
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, TDSC-2013-06-0162.R1 1

VM-µCheckpoint: Design, Modeling, and
Assessment of Lightweight In-Memory VM

Checkpointing
Long Wang, Member, IEEE, Zbigniew Kalbarczyk, Member, IEEE, Ravishankar K. Iyer, Fellow,

IEEE, and Arun Iyengar, Fellow, IEEE

Abstract— Checkpointing and rollback techniques enhance reliability and availability of virtual machines and their hosted IT

services. This paper proposes VM-µCheckpoint, a light-weight pure-software mechanism for high-frequency checkpointing and

rapid recovery for VMs. Compared with existing techniques of VM checkpointing, VM-µCheckpoint tries to minimize checkpoint

overhead and speed up recovery by means of copy-on-write, dirty-page prediction and in-place recovery, as well as saving

incremental checkpoints in volatile memory. Moreover, VM-µCheckpoint deals with the issue that latency in error detection

potentially results in corrupted checkpoints, particularly when checkpointing frequency is high. We also constructed Markov

models to study the availability improvements provided by VM-µCheckpoint (from 99% to 99.98% on reasonably reliable

hypervisors). We designed and implemented VM-µCheckpoint in the Xen VMM. The evaluation results demonstrate that VM-

µCheckpoint incurs an average of 6.3% overhead (in terms of program execution time) for 50ms checkpoint intervals when

executing the SPEC CINT 2006 benchmark. Error injection experiments demonstrate that VM-µCheckpoint, combined with error

detection techniques in RMK, provides high coverage of recovery.

Index Terms—checkpoint corruption, checkpoint model, error latency, incremental checkpoint, high-frequency checkpoint,

transient error

—————————— � ——————————

1 INTRODUCTION

irtual machines (VMs) are popularly deployed to
host a variety of IT services. To ensure continuous

service availability, these systems must be capable of
tolerating runtime errors. Checkpoint and rollback
techniques can be applied to enhance VM availability.

Virtual machine monitors (VMMs) like VMware,
Xen, and KVM, provide mechanisms to save a VM
state (i.e., stop the VM and dump the execution state in
persistent storage) and migrate the VM to a remote
node (e.g., [6]). Most of the existing VM checkpoint
techniques [17][23][7] exploit these two mechanisms.
For example, CEVM [17] and VNsnap [23] first use live
migration to create a replica of the protected VM in
memory and then dump the replica to disk offline.

Traditional checkpointing techniques save check-
points on disk to tolerate failures. Several VM check-
pointing techniques, including Remus [7], save check-
points in the memory of another node. Here, we pro-
pose saving checkpoints in the memory of the same
node. Our model study (Section 5) shows that VM
availability is largely increased with checkpoints in the
same node’s memory on reasonably reliable hypervi-
sors.

Specifically, this paper presents the design, model

study, and experimental assessment of VM-
µCheckpoint, a VM checkpointing framework to pro-
tect both VMs and applications in the VMs against
runtime errors. When an error occurs silently in
memory (e.g. due to radiation), ECC can correct this
error. This paper targets the types of errors not detect-
ed/corrected by ECC memory, including hardware
transient errors occurring to the registers, caches, bus-
es, control logics, as well as software transient errors.

VM-µCheckpoint supports in-place recovery of
failed VMs using in-memory checkpointing. Ad-
vantages to using VM-µCheckpoint include (i) small
overhead as compared with the replica-based failover
approach, (ii) high checkpointing frequency (tens of
checkpoints per second), which reduces the size of
each increment when taking a checkpoint, (iii) address-
ing checkpoint corruption due to latency of error detection
by modeling error latency characteristics and dealing
with checkpoint corruption properly (checkpoint cor-
ruption is not negligible in high-frequency checkpoint-
ing, e.g. checkpoint every 50ms), and (iv) rapid recovery
(within one second) as compared with the stop-and-
dump approach (provided by VMMs as a basic capa-
bility).

As a result, checkpointing (during the normal sys-
tem operation) and the recovery (in response to a fail-
ure of a VM and/or application) are almost completely
transparent, i.e., the client does not see a service inter-
ruption.

VM-µCheckpoint significantly improves the availa-

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

• Long Wang is with the IBM T. J. Watson Research Center, Yorktown
Heights, NY 10598. E-mail: wanglo@us.ibm.com.

• Zbigniew Kalbarczyk is with the University of Illinois at Urbana-
Champaign, Urbana, IL 61801. E-mail: kalbarcz@illinois.edu.

• Ravishankar K. Iyer is with the University of Illinois at Urbana-
Champaign, Urbana, IL 61801. E-mail: rkiyer@illinois.edu.

• Arun Iyengar is with the IBM T. J. Watson Research Center, Yorktown
Heights, NY 10598. E-mail: aruni@us.ibm.com.

V

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

bility of VMs against transient failures by providing
rapid recovery (detailed discussion of these failures
given in Section 5). Moreover, VM-µCheckpoint is de-
signed as a complementary approach to disk-based
VM checkpointing rather than its replacement. The
checkpoint kept by VM-µCheckpoint can be dumped
to disk (to tolerate node failure) at a sufficiently infre-
quent rate to minimize overhead. Such an extension of
VM-µCheckpoint to support disk-based checkpoint is
described in Section 3.1.

The major contributions of this paper are:
• Design of VM-µCheckpoint and its implementation
in Xen VMM. The VM-µCheckpoint takes in-memory
incremental checkpoints (i.e., each increment includes
only memory pages modified during the current
checkpoint interval) and employs in-place restoration
(i.e., recovering a failed VM into its current context) to
minimize overhead. Copy-on-Write mechanism and
dirty-page prediction are exploited to further minimize
checkpoint overhead.
• Model study of VM-µCheckpoint’s effectiveness in
enhancing service availability: i) A data-driven analyt-
ical model is constructed and used to evaluate the
probability of checkpoint corruption. The analysis
shows that VM-µCheckpoint with proper parameter
settings can significantly reduce the probability of re-
covery failures due to checkpoint corruption, from a
high of 31.7% to a low of less than 2% as compared to
current methods. ii) A comprehensive Markov model
is constructed to evaluate the availability improvement
when VM-µCheckpoint is used. The model shows the
availability of VMs and applications increases from
99% to 99.98% on reasonably reliable hypervisors
(these hypervisors have an MTTF of 1.7 years or larg-
er).
• An experimental assessment of VM-µCheckpoint
runtime performance shows that VM-µCheckpoint
incurs low overhead with typical checkpoint intervals
(an average of 6.3% overhead for SPEC benchmark
programs with 50 ms checkpoint intervals1).
• Error injection experiments demonstrate that VM-
µCheckpoint, deployed in the RMK framework [31] to
leverage a variety of existing error detection tech-
niques, has high coverage of error recovery (100% for
system crashes and corrupted data, as well as 80% for
system hangs in our experiments).

2 ARCHITECTURE

Our light-weighted checkpoint approach, VM-
µCheckpoint, is based on a well-known observation
that short-latency errors are dominant. Fault injection
experiments such as those reported in [1] show that
about 95% of crashes occur within 100 million CPU
cycles (or within 50ms on a 2GHz processor) after an
error occurrence. Fault injections into processor micro-

1 The work of fault injection into Linux kernels [1] shows that,
about 95% of crashes occur within 100 million CPU cycles (or within
50ms on a 2GHz processor) after an error occurs. We select a check-
point interval of 50ms in experiments to cover the latency for 95% of
errors.

architecture [26] also show small error latencies. More-
over, state-of-the-art error detection techniques (e.g.,
[3][2][13]) help to limit the error latency to low value.

Figure 1 depicts the deployment of VM-
µCheckpoint for recovering VMs from errors. We lev-
erage the RMK framework [31] for the deployment
because RMK provides a modular platform that allows
for flexible installation of error detection and recovery
mechanisms.

Figure 1: Error Detection/Recovery in RMK

Background of the RMK framework. The RMK was
proposed as a device driver in standalone systems. It
exploits processor-level features (debugging and moni-
toring facilities available in the current generations of
processors), and OS-exported interfaces to define a set
of basic services. These basic services are called RMK
pins, which are analogous to hardware pins in provid-
ing clearly defined functionalities and inputs/outputs.
The pins are employed to support mechanisms of error
detection and recovery, referred to as RMK modules.
RMK pins and RMK modules are communicated in a
publish-subscribe fashion, i.e., RMK pins publish pin-
specific events to the RMK framework and RMK mod-
ules subscribe certain events from the RMK frame-
work.

