleteDependency(CacheHandle ch, void *key, int klen, char * dep)

where

ch isthehandle acquired from Cachelnit.

key pointsto string of bytes which matches the key for the item.
klen isthelength of the key

dep isthedependency to be deleted

On return, the specified page will no longer have dep as a dependency.

Example:

#i ncl ude *‘ CacheAPI . h’

CacheHandl e ch = Cachelnit(*‘gallifrey,
7175,
“*cache0 ",
30);

CacheDel et eDependency(ch, **key3 ', 4, "tablel");
CacheTernm(ch);

Transaction L og For mat

Transaction log records are in the following format:

<dat e> <ti me> CacheDel et eDependency <key> <dep>

Cachel nvalidateRecord

Description:

This call deletes all itemsin cache associated with the specified dependency string, returning the
list of cache keysfor all items deleted.

Syntax:

CacheStringList CachelnvalidateRecord(CacheHandle handle, char * dep);

where

handle isthe handle acquired from Cachelnit.

dep is the dependency string for which al itemswill be purged.

On return, the list of cache keys corresponding to items which were deleted in a CacheStringList. This
array must be discarded later viaa call to CacheStringListFree(). Theindividual entriesin the list can be
accessed viaa call to CacheStringListReset() followed by a set of callsto CacheStringListNext().

Example:

#i ncl ude ‘' ‘ CacheAPIl . h’
#i ncl ude ‘' ‘ CacheAPIl . h’

CacheHandl e ch = Cachelnit(‘‘gallifrey,
7175,
‘*cache0’,
30);

CacheStringList list;
list = CachelnvalidateRecord((ch, **key3 ")

CébheTern(ch);

Transaction Log For mat

For each object denoted by <key> which isinvalidated, arecord of the following format is generated:

<dat e> <tine> Cachel nval i dat eRecord <dep> <key> <datum | en>

If no objects are invalidated as aresult of the function call, asingle record of the following format is
generated:

<dat e> <ti me> Cachel nval i dat eRecord <dep>

CacheShowDependentK eys

Description:

This call returns the list of keys corresponding to cache items marked dependent on the specified
string. No items are del eted.

Syntax:
CacheStringList CacheShowDependentK eys(CacheHandle ch, char *dep)

where

handle isthe handle acquired from Cachelnit.

dep is the dependency string for which keys will be returned.

On return, the list of cache keys corresponding to items which were deleted in a CacheStringList. This
array must be discarded later viaa call to CacheStringListFree(). Theindividual entriesin the list can be
accessed viaacall to CacheStringListReset() followed by a set of calls to CacheStringListNext().

Example:

#i ncl ude ‘*‘ CacheAPl . h’

CacheHandl e ch = Cachelnit(*‘gallifrey,
7175,
‘‘cache0’,
30);

CacheStringList list;
i st = CacheShowDependent Keys((ch, ‘‘key3'’) // fetch keys

int count = list.reset(); /1 reset list and get count
for (int i = 0; i < count; i++) {
CByteString *cbs = list.next(); /1 fetch next item
}
CacheStringLi stFree(list); /1 free all storage

CébheTern(ch);

Transaction L og For mat

Transaction log records are in the following format:

<dat e> <ti me> CacheQueryDependent Keys <dep>

CacheStringListFree

Description:

This call frees storage acquired via Cachel nvalidateRecord() or CacheShowDependentKeys().
This storage is managed by the API and must be returned with this call, not free() or delete.

Syntax:
CacheStringListFree(CacheStringList);

where
array isaCacheStringList acquired from one of the other cache API calls.
Example:

#i ncl ude ‘' ‘ CacheAPIl . h’

CacheHandl e ch = Cachelnit('‘gallifrey,
7175,
‘‘cache0’,
30);

CacheStringList list;
i st = CacheShowbDependent Keys((ch, *‘‘key3' ")

CééheStringListFree(Iist);
CacheTerm(ch);

Transaction Log For mat

This API function does not communicate with the cache manager daemon and hence does not affect the
transaction log.

CacheStringListReset

Description:

This call initializes an interator inside the CacheStringList() structure, returning the number of
items in the structure.

Syntax:

int CacheStringListReset(CacheStringList);

where
array isaCacheStringList acquired from one of the other cache API calls.