Figure 1 illustrates how we extend the basic RMK
scheme in [31] to support a virtualized environment
and to accommodate the VM-µCheckpoint mechanism.
Similar to the RMK in a standalone system, the RMK in
the protected VM is installed as a device driver; no
kernel source recompilation is needed. In the hypervi-
sor (Xen in our prototype), we implemented a new
hypercall that encapsulates the hypervisor-level RMK
(a hypercall is like a system call for a hypervisor). The
hypervisor source code is instrumented and recom-
piled for this purpose.

VM-µCheckpoint consists of three RMK modules in
the deployment (Figure 1): COWB, COWP, and recov-
ery. They implement the two checkpoint algorithms
and the recovery algorithm of VM-µCheckpoint. De-
tails of the algorithms are presented in Section 3 below.
Certain RMK pins support VM-µCheckpoint. For ex-
ample, the RMK pins P_VCPU and P_PTABLE wrap

Hypervisor

checkpointing VM protected VM

app appCheckpoint agent

Hardware

RMK core

RMK core

P_VCPU P_PTABLE

System Hang

Detection

P_SCHL

P_PMC

COWB COWP

P_VMSIGN AL

app

guest OS

recovery

P_PMC_HELPER

guest OS

P_VMSCHL

AUTHOR ET AL.: TITLE 3

the hypervisor functionalities of manipulating virtual
CPUs and the shadow page table, respectively;
P_VMSIGNAL intercepts received signals and
P_VMSCHL intercepts scheduling of VMs by the hy-
pervisor for detection of VM failures. These RMK pins
are implemented as instrumentation to the hypervisor
kernel.

By deploying our checkpoint scheme in RMK, we
can take advantage of a number of error detection
techniques provided in RMK, including crash detec-
tion, system hang detection, etc. When an error of the
protected VM is detected the VM is recovered by the
VM-µCheckpoint mechanism.

3 CHECKPOINT ALGORITHMS

A user-level process in the checkpointing VM, named
checkpoint agent in Figure 1, takes a checkpoint of the
protected VM periodically at an interval of Tck. The
checkpoint is stored in the checkpointing VM. At each
checkpoint the Copy-on-write (CoW) mechanism is
invoked to identify and store the needed state infor-
mation. As a result, the checkpoint agent stores only a
small fraction of the protected VM state rather than the
entire system image, and checkpoints of multiple pro-
tected VMs on the same physical machine can be
stored in the checkpointing VM.

At the beginning of a checkpoint interval, all
memory pages of the protected VM are set as read-
only. From that point on, any write to a read-only page
triggers a page fault, original data of the page is copied
into the checkpoint kept in the checkpoint agent
memory, and this memory page is set as writable. So
the checkpoint therefore consists of prior-to-update data of
those pages updated within the interval. Any transient er-
rors that originate as incorrect values written to
memory can be recovered by copying back the check-
point data of the updated pages. Besides updated pag-
es, new pages and deleted pages are handled accord-
ingly to save the prior-change state of these pages.

It is possible that a checkpoint gets corrupted by an
error before the error is detected. We keep two most
recent checkpoints at any time (called dual-checkpoint
scheme) for reducing the probability of a corrupted
checkpoint failing error recovery. Our model (Section
4) shows that combining proper selection of Tck and
the dual-checkpoint scheme greatly reduces the prob-
ability of recovery failures due to checkpoint corrup-
tion.
The COWB algorithm. The basic algorithm of VM-
µCheckpoint, COWB, is depicted as the timeline (a) in
Figure 2. [t0, t1) and [t1, t2) are two checkpoint intervals.
The horizontal axis at the top of the figure represents
error-free execution of the protected VM, while the
horizontal axis at the bottom represents execution
when an error occurs at tf_s. The error is detected at tf_d.
At tf_d we first restore the data preserved during the
time interval [t1, tf_d) into the protected VM, and then
restore the data preserved during [t0, t1), to roll back
the system to the state at time t0.

Figure 2: Timelines for two checkpoint strategies: (a) COWB

and (b) COWP

We formalize the checkpoint problem and our algo-
rithms using the following notations:
ti Beginning time of the ith checkpoint interval

Si State of the protected VM at time ti.
DPi (dirty pages)

Data of the memory pages preserved by VM-
µCheckpoint’s mechanism during [ti, ti+1]

St State of the protected VM at any time t (t∈ [ti, ti+1])
DPi(t) Data of the memory pages preserved by VM-

µCheckpoint’s mechanism during [ti, t] for any time t (t
∈ [ti, ti+1])

The following operation reflects inherent relation-
ship between Si, St, and DPi(t):

(, ()),
i t i

S restore S DP t= (1)

where (, ())
t i

restore S DP t denotes an operation of
copying the data preserved in DPi(t) into their corre-
sponding memory pages in St to restore the system to
state Si.

In Figure 2 we apply the operation (1) twice and
have

0 1 0 1

1 _ 0

(, ())

((, ()),),f f d

S restore S DP t

restore restore S DP t DP

=

=

 (2)

where
1 1t

S S= ,
0 1 0()DP t DP= , and Sf denotes the sys-

tem state at tf_d. At tf_d when error recovery occurs, Sf,
DP1(tf_d) and DP0 are all available and we can restore
the memory state of the protected VM into S0. After
restoration, neither DP1(tf_d) nor DP0 is valid any more,
as the system is now in state S0. They are discarded
after the recovery.
The COWP algorithm. A large number of page faults
are incurred in COWB because all memory pages are
set as read-only at the beginning of each checkpoint
interval. We design an optimized version of this basic
algorithm, called Copy-on-Write Pre-saving (COWP),
to reduce the number of page faults and corresponding
performance overhead (checkpoint-caused page faults
are reduced by 75% when the checkpoint interval is
50ms in our experiments, see Section 7.3).

Specifically, COWP predicts the pages to be updat-
ed in the upcoming checkpoint interval and pre-saves
the predicted pages in the checkpoint when this inter-
val begins. These pre-saved pages are marked as writ-
able and do not raise page faults. Typical checkpoint
intervals selected in our scheme range from tens of
milliseconds to several seconds. Due to the space and
time locality of memory accesses, the pages dirtied in

t0 t1 t2

(a)

Tck

S0 DP0
S1 DP1

S2 DP2

(b)
DP0’ DP1’

H1

DP2’

H2

execution time

H0

tf_d

Tf

execution time
tf_s

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

the previous checkpoint interval are used as prediction
of the pages to be updated in the upcoming interval.
Two control bits —the write permission bit and the
dirty bit— of each memory page entry maintained in
current-generation processors are leveraged for im-
plementing the COWP algorithm. Figure 2 (b) shows
the timeline of the COWP.

More formally, let Hi denote data of the memory
pages updated in the checkpoint interval [ti-1, ti) (H0 is
obtained by profiling system execution before t0), DPi'
denote data of the pages preserved by COWP during
[ti, ti+1), and DPi'(t) be data of the pages preserved by
COWP during [ti, t) for any t∈[ti, ti+1]. Then we use Hi
as prediction of DPi. Using the restore() operation de-
fined in (1), we have:

(, '()).i t i iS restore S DP t H= U (3)

Due to the inaccuracy of dirty page prediction, Hi
includes data of pages that are not updated in [ti, t].
Similar to the discussion on COWB, the expression that
represents restoration of S0 is derived as:

0 1 0 1 0

1 _ 1 0 0

(, '())

((, '()), '),f f d

S restore S DP t H

restore restore S DP t H DP H

=

=

U

U U
 (4)

 where
1 1t

S S= ,
0 1 0'() 'DP t DP= .

3.1 Disk-based Checkpointing

In order to recover a VM against a permanent failure
or a hypervisor failure, VM checkpoints can be saved
in disks. Figure 3 illustrates the extension of VM-
µCheckpoint to support disk-based VM checkpoint.

Specifically, in addition to the in-memory check-
pointing described above, the checkpoint agent scans
the protected VM and saves every memory page (i.e.
the SCANDATA in Figure 3). Suppose the scan starts
in [t0, t1) and finishes in [tk, tk+1). We define an opera-
tion collect such that

0 1
(,)collect DP DP merges the data in

DP0 and DP1: if a memory page is saved in both DP0
and DP1, only the data of the page in DP0 is preserved
after the merge. Then,

Figure 3: Disk-based checkpointing

0 1 2
(... ((,),)...,)

k
DPS collect collect collect DP DP DP DP=

0
(,),S collect DPS SCANDATA=

where DPS is the t0-state of the memory pages
which are modified (updated/created/deleted) during
[t0, tk+1). So the checkpoint agent keeps DP0, DP1, …,
DPk as well as SCANDATA in order to support disk-
based checkpoint. After tk+1 the checkpoint agent
writes collect(DPS, SCANDATA) to disk, the VM
checkpoint at t0.

4 CHECKPOINT CORRUPTION MODEL

In this section, we construct a model of checkpoint cor-
ruption scenarios to study how proper selection of Tck
and the dual-checkpoint scheme in VM-µCheckpoint
greatly reduces the probability of failing to recover the
protected VM due to error detection latency.

Two factors are important in determining check-
point corruption: error occurrence instant and error
detection latency. We use TB to denote a bound on er-
ror detection latency. By setting Tck greater than an ac-
ceptable latency bound TB (for example, 95th percen-
tile) we impose a certain bound on the probability of a
latent/undetected error affecting the checkpoint (less
than 5% in the best case for this example).

The following three assumptions are made in our
model to simplify the analysis while still providing
valuable insight into checkpoint corruption behavior:

(i) Unmasked errors are eventually detected by ei-
ther application-level (e.g., embedded assertions) or
system-level (e.g., application failure, exception han-
dling, kernel panic) detection mechanisms; only an
error detection can trigger checkpoint-based recovery.
Here an unmasked error is defined as a transient error
that remains alive throughout the program life and is
not overwritten but is manifested by the program. Er-
ror injection study [1] shows that an unmasked error,
i.e. a manifested error, only leads to one of the follow-
ing results: crash/abortion, hang, or fail-silence viola-
tion (silent data corruption), and fail-silence violation
cases are rare (no more than 2.3% in the experiments).
The crash/abortion and hang failures are regarded as
two forms of detection in our study because typically
they should be detected in reliability-enhanced sys-
tems to trigger checkpoint-based recovery. Because the
probability of fail-silence violation cases is very small
and such cases can be regarded as “being detected af-
ter a very long time” in our model study without los-
ing the model’s expressiveness, it is reasonable to as-
sume unmasked errors are eventually detected.

(ii) The probability of error occurrence is uniformly
distributed during any given checkpoint interval. Note
that a checkpoint interval in high-frequency check-
point schemes typically ranges from tens of millisec-
onds to seconds or at most minutes. During so short a
period a transient error, triggered either by a hardware
bit-flip due to radiation or current disturbance, or by a
software issue such as race condition, an incorrect pa-
rameter or bad transmission, is a completely inde-
pendent event with respect to the elapsed time in the
period. The assumed uniform distribution well cap-
tures this independence of the transient error.

(iii) Error latency is exponentially distributed. Error
injection study [1] illustrates the distribution of error
latency measured in all experiments. The illustration
shows that, basically the count of error latency values
measured in the experiments largely reduces as the
value continues to increase, but there is still a long tail
of the error latency values. In the reliability area if it is
unable to accurately obtain the analytical formulation
of a random variable’s distribution but the distribution

t0 t1 tk
Tck

S0 DP0 S1 DP1 Sk DPk
execution
time

tk+1

SCANDATA

…

AUTHOR ET AL.: TITLE 5

has aforementioned characteristics, we often model the
random variable as exponentially distributed to sim-
plify the analytical tractability while still provide in-
sightful discussion. Examples are the assumptions of
exponential distribution for “service time at a server in
a queuing network” and “time required to repair a
component that has malfunctioned” in [25], the classi-
cal textbook on probability (page 120).

The checkpoint corruption model is constructed for
a given unmasked error occurrence. We first identify
the checkpoint interval in which the error occurrence
falls. As an example, Figure 4 (a) shows that an error
occurs between chkpt0 and chkpt1. The time offset of
the error occurrence relative to the time of chkpt0 is
denoted as a (0 ≤ a<Tck). The system continues execu-
tion after the error occurrence, and the error is detect-
ed after latency of l (also shown in Figure 4 (a)). a and l
are two random variables. a is uniformly distributed
within [0, Tck), and l is exponentially distributed at a
rate λ . Then, the pdf (probability distribution func-
tion) for a is given by:

1
() : () , [0,)

ck

ck

pdf a f x x T
T

= ∈
,

and the pdf for l is given by:

() : () , [0,)ypdf l g y e yλ
λ

−
= ∈ +∞ .

Because the error latency is independent of the error
occurrence, a and l are independent random variables.
Then, we can derive the pdf for a+l as follows:

() : (,) () (), [0,), [0,)ckpdf a l h x y f x g y x T y+ = ∈ ∈ +∞ .

Figure 4: Timeline of checkpoint corruption scenarios

Note that any checkpoint taken after the occurrence
of an unmasked error and before the detection of the
error (e.g., chkpt1 in Figure 4(a)), is corrupted. In our
model, this condition of checkpoint corruption is rep-
resented as &ck cka T a l T< + > . The probability of the

error corrupting this checkpoint is:

{ & } { } 1 { }ck ck ck ckP a T a l T P a l T P a l T< + > = + > = − + ≤ for

[0,)cka T∈ .

()

0 0 0

{ } (,) () ()

1 1 1
(1) 1 (1)

ck ck

ck ck ck

ck ck

ck

x y T x y T

T T x T

T x Ty

ck ck ck

P a l T h x y dxdy f x g y dydx

e dydx e dx e
T T T

λ λλ
λ

λ

+ ≤ + ≤

−

− − −−

+ ≤ = =

= = − = − −

∫∫ ∫∫

∫ ∫ ∫

Consequently,
1

{ & } (1)ckT

ck ck

ck

P a T a l T e
T

λ

λ

−
< + > = −

 (5)

Selecting Tck to cover short-lived errors. To mitigate
checkpoint corruption, we want to select the check-
point interval to be larger than the latency of most er-

rors. To do that, it is crucial to get realistic estimates of
error latency. How does one obtain such estimates in
practice? Two methods come to mind: (i) analyze de-
tection characteristics of detectors deployed in the sys-
tem/application and (ii) inject faults into the target
application/system to measure error latency. For ex-
ample, according to Gu et al. [1], 95% of Linux kernel
crashes have error latency less than 100M CPU cycles
(or 50ms on 2G Hz processors). If we use this data in
our model, then { } 0.95

B
P l T p≤ = = for TB=50ms. As

{ } 1 BT

B
P l T e

λ−
≤ = − , we can compute the value λ =

0.0599 (1/ms) for the test system in [1].
If we select 50ms as the checkpoint interval Tck, i.e.,

a value covering 95% of error latency, the probability
of checkpoint corruption is 31.7% (computed using

formula (5)). For { } 1 0.99BT

B
P l T e

λ−
≤ = − = and λ =

0.0599, we can compute the value TB=77ms. So when
we increase the checkpoint interval to 77ms that covers
99% of error latency, the probability of checkpoint cor-
ruption is reduced to 21.5% (computed by formula (5)).
Dual checkpoint. Selecting the checkpoint interval to
be larger than a given bound of latency TB reduces
checkpoint corruption probability. However, it does
not ensure that any error occurrence with latency less
than TB does not corrupt a checkpoint. A dual-
checkpoint scheme (as shown in Figure 4 (b)) is neces-
sary to provide this assurance. In this scheme, two
checkpoints are kept at any time, and the older of the
two (chkpt1 in Figure 4 (b)) is the rollback target during
recovery. In this scenario chkpt1 is corrupted only
when & 2ck cka T a l T< + > . Then the probability of

checkpoint corruption is:
{ & 2 } { 2 }ck ck ckP a T a l T P a l T< + > = + > 1 { 2 }ckP a l T= − + ≤

for [0,)cka T∈ .