Example:

#i ncl ude ‘‘ CacheAPl. h'’

CacheHandl e ch = Cachelnit(‘‘gallifrey,
7175,

‘‘cache0 ",
30);

CacheStringList list;
list = CacheShowDependent Keys((ch, *‘‘key3 ")
int count = CacheStringLi stReset(list);

CébheSt ringListFree(list);
CacheTerm(ch);

Transaction Log For mat

This API function does not communicate with the cache manager daemon and hence does not affect the
transaction log.

CacheStringListNext

Description:

This returns the next CByteString from a CacheStringList() structure and advances the internal
pointer to the next item.

Syntax:
CByteString * CacheStringListNext(CacheStringList);
where

array isaCacheStringList acquired from one of the other cache API calls.

Example:

#i ncl ude ‘* CacheAPl . h'’

CacheHandl e ch = Cachelnit(‘‘gallifrey,
7175,

‘‘cache0’’,
30);

CacheStringList list;

i st = CacheShowDependent Keys((ch, *‘‘key3 ")

int count = CacheStringLi stReset(list);

for (int i =0; i < count; i++) {
CByteString *cbs = CacheStringLi st Next(list);
printf("Key=%\b", cbs->key);

CacheStri ngLi st Free(list);
CacheTern(ch);

Transaction L og For mat

This API function does not communicate with the cache manager daemon and hence does not affect the
transaction log.

Cachel nit
Description:

Cachelnit initializes a session between the application and a specific cache. It returns a
CacheHandle, required for all subsequent communication with the cache manager.

Syntax:

CacheHandle Cachel nit(char * machine, int port, char * cache, int timeout=30);

where

machine isthe name of the machine running the cache manager.

port is the TCP/IP port the cache manager is defined to use.

cache is the name of one of the configured caches, and

timeout isthe maximum length of time in seconds that aread or write should be left pending

with no response. If thistime is exceeded, the connection is closed.

On return, the CacheHandle is either O or non-zero; if 0, the open failed, and if non-zero, represents a
session between the API and the cache manager. If an error occurred, errno is set to determine the cause
of the problem. The following errno values are set:

ENOENT The specified cache was not found. The cache parameter isinvalid.
ENOTREADY The specified cache was found, but is marked inactive.
Any other errno isthe errno from any possible failed socket or connect system calls.
Example:

#i ncl ude ‘' ‘ CacheAPIl . h’

CacheHandl e ch = Cachelnit(‘‘gallifrey’’
7175,
‘‘cache0 ",
30);

Transaction L og For mat

Transaction log records are in the following format:

<date> <tine> Cachelnit <status>

where <status> is 1 if the cacheis active and 0 otherwise.

CacheTerm

Description:

CacheTerm call isused to terminate a session. It must be passed an open CacheHandle. On return,
the CacheHandle is no longer vali/td>

Syntax:

void CacheTerm(CacheHandle ch)
where

ch isthe handle acquired from Cachel nit.
Example:
#i nclude ‘' ‘ CacheAPIl . h’
CééheHandle ch = CacheTerm(‘‘gallifrey,
7175,
“*cache0Q’,
30);

CébheTern(ch);

Transaction Log For mat

Transaction log records are in the following format:

<dat e> <ti nme> CacheTerm

CacheSwitch

Description:

The CacheSwitch call is used to switch sessions between caches on the same physical connection.
It eliminates the need for CacheTerm and another Cachelnit if an application wishes to manage
multiple caches on the same connection.

Syntax

CacheHandle CacheSwitch(CacheHandle ch, char *id;
where

ch isavalid, open connection, acquired on a previous Cachelnit.
id isthe name of avalid cache.

On return, the CacheHandle is either zero or non-zero and may be used in further cache operations. In
either case, the previous connection is closed. If an error occurred, errno is set to determine the cause of
the problem. The following errno values are set:

ENOENT The specified cache was not found. The cache parameter isinvalid.
ENOTREADY The specified cache was found, but is marked inactive.

Any other errno isthe errno from any possible failed socket system calls.