2 2

2

(2)

0 0 0

{ 2 } (,) () ()

1 1
(1) 1 (1)

ck ck

ck ck ck ck

ck ck

ck

x y T x y T

T T x T T
T x Ty

ck ck ck

P a l T h x y dxdy f x g y dydx

e
e dydx e dx e

T T T

λ

λ λλ
λ

λ

+ ≤ + ≤

− −

− − −−

+ ≤ = =

= = − = − −

∫∫ ∫∫

∫ ∫ ∫

Consequently,

{ & 2 } (1)
ck

ck

T
T

ck ck

ck

e
P a T a l T e

T

λ

λ

λ

−

−
< + > = −

 (6)

Table 1 lists the checkpoint corruption probabilities
for different error latency percentiles in single-
checkpoint and dual-checkpoint scenarios. When dual-
checkpoint is used for Tck of 50ms (covering latency of
95% of errors), the checkpoint corruption probability in
the dual-checkpoint scheme, i.e. the probability of cor-
rupting the older checkpoint, is largely reduced to
1.59% (using formula (6)). As a comparison, selection
of Tck as 115ms in the single-checkpoint scheme has a
checkpoint corruption probability of 14.5%, though
115ms is longer than twice of 50ms. As another com-
parison, selection of Tck as 20ms in the dual-checkpoint
scheme has the checkpoint corruption probability of
17.6%, much larger than 1.59%. It is clear that both the

time

Tck

error occurrence

a l

error detection/
failure

chkpt0 chkpt1 chkpt2

time

error occurrence

a l

error detection/
failure

chkpt0 chkpt1 chkpt2

(a)

(b)

Tck

Tck Tck

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

dual-checkpoint scheme and the proper selection of Tck
must be combined for reducing the checkpoint corrup-
tion probability.
Table 1: Checkpoint corruption probabilities in different sce-

narios

Error

latency

percentile

(p)

p-percentile

point of error

latency as Tck

(ms)

Prob. of checkpoint

corruption in single-

checkpoint at Tck

Prob. of checkpoint

corruption in dual-

checkpoint at Tck

70% 20 58.3% 17.6%

90% 38 39.1% 4.05%

95% 50 31.7% 1.59%

99% 77 21.5% 0.21%

99.9% 115 14.5% 0.015%

5 AVAILABILITY MODEL

We construct a Markov model to study the availability
improvement provided by VM-µCheckpoint to pro-
tected VMs. The model captures failure and recovery
behavior of all the involved components.
Modeled Behavior. Specifically, the following behav-
iors are modeled for different types of failures:

a) Transient failure of a protected VM (or an applica-
tion in the VM): the VM is recovered by the check-
pointing VM if there is no checkpoint corruption that
VM-µCheckpoint cannot handle (see Section 4). When
there is such corruption, a new VM is started on the
same physical host, and the jobs being executed at the
time of the failure are re-executed from the beginning.

b) Transient failure of the checkpointing VM: the
checkpointing VM is restarted on the same physical
host and begins to receive checkpoints from protected
VMs; at the same time, the protected VM is still availa-
ble for job execution. When a protected VM fails dur-
ing the failure/restart of the checkpointing VM, our
recovery protocol first restarts the checkpointing VM,
and then restarts the protected VM (and as before, in-
terrupted jobs are restarted from beginning).

c) Failure of the hypervisor, and permanent failure of the
protected VM or checkpointing VM: a hypervisor is start-
ed either on the same physical node or on another
node, the checkpointing VM is started on the hypervi-
sor, and then the protected VM is started (we assume
that the disk images of VMs can be loaded from any
physical host, which is true in most of current virtual-
ized environments).
Model. Exponential distribution is assumed for the
time to failure and the recovery time for all the com-
ponents. For ease of explanation and brevity, here we
present the availability model for only one protected
VM on top of the hypervisor. Following notations are
used in the model:
λv Rate of the hypervisor software failure and all

permanent failures.
λs Failure rate of the checkpointing VM alone.
λp Failure rate of the protected VM alone.
rv Restart rate of the hypervisor software.
rs Rate of restarting the checkpointing VM, including

saving the first checkpoint.
r’p Rate of successfully recovering a protected VM by

VM-µCheckpoint.
rp Rate of recovering a protected VM when VM-

µCheckpoint fails to do that (due to checkpoint
corruption). Job re-computation is considered as
recovery overhead.

pc Probability of checkpoint corruption given an er-
ror.

The Markov model in Figure 5 depicts the fail-
ure/recovery behavior of the system with VM-
µCheckpoint deployed. The state of the system is de-
noted as a vector (k, j), where k represents the state of
the protected VM and j indicates the state of the
checkpointing VM (Figure 5 gives more details). The
model consists of two sub-models: (a) the sub-model
for transient failures of the protected VM and the
checkpointing VM and (b) the sub-model for perma-
nent failures and hypervisor failures.

Figure 5: Availability model for one protected VM (a) sub-

model for transient failures of guest VMs, (b) sub-model for

permanent failures and hypervisor failures

Figure 5 captures all the failure/recovery behavior
described above (a), b) and c)). For example, when a
permanent failure occurs during execution of the pro-
tected VM, the entire physical node fails, and a hyper-
visor is restarted on a physical node (shown as a se-
quence of transitions, (1,1)->FS->(0,F), in sub-model
(b)). Then the checkpointing VM and the protected VM
(including interrupted jobs) are recovered in turn
(shown as (0,F)->(0,0)->(1,1) in sub-model (a)). The
checkpoint corruption probability derived from the
checkpoint corruption model in Section 4 is multiplied
by the failure rate of a protected VM to obtain the rate
of failures causing corruptions unhandled by VM-
µCheckpoint.
Solving the Model. The Markov model is solved by
computing the equilibrium condition, i.e., the “input
flow” into each state equal to the “output flow” out of
the state [25]. We use the mathematics tool package
CLAPACK [27] to solve these equations and obtain the
probability of the system staying in each state. Solving
the model is required for our availability study in Sec-
tion 5.1.

We extended the availability model in Figure 5 to
capture the behavior of disk-based checkpointing (Fig-
ure 3). We also generalized the model in Figure 5 to
cases when there are n VMs on top of a hypervisor.
Due to the space constraints these models are not pre-
sented here; they are available upon request.

5.1 Availability Study

After the model is solved, we obtain the availability of
the protected VM by adding up the probabilities of the

1,F 0,F

λp

1,1

rS

0,0

rS
λS

0,1

p
c
λ

p

r’p

rp

λS

λ
S

FS

1, 1

0, 1

0, 0

1,F

0,F

(1-pc)λp

λV

λ
V

λV

rV

λV

λV

k, j

system state representation:

k=

protected VM
available

1

protected VM failed0

j=

checkpoint in
checkpointing VM

1

no checkpoint in
checkpointing VM

0

checkpointing VM
failed

F

FS physical node failed
(a) (b)

AUTHOR ET AL.: TITLE 7

system staying in the states (1,1) and (1,F). To demon-
strate the performance of our technique in availability
enhancement, we also construct the Markov models
for both the baseline case and an existing technique of
VM checkpointing based on live migration (Remus [7])
for comparison.
Availability Model for Baseline. In the baseline case,
a VM is on top of the hypervisor and there is no any
checkpoint of the VM. When a failure occurs to the
VM, the VM is restarted with all interrupted jobs re-
started from the beginning. The model in Figure 6 cap-
tures the baseline behavior with n VMs on top of a hy-
pervisor.

Figure 6: The availability model for baseline (n protected VMs)

Figure 7: The availability model for Remus (1 protected VM)

Availability Model for Remus. Remus maintains a
backup of a VM on a remote host by migrating the
state from the primary to the backup periodically (e.g.,
every 50ms). When the VM fails, the backup VM be-
gins to execute from the last checkpoint. The model in
Figure 7 captures the Remus behavior (both check-
point and recovery) for the cases in which there is only
one VM on top of a hypervisor. Due to the space con-
straints detailed presentation and explanation of this
model is not given here, and is available upon request.
Model parameters. The parameters selected in our
model are based on previous empirical study of off-
the-shelf servers. In the availability study for Windows
servers [28] it is reported that, though the average
availability of the servers is around 99.9% there are
also servers with availability around 99% or less. [28]
also reports the MTTR (mean time to recovery) for all
the failures as 0.25 hour (or 15 mins). This MTTR in-
cludes the response time of an administrator who dis-
covers the failure and restarts the failed machine with
appropriate recovery.

So in the availability models for VM-µCheckpoint
we set the following parameters:

rv = rs = 1/15min
rp = 1/(0.5*average job duration), because the VM is restarted

immediately and the mean job recomputation during re-
covery is half of the average job duration

r’p = 1/600ms = 100, as overhead around 600ms is measured
in our experiments

λv = 1/15000hours + 1/3years = 0.000001492/min.
1/15000hours = 1/1.712year is the hypervisor failure
rate; 1/3 years is the permanent failure rate (according
to presentations made by several Intel engineers in
DARPA and other forums)

λs = 1/15000min, for the checkpointing VM with 99.9% avail-
ability (rs = 1/15min)

λp = 1/1500min (for a protected VM with 99% availability
without considering job recomputation) or 1/15000 min
(for a protected VM with 99.9% availability)

pc = 1.59%, the value is derived in the checkpoint corruption
model for Tck= 50ms, which covers 95% of error latency

In this parameter selection, λv is much smaller than
λs or λp because hardware and hypervisor is usually
assumed to be much more reliable than the server
software and the operating system. This is a realistic
assumption (also assumed in [24]) because the hyper-
visor kernel is small (e.g., 434KB for Xen-3.3.1 vs.
1.5MB for Linux 2.6.18) and hence, verification and test
of the hypervisor code is relatively easier.