Example:

#i ncl ude ‘' ‘ CacheAPIl . h’
CééheHandle ch = Cachelnit(‘‘gallifrey,
7175,
‘‘cacheQ ',
30);
CébheHandle chl = CacheSwi tch(ch, ‘‘cachel’’);

CééheTern(chl);

Transaction Log For mat

A transaction record of the following format is placed in the transaction log for the old cache:

<date> <ti nme> CacheTerm

A transaction record of the following format is placed in the transaction log for the new cache:

<date> <tinme> Cachelnit

CacheBuffer Token
Description:

The CacheBufferToken call defines atoken used to read or write data from an application buffer.
It is used to specify the following:

® Datato be used as akey for the datum and the length of the key,

® Thelocation of abuffer to be used for 1/0 (the application will move data into and out of
this buffer as appropriate) and the length of the buffer

® The maximum size of the data item.

Syntax:

CacheToken * CacheBufferToken(void *key, int klen, char *buffer, int buffer_len, int data_len);
where

key isapointer to astring of bytesto be used as the key for thisdata. Thisisnot a
c-language string and may consist of any sequence of bytes, including imbedded ‘\0'.
klen isthe length in bytes of the key,

buffer Isapointer to the buffer to be used for moving data,
buffer len isthe length of the buffer,

data len isthe maximum size of the data. Thisis the maximum number of bytes the API will
move for thisitem. If the data consists of fewer bytes, the cache manager will adjust
the data item appropriately as if data_len had been specified exactly. If the dataisto
be read from cache, this may be specified as O (i.e. unknown).

On return a pointer to a CacheToken isreturned. Thisisto be used in a subsequent CacheOpen() call.
Example:

This example creates a CacheToken for use with a buffer of length 4096 and a dataitem no larger than
20,000 bytes, to be cached under the key “*keyQ'".

#i ncl ude ‘* CacheAPl . h’

CacheHandl e ch = Cachelnit(‘‘gallifrey,
7175,
‘‘cache0’’,
30);

char buf [4096] ;
CacheToken *ct

CacheBuf f er Token(* ‘ key0' ', 4, buf, sizeof(buf), 20000);
CééheTern(ch);

Transaction Log For mat

This API function does not communicate with the cache manager daemon and hence does not affect the
transaction log.

CacheSetBuffer

Description:

The CacheSetBuffer command allows the application to specify a different buffer than that set by
aprevious CacheBufferToken call. This allows a dataitem to be written from an array of strings.

Syntax:

int CacheSetBuffer(CacheToken *tok, char *buffer, int len);
where

tok isthe CacheToken created in a previous CacheBufferToken call.
buffer isapointer to the new buffer.
len isthe length of the new buffer.

Example:

This example assumes a routine called make_strings returns an array of strings, the first two elements of
which are to be written to cache under keyO;

#i ncl ude ‘' ‘ CacheAPIl . h’

CacheHandl e ch = Cachelnit('‘gallifrey,
7175,
‘‘cache0’,
30);

éhér **strings
CacheToken *ct

make_strings();
CacheBuf f er Token(* * keyQ'’
4

sirings[O],
strlen(strings[O0],

20000) ;
CacheWite...
CacheSet Buf fer(ct, strings[1], strlen(strings[1]);
CacheWite...

CééheTern(ch);

Transaction Log For mat

This API function does not communicate with the cache manager daemon and hence does not affect the
transaction log.

CacheGetBuffer (CacheT oken *tok)

Description:
This call returns a pointer to the buffer owned by the specified token.
Syntax:

char * CacheGetBuffer(CacheToken *tok);
where

tok isapointer to avalid token

A pointer to the buffer is returned.

Example:

#i ncl ude *‘ CacheAPI . h’

Cééhekbndle ch = Cachelnit(‘‘gallifrey,
7175,
‘*cache0 ",
30);

char buf [4096] ;
CacheToken *ct = CacheBuffer('‘key0' ', 4, buf, sizeof(buf), 20000);

éhér *pbuf 1 = CacheCGetBuffer(ct);
CééheTern(ch)

Transaction Log For mat

This API function does not communicate with the cache manager daemon and hence does not affect the
transaction log.

CacheFileT oken

Description:

This call creates a CacheToken for use in reading afile into cache, or writing an item out of cache
into afile.

Syntax:

CacheToken * CacheFileToken(void *key, int klen, char *filename);
where

key isapointer to astring of bytesto be used as akey for the item,
klen isthe length in bytes of the key, and

filename is the name of the file to be read/written. Note that thisis afile name, not any sort of file
handle. The API will manage al file operations including open and close.