The parameter values above are also used in the
availability models for the baseline and Remus (so the
recovery rate of Remus is also 1/600ms), except that a
different pc value is selected in the model for Remus.
As VM-µCheckpoint uses the dual-checkpoint scheme
with the checkpoint interval of 50ms in our model
study, for fair comparison, we consider the Remus case
with the checkpoint interval of around 100ms because
the single-checkpoint scheme is used in Remus. Ac-
cording to the data reported in Section 4, the check-
point corruption probability is 14.5% in a single-
checkpoint scheme at the checkpoint interval of 115ms.
Therefore, we select pc=15% in the Remus model (ac-
cording to an experimental study in [29], the probabili-
ties of checkpoint corruption range from 27% to 41%
for different application workloads; so 15% is a con-
servative value).
Results. The availability values computed from these
models are compared in Table 2. Our results are better
than Remus’s for all the experiment cases. For exam-
ple, for average job duration of 8 hours (i.e., 1/rp=240
min) on a 99%-available server (λp=1/1500min), we
achieve an availability of 99.7% while Remus achieves
97.7%.

Table 2: Availability comparison with checkpoint corruption

(note that 1/rp = 0.5*average job duration)

 1/rp (min) 15 60 240 1440

λp=1/15

00min

VM-uchkpt 99.98% 99.92% 99.7% 98.2%

Remus 99.8% 99.4% 97.7% 87.4%

Baseline 99.0% 96.1% 86.2% 51.0%

λp=1/15

000min

VM-uchkpt 99.99% 99.98% 99.93% 99.6%

Remus 99.98% 99.94% 99.76% 98.6%

Baseline 99.90% 99.6% 98.4% 91.1%

The better results are achieved because the impact of
checkpoint corruption on availability is much larger than
that of permanent failures in high-frequency checkpointing.
As transient failures are much more frequent than
permanent failures, our model shows that VM-

n n-1 n-2 0

FS

…

nλp (n-1)λp (n-2)λp λp

rp rp rp rp

λV
rV

λV
λV λV

k VMs available

(k=0, 1, 2, …, n)

FS physical node failed

k

1,1 0,1
r’p

F,1

λV

rV

1,F

λV

1,0
rV

r’p

0,0

λp

rp

0,F
λV

rV

λV

F,0

λVrV

λV

λp

F,F

λ
V

λV

λp

λV

λV

λ
V

λp

λV

rV

p’cλp

(1-p’c)λp

k, j

system state representation:

k: the state of the
primary machine

k, j=

protected VM
available

1

protected VM
failed

0

physical node
failed

F

j: the state of the
backup machine

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

µCheckpoint loses little in handling permanent fail-
ures, but gains much more in reducing checkpoint cor-
ruption by i) selecting the proper checkpoint interval
to cover 95% of errors’ detection latency and ii) apply-
ing a dual-checkpoint scheme to provide the 100% as-
surance for recovering these 95% of errors (the rest
errors are probabilistically covered).

6 DISCUSSIONS

Error model. VM-µCheckpoint recovers VMs and ap-
plications in the VMs from any transient hardware
error or transient software error (including both appli-
cation error and system error) that escape detection of
ECC. These transient hardware errors include those
occurring on processors (functional units, registers,
caches, buses, and control logics) due to events such as
radiation or current disturbance. Transient software
errors, or Heisenbugs [4], include exceptional condi-
tions (e.g., counter overflow and interrupt arrival with
bad timing), occasional device driver fault, race condi-
tions, and corrupted parameter or data due to bad
transmission.

We target the errors that escape detection of ECC,
which originate as values incorrectly computed and
written to memory. The checkpoint stores the prior-to-
update data of the updated pages. The rest part of the
VM resident in memory is regarded as correct state.

When there is corruption of checkpoint that VM-
µCheckpoint is unable to address, VM-µCheckpoint
aborts recovery and restarts the VM and the interrupt-
ed jobs. Moreover, when a transient error in the hy-
pervisor causes the entire hypervisor to fail, we first
restart the hypervisor and restart all jobs executing
prior to the failure; if this is unsuccessful, we move to
an adjacent physical node and restart the hypervisor.
I/O handling. This paper focuses on the analysis, de-
sign, modeling, and implementation of memory-state
checkpointing in VM-µCheckpoint. For I/O handling,
we can adapt the output-commit mechanism applied
in [7][16] to fit into VM-µCheckpoint. In this mecha-

nism, output of a system is held (i.e., not delivered to
hardware devices) until a checkpoint is taken. This
mechanism masks recovered errors of the system, i.e.,
these errors are not viewed by other components
(disks, network cards, nodes, etc.).

Here is how VM-µCheckpoint can be extended to
support I/O checkpoint. The checkpoint agent in VM-
µCheckpoint is designed to hold and release output of
the protected VM; if preferred, a copy of input to the
protected VM is saved in the checkpoint agent for re-
play. The hypervisor and the checkpointing VMs are
instrumented to provide support to the checkpoint
agent for this purpose. Note that the checkpoint agent
maintains two pools of held outputs and saved inputs
in the dual-checkpoint scheme.

7 EXPERIMENTAL PERFORMANCE EVALUATION

Fully working prototype of VM-µCheckpoint is im-
plemented in Xen VMM. The source codes of the Xen
hypervisor and the checkpointing VM are instrument-
ed while there is no change to the protected VM2.

The testbed consists of a physical machine with an
AMD Athlon 2800 (1.8G Hz) processor and 1.5GB
memory. There are only two VMs (Linux 2.6.18) run-
ning on top of Xen 3.3.1 in the testbed. The Dom0 is
selected as the checkpointing VM and the other VM (a
DomU) is the protected VM. 512MB and 1GB memory
are assigned to the Dom0 and the DomU, respectively.
We use only two VMs in experiments in order to accu-
rately measure performance overhead in a relatively
simple deployment.

We summarize major findings in our experiments
below:

a) VM-µCheckpoint achieves much better per-
formance than existing migration-based VM check-
point. For workload of SPEC CINT 2006 benchmark
and checkpoint frequency of 20 times per second

2 The I/O recovery mechanism is not implemented in the current pro-
totype.

Figure 8: Experiment results in terms of execution time of SPEC CINT 2006

0.9

0.95

1

1.05

1.1

1.15

1.2

perlbench bzip2 gcc milc namd dealII povray omnetpp astar sphinx3 xalancbmk specrand

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

baseline CoW-B (1000ms) CoW-P (1000ms) CoW-B (600ms) CoW-P (600ms) CoW-B (200ms) CoW-P (200ms) CoW-B (50ms) CoW-P (50ms)

AUTHOR ET AL.: TITLE 9

(Tck=50ms), an average of 6.3% overhead is incurred
when COWP is deployed. With the same checkpoint
algorithm and checkpoint frequency Apache server
throughput is reduced by 17.5%, compared with cases
without any checkpoint mechanism applied. In con-
trast, Remus [7], a migration-based VM replica-
tion/checkpoint technique, reports approximately 50%
overhead in their experiments for the same checkpoint
frequency. If we reduce the frequency to 5 times per
second the average overhead is only 3.8% for the SPEC
CINT 2006 workload and around 9% for the Apache
web server (using COWP).

b) The speedup the COWP algorithm gains over
COWB is significant when checkpoint frequency is
high. With COWP deployed with 50ms checkpoint
intervals Apache throughput is 82.5% of the baseline
performance, which is larger than 74.3% when COWB
is deployed.

c) Checkpoint sizes are relatively small with
short checkpoint intervals selected in our experiments.
The results show that, with 50ms checkpoint intervals
(using COWP) all checkpoint sizes are less than 2000
memory pages (8MB) with an average of 655 pages
(2.6MB), for the SPEC CINT 2006 workload (the size of
the entire system state is up to 51461 memory pages, or
206MB).

7.1 Program Execution Time

A set of SPEC CINT 2006 benchmark programs are
executed in the protected VM with VM-µCheckpoint
deployed. A suite of experiments are conducted in-
volving each of these benchmark programs: (i) a base-
line case (no checkpoint), (ii) COWB algorithm de-
ployed with 4 different checkpoint intervals (1000ms,
600ms, 200ms, and 50ms), and (iii) COWP algorithm
deployed with the same 4 intervals. A given program
executes with the same input across all experiments.

Program execution times are measured. The execu-
tion times normalized against the execution time in the
corresponding baseline case are illustrated in Figure 8.
The following can be observed from Figure 8:

i) For all programs the impact of the checkpoint on
the program execution time is no more than 11% (the
normalized execution times are no more than 1.11) and
the average overhead is 6.3% (the average of the nor-
malized execution times is 1.063) when the COWP al-
gorithm is deployed with 50ms checkpoint intervals.
Comparing with around 50% overhead in Remus this
is great improvement. If we increase the checkpoint
interval to 200ms, the average overhead is now 3.8%
(using COWP).

ii) The performance overhead increases as check-
point frequency grows.

iii) Use of COWP gains larger speedup over COWB
for high checkpoint frequency. This is because the pre-
saving in COWP reduces the number of page faults
when the checkpoint interval is small. For low-
frequency checkpoint the pre-saving does not provide
much improvement; in certain cases it even degrades
checkpoint performance. Such performance degrada-

tion can be observed in experiments for perlbench and
omnetpp in Figure 8. This result is due to the fact that
memory access locality plays a significant role when
checkpoint intervals are short. With a checkpoint in-
terval as large as 1s there are (in general) a lot of mis-
predictions, and the pre-saving does a lot of wasteful
work of preserving pages not to be updated.

7.2 Web Server Throughput

Apache web server runs on the protected VM in our
experiments. Web clients reside on three physical ma-
chines with each machine hosting 50 clients. These cli-
ents simultaneously request the same load of web pag-
es, one request immediately after another, from the
server via a 100Mbps LAN. The output-commit mech-
anism is disabled in these experiments (as the I/O
handling is not the focus of this paper), and conse-
quently, we compare our performance with Remus
results when the output commit is also disabled.

Figure 9 shows the measured server throughput
with VM-µCheckpoint deployed at different check-
point intervals. The percentages indicated along the
data points on the graph represent the ratio between
the throughput measured with the checkpoint de-
ployed and the throughput in the baseline case (when
checkpoint is not deployed). The three observations in
Section 7.1 are confirmed by the throughput results.

i) The throughput is reduced by 17.5% when check-
point is taken 20 times per second. Remus reports ap-
proximately 50% overhead for SPECweb benchmark
with the same checkpoint frequency (with output
commit disabled). If the checkpoint interval is in-
creased to 200ms in VM-µCheckpoint, the throughput
is reduced by only 9%. Our overhead results are con-
servative because we run a stressful load of web re-
quests in experiments, and the typical server workload
is not as intensive.

ii) Checkpoint overhead increases with higher
checkpoint frequency.

iii) The COWP algorithm improves performance
over COWB, especially in cases with small checkpoint
intervals (the gaps between the two curves keep in-
creasing as the checkpoint interval decreases in Figure
9).

Figure 9: Impacts of VM-µCheckpoint on Apache web server

throughput (a percentage represents the ratio between the cor-

responding throughput and the baseline throughput, e.g.,

82.5%=229.8/278.7)

050100150200250300
baseline =1000ms =600ms =200ms =50msnumber of web request

s/sec
number of web request
s/sec
number of web request
s/sec
number of web request
s/sec CoW-BCoW-P91.1% 90.7% 85.8%

74.3%

92.7% 91.9% 90.9%

82.5%

100%

Tck Tck Tck Tck

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

7.3 Overhead Measurement

The number of checkpoint-caused page faults is a di-
rect measurement of the time overhead of VM-
µCheckpoint (other page faults are not checkpoint
overhead). Checkpoint size, i.e., the number of
memory pages kept in a checkpoint, is the space over-
head measurement.

A number of experiments are conducted to study
VM-µCheckpoint’s overhead with COWB or COWP at
different checkpoint intervals. In each of these experi-
ments, 12 programs of SPEC CINT 2006 benchmark
were executed in a sequential way. We measured the
numbers of checkpoint-caused page faults and the
checkpoint sizes (in terms of numbers of memory pag-
es) in each checkpoint interval (e.g., 50ms) of the ex-
periment duration.
Table 3: Average checkpoint-caused page faults in experiments

Algorithm Tck(ms) Overall ①perl-

bench

③gcc ④milc ⑥dealII

COWB 50 491.1 342.4 396.0 1112.7 235.8

1000 1057.2 1076.6 1398.1 1298.0 996.0

COWP 50 124.7 139.7 172.2 35.7 163.3

1000 521.5 182.0 527.9 319.7 842.8

Table 4: Average checkpoint sizes (in number of memory pag-
es) in experiments

Algo-

rithm

Tck(ms

)

Over-

all

①perl-

bench

③gcc ④milc ⑥dealII

COWB 50 491.1 342.4 396.0 1112.7 235.8

1000 1057.2 1076.6 1398.1 1298.0 996.0

COWP 50 654.5 565.7 626.3 1154.6 524.2

1000 2162.4 1260.0 2144.6 1873.9 3151.6

Results. The overall checkpointing overheads meas-
ured throughout the experiments, as well as the over-
heads for several individual programs, are presented
in Table 3 (time overhead) and Table 4 (space over-
head). The major findings from the experimental re-
sults are summarized below.
• Average checkpoint sizes are very small, less than 2%
of the size of the entire system state when checkpoint inter-
val is 50ms. Table 5 shows that with COWP deployed at
a checkpoint interval of 50ms, the average checkpoint
size is 654.5 memory pages or 2.6MB, while the size of
the entire system state during the experiment is up to
51,461 memory pages (206MB). The maximum check-
point size observed is less than 8MB (2000 pages; due
to space constraints the figure showing the distribution
of checkpoint sizes is not given here), less than 4% of
the entire system state size. When the checkpoint in-
terval is increased to 1000ms, most checkpoints are less
than 10,000 pages, and the average size is 2162.4 pages
(8.6MB, or 4.2% of the entire state).
• Dirty page prediction and pre-saving effectively reduce
page faults by 75% when the checkpoint interval is 50ms
(124.7 page faults in COWP, while 491.1 in COWB, as
shown in Table 3). When the checkpoint interval is
1000ms, COWP still achieves 51% reduction of page
faults (1057.2 reduced to 521.5). The reduction percent-
age is less for larger checkpoint intervals, as there is
more memory access locality within shorter intervals.

8 ERROR INJECTION EXPERIMENTS

Detections of a variety of errors are provided by the
RMK, including detection of VM crashes and hangs.
As discussed in Section 2, VM-µCheckpoint consists of
three RMK modules in the deployment (Figure 1):
COWB, COWP, and recovery. The error detections and
the VM-µCheckpoint are integrated by the RMK
framework, which is briefly described here (VM crash
is used as the example error in the description):

When a protected VM crashes, an exception is
raised by the hardware and reported to the hypervisor.
The P_VMSIGNAL pin (illustrated in Figure 1) inter-
cepts this exception, determines whether the exception
is caused by a crash (e.g., segmentation fault) or not
(e.g., a page fault), and produces an
EVT_ERRORDETECTED event if the exception is
raised by a crash. Detections of other errors (e.g. sys-
tem hangs) also raise this event to the RMK frame-
work.

The recovery module receives the event
EVT_ERRORDETECTED from the RMK, then sus-
pends the failed VM and invokes the checkpoint agent
for recovering the VM state with its checkpoint (the
recovery module knows whether COWB or COWP is
currently used).

Table 5 lists the experiment results. Three kinds of
errors were injected, as described below.