On return a pointer to a CacheToken isreturned. Thisisto be used in a subsequent CacheOpen() call.
Example:

This example prepares afile‘‘foo’’ for use by the cache API.

#i ncl ude ‘‘ CacheAPl . h"’
CacheHandl e ch = Cachel nit (‘*‘ogallifrey,

7175,

‘‘cache0’,

30);
CééheToken *ct = CacheFil eToken(*‘keyl ', 3, ‘‘foo’');
CacheTer n{ ch)
Transaction Log For mat

This API function does not communicate with the cache manager daemon and hence does not affect the
transaction log.

CacheStreamToken
Description:

This call creates a CacheToken for use in reading from an open file descriptor into cache, or writing
from cache to an open file descriptor.

Syntax:

CacheToken * CacheStreamToken(void *key, int klen, int stream, int dlen);
where

key isapointer to abyte string to be used as the key for thisitem,
klen isthelength of the key in bytes
stream is an open file descriptor, and

dlen isthe maximum number of bytesto be read or written. If the item isto be read from cache
this may be specified as O (i.e., unknown).

On return a pointer to a CacheToken isreturned. Thisisto be used in a subsequent CacheOpen() call.
Example:

This example prepares a token for writing from cache to stdoui.

#i nclude ' * CacheAPl.h"’
CacheHandl e ch = Cachel ni t(‘‘gallifrey,

7175,

‘*cache0 ",

30);
.C:ai:heToken *ct = CacheStreanToken('‘key3' ', 4, 1, 0);
CééheTer n(ch)
Transaction L og For mat

This API function does not communicate with the cache manager daemon and hence does not affect the
transaction log.

CacheFreeT oken

Description:

This call frees atoken and any associated resources which were acquired by the API. Note that the
user isresponsible for closing streams (from CacheStreamToken) or freeing buffers (from
CacheBufferToken) acquired by the application.

Syntax:

void CacheFreeT oken(CacheToken *tok);
where

tok isatoken acquired from one of the token management calls.

Example:

#i ncl ude ‘' ‘ CacheAPIl . h’

CébheHandle ch

Cachelnit(‘‘gallifrey,
7175,
‘‘cache0 ",

30);

CacheToken *ct = CacheStreantToken(* ‘ key3' ', 4, 1, O;

CééheFreeToken(ct);
CacheTer n(ch)

Transaction L og For mat

This API function does not communicate with the cache manager daemon and hence does not affect the
transaction log.

CacheOpen

Description:

This call associates a session (from Cachelnit) with atoken (from CacheOpen) and establishes the
direction of dataflow (from cache to API or from API to cache).

Syntax:

CacheRc CacheOpen(CacheT oken *token, CacheHandle handl, CacheDisp disp);
where

token isatoken acquired from one of the Cache... Token calls.
handle is a handle acquired from Cachel nit or CacheSwitch.
disp isoneof CacheRO, CacheWO.

The semantics of disp are:

CacheRO opentheitem in read-only mode. If the item exists, the token is updated with the
actual length of the dataitem in cache, the time the item was created (or last written),
the time the item expires, and the time the data was | ast accessed

CacheWO open the item in write-only mode. If the item already existsit is deleted and a new
entry is created to hold the new data.
The following codes can be returned by this call:

CacheFound theitemisfound in the cacheif disp is CacheRO. Theitem is successfully opened

if disp is CacheWO.

CacheNo the item is not in cache, or can’t be opened, or a buffer for data transfer cannot be
established.

CacheExpired Theitem isfound in cache but is marked expired. The item is successfully opened.

Cachel ocked Theitemisfound in cache but is aready opened by this process. The item is not
reopened by this call.

CacheNA The cacheis not available. Probably a communication failure.

Example:

#i ncl ude ‘* CacheAPl . h'’

CacheHandl e ch = Cachelnit(‘‘gallifrey,
7175,

‘‘cache0’’,
30);

CacheToken *ct = CacheStreaniroken(‘ " key3' ', 4, 1, O;
CacheRc rc = CacheQpen(ct, ch, CacheRO;

'Céi:heFreeToken(ct);
CacheTer m(ch)

Transaction Log For mat

If theitem is aready open, atransaction record in the following format is generated:

<dat e> <time> CacheOpen_al ready_open <key>

If disp=CacheRO and the item is found, atransaction record in the following format is generated:
<date> <ti me> CacheOpen_RO <key> <dat um | en>

If disp=CacheRO and the item is not found, a transaction record in the following format is generated:
<date> <ti me> CacheOpen_RO <key>

If disp=CacheWO, atransaction record in the following format is generated:

<dat e> <tinme> CacheOpen_RO <key> <datum | en>

CacheClose
Description:
This call dissociates the connection between a cache session and a token.