Table 5: Results of Error Injection Experiments

Experiments Fault/Error Injected

Faults/Er

rors

Activat-

ed and

Detected

Recov-

ered

Signal-triggered

crashes (check-

point interval=

100ms)

Sends SIGTERM

to the applica-

tion in the pro-

tected VM (fail-

stop)

35 35 35

Bit flips into ker-

nel registers

(checkpoint inter-

val= 100ms)

Suspends the

protected VM,

flips a bit in a

register value in

the VM, and

resumes the VM

85 31 acti-

vated

and de-

tected

31

System hangs

(threshold of 200

ms, checkpoint

interval= 500ms)

Loads a device

driver which

runs an infinite

loop in the pro-

tected VM

30 30 24*

*Recovery failed in several experiments due to inconsistent shared

state between the protected VM and Dom0 for I/O operations

8.1 Signal-Triggered Crash

We use signals to emulate VM crashes in these exper-
iments. We send a SIGTERM signal to the application
process; this signal traps the processor into the hyper-
visor; the P_VMSIGNAL pin in the hypervisor injects
an error of a VM crash by generating the
EVT_ERRORDETECTED event; the recovery module
then restores the checkpoint to the protected VM. We
conducted 35 experiments, and in all of them the pro-

AUTHOR ET AL.: TITLE 11

tected VM was successfully recovered.

8.2 Bit Flips in VM Kernel Registers

We also injected bit-flip faults into kernel registers of
the protected VM. The error injector is placed outside
the protected VM, i.e., in the dom0, to avoid repeating
the same error injection after recovery from the check-
point. Our experiments showed that if the error injec-
tor is inside the protected VM, the VM is recovered
from the checkpoint successfully after error detection,
but the same error is injected again immediately after
recovery as the error injector process was running be-
fore the error was injected. A simple program is used
as the workload in these error injection experiments.

The error injector in the dom0 first suspends the
protected VM via the hypervisor. As a result, the state
of the virtual CPUs in the VM is saved in a hypervisor
data structure called vcpu_guest_context. Then we ran-
domly select a bit in the generic register file (i.e. EAX,
EBX, ESI, EDI, ESP, EIP, CS, SS, ES, etc.) in the
vcpu_guest_context and flip it. We resume the protect-
ed VM, and the flipped value is written back to the
corresponding register in the virtual CPUs.

We did tens of experiments and found that the acti-
vation rate is fairly small (i.e., only 31 out of 85 injected
faults get activated). All of the activated and manifest-
ed errors in the experiments are detected by the
P_VMSIGNAL pin and are successfully recovered.

8.3 System Hangs

We injected system hangs in the protected VM as fol-
lows: we loaded in the VM a device driver that ran an
infinite loop. In the 30 experiments conducted, there
are 6 cases in which the recovery from the checkpoint
fails.

We looked into the details of the cases when the re-
covery failed, and discovered the failures were related
to a certain I/O issue: the shared state between the
protected VM and the dom0 for handling I/O opera-
tions is inconsistent with the state of the protected VM
after recovery from the checkpoint. Figure 10 illus-
trates the details of the inter-domain shared memory
for I/O operations in Xen.

Figure 10: Inter-Domain Shared Memory for I/O Operations in

Xen

The Xen hypervisor uses a split driver model for
handling I/O operations (network, disk, etc.). The
blkfront is the front end of the driver in the protected
VM, and the blkback is the back end in Dom0 (as
shown in Figure 10). Shared memory is used to facili-
tate I/O data transfer. These shared states include re-
quest ring buffer, producer/consumer pointers
(blkfront and blkback follow a producer-consumer

model), buffers, protocol status for the split driver,
event channel state, etc.

When a request arrives at either the blkfront or the
blkback, a shared buffer is created in the protected VM
or the dom0 to host I/O data, and this buffer is regis-
tered through the grant table mechanism in the hyper-
visor. After processing of the request, the buffer is re-
leased through the grant table.

After the protected VM is recovered from check-
point, there are cases when the blkfront expects a
shared buffer to be present and registered in the hy-
pervisor’s grant table. But this may not be true. The
recovery then fails because a non-existent buffer is ac-
cessed. Our experiments show that this scenario hap-
pens when the error detection latency is large. That is
why we only observed failure of recovery in cases
when system hangs are injected (200 ms is used as the
threshold value for detecting VM hangs).

To handle this problem, we will instrument the hy-
pervisor and the blkback driver in the dom0 to save
the shared memory and the grant table in the check-
point. This work is in our next stage of the research
focusing on I/O checkpoint.

8.4 Recovery Overhead

Besides the error injection experiments for testing the
correctness of the checkpoint/recovery mechanism of
VM-µCheckpoint, we also measured the recovery time
to evaluate the performance. The hypervisor-level ex-
ception handler is instrumented to provide the meas-
urement information. The SPEC CINT 2006 benchmark
programs ran as the workload on the protected VM in
these experiments. The measured recovery time de-
pends on the number of memory pages restored dur-
ing recovery. As most of checkpoint sizes range from
several hundred to several thousand memory pages
(shown in Table 4), the measured recovery time ranges
from 144ms to 1017ms with the average of 639.4ms

(the 95% confidence interval is 639.4ms± 193.1ms).

9 RELATED WORK

Checkpoint and rollback techniques have been exten-
sively studied in the literature. Checkpoints can be
taken in different levels (application, runtime library,
compiler, operating system, virtual machine, or hard-
ware). Here we focus on checkpoint techniques in the
virtual machine level, as they are more relevant to our
objective.
VM checkpointing. Most existing VM checkpoint/
replication techniques are based on live migration of
VMs (e.g., VMWare VMotion [5] and Xen Live Migra-
tion [6]), which continually transmit dirty pages of a
VM from a source node to a destination node. These
techniques exploit the live migration mechanism for
the purposes of VM checkpointing, VM rejuvenation,
load-balancing, and fast VM forking.

CEVM [17], VNsnap [23], and VM Snapshots [12]
are techniques of disk-based VM checkpointing. These

hardware

hypervisor

Dom0 Protected VM

blkback blkfront

grant table

Shared
memory

Shared
memory

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

techniques employ VM live migration or copy-on-
write to create a replica image of a VM with low
downtime incurred; then they write the image to disk
offline. Another project on VM checkpoint [12] tries to
provide a generic API in Xen product for saving a VM
snapshot to disk on demand. Basically, the VM
memory is scanned and saved to files while the VM
runs simultaneously. Copy-on-write is exploited to
save the original data of modified VM state during
checkpointing.

VM-µCheckpoint is different from these disk-based
VM checkpointing in that we aim at i) providing high-
frequency checkpointing and rapid recovery of VMs
with low overhead, which allows VM failures to be
masked to clients, and ii) proposing a mechanism to
address checkpoint corruption in high-frequency
checkpointing. Checkpoint corruption has large im-
pacts on service availability when checkpoint frequen-
cy is high, as shown in our model study in Section 4
and 5.

The existing approach that is closest to our work is
Remus [7], which maintains a backup VM on a sepa-
rate physical node by periodically transmitting the
VM’s dirty pages to the backup. Similar to VM-
µCheckpoint, Remus is a mechanism of high-
frequency VM checkpointing and failover. But VM-
µCheckpoint focuses on error behavior and reliabil-
ity/availability improvement, while Remus focuses on
migration overhead. No study of error behavior or re-
liability/availability is reported in [7]. As checkpoint
corruption is not handled in Remus (fail-stop errors
are assumed in Remus), our technique is better in im-
proving service availability, as shown by our availabil-
ity study in section 5.1.

Other techniques that may be relevant to VM
checkpointing are briefly described as follows. Brad-
ford et al. [22] focus on migrating persistent state of a
VM across WAN so that the VM can migrate to a node
that does not share storage with the original node. [11]
revises Xen live migration to fit in a self-migration sce-
nario. [10] and [8] implement proactive VM rejuvena-
tion based on live migration, and [9] uses live migra-
tion for load-balancing. Potemkin [19] employs copy-
on-write to share data between VMs for efficiently
provisioning VMs. Another technique of fast VM fork-
ing is [20]. Though one may use these techniques to
checkpoint a VM by periodically forking a shadow VM
and tearing down out-dated shadow VMs, spawning a
VM and tearing down a VM involve a lot of overhead
not necessary for checkpointing. Moreover, error anal-
ysis and reliability/availability study is an integral
part of a checkpointing technique for failure mitiga-
tion.
Multi-checkpoint mechanisms. As far as we know,
none of the existing checkpoint techniques considers
handling checkpoint corruption by explicitly studying
error detection latency and including a bound of the
latency as a parameter, though multi-checkpoint
mechanisms can be leveraged to deal with checkpoint
corruption. IBM System Z [18] allows multiple check-

points of an application to be recorded in persistent
storage on demand. Ping-Pong checkpoint [21] main-
tains two checkpoints to deal with incomplete check-
point due to errors during the checkpointing proce-
dure. None of these techniques study the characteris-
tics of error detection latency to address the checkpoint
corruption.
In-place restoration. Hardware-level checkpoint tech-
niques [14][15] use special hardware to take and store
a checkpoint. When an error is detected, the check-
point saved in the special hardware is restored into the
architecture state of the physical machine, including
register file and memory. For example, the first update
of a memory word or a register during a checkpoint
interval is preserved in special hardware in SafetyNet
[14].