Syntax:

void CacheClose(CacheToken *ct);
where

ct isatoken which has been opened by CacheOpen.

Example:

#include ‘* CacheAPl . h'’
'CébheHandl e ch = Cachelnit(‘‘gallifrey,
7175,
‘‘cacheQ ',
30);

CacheToken *ct = CacheStreanToken(* “ key3' ', 4, 1, 0;
CacheRc rc = CacheQpen(ct, ch, CacheRO;

Cached ose(ct);
CacheFr eeToken(ct);
CacheTer m(ch)

Transaction Log For mat

A transaction record in the following format is generated:
<dat e> <tine> CacheC ose <key> <datum | en>

If the cache API is managing buffer storage for the token and the disp field of the token is CacheWO, a
CacheFlush API call is made before the CacheClose. A transaction record of the following format is
generated before the CacheClose transaction record:

<date> <tine> CacheWite <key> <datuml en>

CacheRead

Description:

This call causes data to be transferred from the cache to the location specified by the token.
Syntax:

int CacheRead(CacheT oken *token);
where

token isatoken opened in CacheRO mode.

The actual number of bytes transferred is returned. If the call fails, the return codeis-1.
Example:

sreads the data in cache associated with key key3 and writes the contents to stdout. Note that except for
error checking, the last five lines of this example are now a complete program.

#i ncl ude ‘* CacheAPl . h'’

CacheHandl e ch = Cachelnit(‘‘gallifrey,
7175,

‘‘cache0’’,
30);

CacheToken *ct = CacheStreamloken('* key3 ', 4, 1, O;
CacheRc rc = CacheQpen(ct, ch, CacheRO;

int rcl = CacheRead(ct);

Cached ose(ct);

CacheFreeToken(ct);

CacheTernm(ch);

Transaction L og For mat

A ransaction record in the following format is generated:

<dat e> <tine> CacheRead <key> <bytes-read>

CacheWrite

Description:

This call transfers data from the location specified by the token into the cache.
Syntax:

int CacheWrite(CacheToken *token);
where

token isatoken opened in Cache WO mode.

The actual number of bytes transferred is returned. If the call fails, the return code is-1.
Example:

Thiswrites 50 bytes from stdin to an item in cache associated with key key4.

#i ncl ude ‘* CacheAPl . h’

CacheHandl e ch = Cachelnit(‘‘gallifrey,
7175,
‘‘cache0’’,
30);

CacheToken *ct = CacheStreanToken('‘key4’’, 4, 0, 50)
CacheRc rc = CacheQpen(ct, ch, CacheW);

int rcl = CacheWite(ct);

Cached ose(ct);

CacheFreeToken(ct);

CacheTern(ch);

Transaction Log For mat

A ransaction record in the following format is generated:

<date> <time> CacheWite <key> <bytes-witten>

CacheBuffer

Description:

Thisis aconvenience call, which prepares a buffer for reading or writing from cache, freeing the
user from the task of managing buffers and coding CacheBufferToken and CacheOpen calls. It is
used in conjunction with CacheAppend to actually transfer data/td>

Syntax:

CacheT oken* CacheBuffer(CacheHandle ch, char *key, int keylen, int datalen, CacheDisp disp,
CacheRc *rc);

where

ch is ahandle acquired from Cachelnit or CacheSwitch,

key is abyte string to be used as a key,

keylen isthelength in bytes of the key,

datalen isthe length of buffer to use,

disp isCacheRO or CacheWO, and

rc is the return code from the implicit CacheBufferToken call done by this routine.
Thisroutine returns either O (failure) or a CacheToken to be used on subsequent CacheAppend calls.

Example:

This example prepares to read from the cache entry key5.

#i ncl ude ‘* CacheAPl . h’

CacheHandl e ch = Cachelnit(‘‘gallifrey,
7175,
‘‘cache0’’,
30);

CébheRc rc = CacheNo;

CacheToken *ct = CacheBuffer(CacheHandl e ch
"‘key5 ', 4, 0, CacheRO &rc);

CébheClose(ct);

CacheFr eeToken(ct);
CacheTern{ch);

Transaction L og For mat

This function generates identical |og records as the corresponding CacheOpen call would generate.

CacheAppend

Description:

Thisis aconvenience function for use in conjunction with CacheBuffer to ease data transfer into
and out of API buffers.

Syntax:

int CacheA ppend(CacheToken *ct, void * buffer, int len);

where
ct is the token returned from a previous CacheBuffer call,
buffer isthelocation dataisto be moved into, in the case of CacheRO, or from, in the case of
CacheWO,
len isthe number of bytesto be moved (which may be different from the actual size of the
dataitem).
Example:

This example reads 800 bytes in 80 byte increments from key5 in cache and writes them to stdout.

#i ncl ude ‘' ‘ CacheAPIl . h’

CacheHandl e ch = Cachelnit(‘‘gallifrey,
7175,
‘*cache0 ",
30);

char buf[80];

CacheRc rc = CacheNo;

CacheToken *ct = CacheBuffer(CacheHandl e ch
‘‘key5 ', 4, 1, CacheRO &rc);

for (int i =0; i < 10; i++) {
CacheAppend(ct, buf, 80);
fwite(stdout, ‘9%’ ’, buf);

}

CacheC ose(ct);
CacheFr eeToken(ct);
CacheTernm(ch);

Transaction Log For mat

This API function does not communicate with the cache manager daemon and hence does not affect the
transaction log.

CacheFile

Description:

Thisis aconvenience function to read an entire item from cache to disk, or write an entire file
from disk to cachein asingle call.

Syntax:
int CacheFile(CacheHandle ch, void *key, int klen, char *filename, CacheDisp disp, CacheRc
rc);
where)
ch is a handle acquired from Cachelnit or CacheSwitch,

key is abyte string comprising the key,

klen isthe length in bytes of the key,

filename isthe name of the file to be read or written,

disp Is either CacheRO or CacheWO, and

rc isthe return code returned from the implicit CacheRead or CacheWrite.

The number of bytes of data actually transferred is returned, or -1 if the call fails.
Example:

This example copies the data in cache under key6 into the file called datab.

#i ncl ude ‘' ‘ CacheAPIl . h’

CééheHandle ch = Cachelnit(‘‘gallifrey,
7175,

‘*cache0 ',
30);

CébheRc rc = CacheNo;
int rcl = CacheFile(ch, ‘‘key6’ ', 4, ‘‘data6’’
CacheRO, &rc);

CacheTerm(ch);

Transaction L og For mat

This function generates identical log records as the corresponding CacheOpen and CacheRead or
CacheWrite calls would generate.

CacheStream

Description:

Thisis a convenience function to permit the reading and writing data between cache and an open
file descriptor in asingle call.

Syntax:

int CacheStream(CacheHandle ch, void *key, int klen, int dlen, int stream, CacheDisp disp,
CacheRc *rc);

where

ch isahandle acquired in Cachelnit or CacheSwitch,

key isabyte string representing the key,

klen isthe number of bytesin the key,

dlen isthe number of bytesto be transferred (or O, if disp = CacheRO),
stream is an open file descriptor,

disp iseither CacheRO or CacheWO,

rc is the return code from the implicit CacheRead or CacheWrite.

The number of bytes of data actually transferred isreturned, or -1 if the call fails.
Example:

This exampl e reads the contents of the data associated with key7 and writesit to stdout.

#i ncl ude ‘' ‘ CacheAPIl . h'’

CacheHandl e ch = Cachel nit (*‘oallifrey,
7175,

‘*cache0 ',
30);

CébheRc rc = CacheNo;
int rcl = CacheStrean{(ch, ‘‘key7'’', 4, 0, 1, CacheRO, &rc);

CacheTernm(ch);

Transaction Log Format

This function generates identical log records as the corresponding CacheOpen and CacheRead or
CacheWrite calls would generate.

CachePurge

Description:

This call causes an entry to be purged from cache.
Syntax:

int CachePurge(CacheT oken *token);
where

token is an open token. Either CacheRO or CacheWO may be used to open the token. The
CacheOpen isrequired to insure the item exists and to associate a session with the item.