10 CONCLUSIONS

This paper proposes VM-µCheckpoint, a lightweight
VM checkpointing technique, which minimizes over-
head by placing checkpoints in memory and perform-
ing in-place recovery. VM-µCheckpoint provides high-
frequency checkpointing (e.g. 20 times of checkpoints
per second) and rapid recovery of VMs. As checkpoint
corruption has large impacts on the probability of re-
covery failures when checkpoint frequency is high,
VM-µCheckpoint explicitly addresses checkpoint cor-
ruption based on study of the characteristics of error
detection latency. We constructed Markov models to
study the error detection latency and system availabil-
ity under different checkpoint mechanisms. The results
of the model study clearly show that VM-µCheckpoint
effectively handles checkpoint corruption and largely
improves service availability by means of i) proper
selection of checkpoint interval based on the
knowledge on error detection latency and ii) the dual-
checkpoint scheme.

VM-µCheckpoint was implemented in the Xen
VMM. Experimental results show that the proposed
technique achieves much better performance than ex-
isting techniques based on VM live migration. There is
an average of 6.3% overhead in terms of program exe-
cution time for the SPEC CINT 2006 benchmark when
VM-µCheckpoint is deployed at a checkpoint frequen-
cy of 20 times per second. (An approximately 50%
overhead is reported in a previous technique [7] at the
same checkpoint frequency.) Moreover, the checkpoint
size is small in VM-µCheckpoint: an average of 2.6MB
in our experiments when the COWP algorithm is ap-
plied with 50ms checkpoint intervals.

We conducted error injection experiments by de-
ploying VM-µCheckpoint in RMK to leverage the ex-
isting error detection techniques in RMK. The error
injection experiments demonstrate that VM-
µCheckpoint has high coverage of error recovery
(100% for system crashes and corrupted data in our
experiments).

AUTHOR ET AL.: TITLE 13

REFERENCES

[1] Weining Gu et al. Error Sensitivity of the Linux Kernel Execut-

ing on PowerPC G4 and Pentium 4 Processors, Dependable System and

Networks, 2004.

[2] Karthik Pattabiraman et al. Automated Derivation of Applica-

tion-aware Error Detectors using Static Analysis. International On-

Line Testing Symposium, 2007.

[3] G. A. Reis et al. SWIFT: Software Implemented Fault Tolerance,

In Proc. 3rd International Symposium on Code Generation and Optimiza-

tion, 2005.

[4] Jim Gray, Why Do Computers Stop and What Can Be Done

about It? In Proc. Fifth Symposium on Reliability in Distributed Software

and Database Systems, 1986.

[5] M. Nelson et al. Fast Transparent Migration for Virtual Ma-

chines, USENIX 2005.

[6] C. Clark et al. Live Migration of Virtual Machines. In Networked

Systems Design and Implementation, 2005.

[7] B. Cully et al. Remus: High Availability via Asynchronous Vir-

tual Machine Replication, Networked Systems Design and Implementa-

tion, 2008.

[8] A. B. Nagarajan et al. Proactive Fault Tolerance for HPC with

Xen Virtualization, Proceedings of International Conference on Super-

computing, 2007.

[9] T. Wood, et al. Black-box and Gray-box Strategies for Virtual

Machine Migration, Networked Systems Design and Implementation,

2007.

[10] Tobias Distler et al. Efficient State Transfer for Hypervisor-

based Proactive Recovery, 2nd Workshop on Recent Advances on Intru-

sion-Tolerant Systems, 2008.

[11] Jacob Gorm Hansen et al. Self-migration of Operating Systems,

11th Workshop on ACM SIGOPS European Workshop, 2004.

[12] Patrick Colp, VM Snapshots, Xen Summit 2009,

http://www.xen.org/files/xensummit_oracle09/VMSnapshots.pdf

[13] Jared C. Smolens et al. Fingerprinting: Bounding Soft-error

Detection Latency and Bandwidth, Architectural Support for Program-

ming Languages and Operating Systems, 2004.

[14] D. J. Sorin et al. SafetyNet: Improving the Availability of Shared

Memory Multiprocessors with Global Checkpoint/Recovery, Interna-

tional Symposium on Computer Architecture, 2002.

[15] Milos Prvulovic et al. ReVive: Cost-Effective Architectural Sup-

port for Rollback Recovery in Shared-Memory Multiprocessors,

International Symposium on Computer Architecture, 2002.

[16] Jun Nakano, et al. ReViveI/O: efficient handling of I/O in high-

ly-available rollback-recovery servers. HPCA 2006.

[17] K. Chanchio et al. An Efficient Virtual Machine Checkpointing

Mechanism for Hypervisor-based HPC systems, High Availability and

Performance Computing Workshop, 2008

[18] Developer for System z, Version 7.0, Enterprise COBOL for

z/OS, Version 3.4, Programming Guide, http://publib.boulder.ibm.

com/infocenter/ratdevz/v7r1m1/index.jsp?topic=/com.ibm.ent.cbl.zos.doc/to

pics/tpchk04.htm

[19] M. Vrable et al. Scalability, Fidelity, and Sontainment in the

Potemkin Virtual Honeyfarm, The ACM Symposium on Operating

Systems Principles, 2005.

[20] H. A. Lagar-Cavilla et al. SnowFlock: Rapid Virtual Machine

Cloning for Cloud Computing, ACM European Conference on Comput-

er Systems, 2009.

[21] Le Gruenwald Le et al. Survey of Recovery in Main Memory

Databases, Engineering Intelligent Systems 4/3, Sept. 1996.

[22] Robert Bradford et al. Live Wide-area Migration of Virtual

Machines Including Local Persistent State, The 3rd International Con-

ference on Virtual Execution Environments, 2007.

[23] Ardalan Kangarlou et al. VNsnap: Taking Snapshots of Virtual

Networked Environments with Minimal Downtime, Dependable Sys-

tems and Networks, 2009.

[24] Hans P. Reiser et al. Hypervisor-Based Redundant Execution

on a Single Physical Host, European Dependable Computing Conference,

Supplemental Volume, 2006.

[25] Kishor S. Trivedi, Probability and Statistics with Reliability, Queu-

ing and Computer Science Applications, 2nd Edition, John Wiley & Sons,

Inc., New York. 2002.

[26] Man-Lap Li et al. Understanding the Propagation of Hard Er-

rors to Software and Implications for Resilient System Design, Archi-

tectural Support for Programming Languages and Operating Systems,

2008.

[27] CLAPACK (f2c'ed version of LAPACK),

http://www.netlib.org/clapack/

[28] J. Xu et al. Networked Windows NT System Field Failure Data

Analysis, Pacific Rim International Symposium on Dependable Compu-

ting (PRDC), 1999.

[29] S. Chandra, P. M. Chen, The Impact of Recovery Mechanisms

on the Likelihood of Saving Corrupted State, International Symposium

on Software Reliability Engineering, 2002.

[30] Gu et al. Fault Inject Based Study of Fault Resilience of Hyper-

visor, University of Illinois Urbana Champaign report 2007.

[31] L. Wang, Z. Kalbarczyk, W. Gu, R. K. Iyer, Reliability Mi-

croKernel: Providing Application-Aware Reliability in OS, IEEE

Transactions on Reliability, Vol. 56, No. 4, Dec. 2007.

Long Wang obtained Master degree in Computer Science from
University of Illinois at Urbana Champaign, Urbana, IL in 2002, and
got Ph.D. degree in Electrical and Computer Engineering from Uni-
versity of Illinois at Urbana Champaign, Urbana, IL in 2010. Then Dr.
Wang joined IBM Thomas J. Watson Research Center, Yorktown
Heights, NY in 2010. He has published more than 18 papers in top
conferences and journals. His current research interests include
Fault-tolerance and Reliability of Systems and Applications, De-
pendable and Secure Systems, Distributed Systems, Cloud Compu-
ting, Operating Systems, System Modeling, Measurement and As-
sessment. Dr. Wang is a member of the IEEE.

Zbigniew Kalbarczyk bio.

Ravishankar K. Iyer bio.

Arun Iyengar bio.