Example:

#i ncl ude ‘' ‘ CacheAPIl . h’

CacheHandl e ch = Cachelnit('‘gallifrey,
7175,
‘‘cache0’,
30);

CacheToken *ct = CacheBufferToken('*‘key0' ', 4, 0, 0, 0);
CacheQpen(ch, ct, CacheRO;
. /1 determine if it should be purged by
/1 looking at the returned token
CachePurge(ct);
CacheTerm(ch);

A transaction record in the following format is generated:

<dat e> <ti me> CachePurge <key> <datum | en>

CacheFlush

Description:

This call forces a physical write of any buffered data written with any of the calls which cause
data to be transferred to the cache.

Although closing atoken will force the buffers to be flushed, you should always do an explicit
flush so you can examine the return code and insure all data was safely transferred over the
network./td>

Syntax:
int CacheFlush(CacheToken *ct);
where
token is atoken open in CacheWO mode.

Example:

#i ncl ude ‘* CacheAPl . h’

CacheHandl e ch = Cachelnit(‘‘gallifrey,
7175,
‘‘cache0’,
30);

char buf[80];

CacheRc rc = CacheNo;

CacheToken *ct = CacheBuffer(CacheHandl e ch
‘‘key5 ', 4, 0, CacheWD, &rc);

for (int i =0; i < 10; i++) {
CacheAppend(ct, buf, 80);
fwite(stdout, '*9%’’, buf);

CacheFlush(ct); // insure all data safely witten
Cached ose(ct);

CacheFreeToken(ct);

CacheTerm(ch);

A transaction record in the following format is generated:

<date> <tine> CacheWite <key> <datum | en>

CacheClear

Description:

Cause al dataitemsin a specific cache to be deleted unconditionally.
Syntax:

int CacheClear(CacheHandle ch);
where

ch isahandle to a cache opened by Cachelint or CacheSwitch.

Example:

Purge all itemsin cache ‘‘cacheQ’".

#i ncl ude ‘‘ CacheAPl . h'’

CacheHandl e ch = Cachelnit('‘gallifrey,
7175,
‘‘cache0’,
30);
Cached ear (ch);
CacheTerm(ch);

A transaction record in the following format is generated:
<dat e> <ti me> Cached ear

hr>

CacheGetStats

Description:

This call returns a pointer to a structure containing statistics from a cache.

Syntax:

CacheStatToken * CacheGetStats(CacheHandle ch, int reset_counters);
where

ch is a handle acquired from Cachelnit or CacheSwitch.

reset_counters is1if the cache statistics counters should be reset after they are sent to the API
program, O otherwise.

Example:

#i ncl ude ‘' ‘ CacheAPl. h'’

'Cé.cheHandI e ch = Cachelnit(‘‘gallifrey,

7175,

‘*cache0’,

30);
Céi:heSt at Token *token = CacheCet Stats(ch, 0);
CébheFr eeSt at Token(ct);
CacheTer n{ ch)
A transaction record in the following format is generated:

<date> <ti nme> CacheGet St at s

CacheFreeStatToken

Description:
This call frees a statistics token returned by CacheGetStats.
Syntax:

void CacheFreeStat Token(CacheStatToken * tok);
where

tok isastructure returned by CacheGetStats.

Example:

#i nclude ‘' * CacheAPl.h"’
Cééheklandl e ch = Cachelnit(‘‘gallifrey,

7175,

‘‘cache0’,

30);

CééheSt at Token *token = CacheGet Stats(ch, 0);
CacheFr eeSt at Token(ct);
CééheTern(ch)

Transaction Log For mat

This API function does not communicate with the cache manager daemon and hence does not affect the
transaction log.

Sample configuration file

For reference, the following config file was used for verifying the test program described above.

cache- manager {
port = 7175
connection-timeout = 0
| oggi ng = yes
I og = /u/chal I ngr/cachengr/cachengr. | og
wrap-l og = yes
| og-size = 64000
trace-flags = D ALL

}
testl
{
root = /u/challngr/cachenmgr/cache0
caching = on
nmemsize = 10MB
fs-size = 5MB
datum menory-linmt = 5KB
datumdi sk-1imt = 500KB
lifetime = 6000000
check-expiration = 150
stat-file = /u/challngr/cachengr/cacheO. stats
stat-interval = 60
}
test2: testl
{

root = /u/challngr/cachengr/cachel
stat-file = /u/challngr/cachengr/cachel.stats

