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Abstract— Checkpointing and rollback techniques enhance reliability and availability of virtual machines and their hosted IT 

services. This paper proposes VM-µCheckpoint, a light-weight pure-software mechanism for high-frequency checkpointing and 

rapid recovery for VMs. Compared with existing techniques of VM checkpointing, VM-µCheckpoint tries to minimize checkpoint 

overhead and speed up recovery by means of copy-on-write, dirty-page prediction and in-place recovery, as well as saving 

incremental checkpoints in volatile memory. Moreover, VM-µCheckpoint deals with the issue that latency in error detection 

potentially results in corrupted checkpoints, particularly when checkpointing frequency is high. We also constructed Markov 

models to study the availability improvements provided by VM-µCheckpoint (from 99% to 99.98% on reasonably reliable 

hypervisors). We designed and implemented VM-µCheckpoint in the Xen VMM. The evaluation results demonstrate that VM-

µCheckpoint incurs an average of 6.3% overhead (in terms of program execution time) for 50ms checkpoint intervals when 

executing the SPEC CINT 2006 benchmark. Error injection experiments demonstrate that VM-µCheckpoint, combined with error 

detection techniques in RMK, provides high coverage of recovery. 

Index Terms—checkpoint corruption, checkpoint model, error latency, incremental checkpoint, high-frequency checkpoint, 

transient error 
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1 INTRODUCTION

irtual machines (VMs) are popularly deployed to 
host a variety of IT services. To ensure continuous 

service availability, these systems must be capable of 
tolerating runtime errors. Checkpoint and rollback 
techniques can be applied to enhance VM availability. 

Virtual machine monitors (VMMs) like VMware, 
Xen, and KVM, provide mechanisms to save a VM 
state (i.e., stop the VM and dump the execution state in 
persistent storage) and migrate the VM to a remote 
node (e.g., [6]). Most of the existing VM checkpoint 
techniques [17][23][7] exploit these two mechanisms. 
For example, CEVM [17] and VNsnap [23] first use live 
migration to create a replica of the protected VM in 
memory and then dump the replica to disk offline. 

Traditional checkpointing techniques save check-
points on disk to tolerate failures. Several VM check-
pointing techniques, including Remus [7], save check-
points in the memory of another node. Here, we pro-
pose saving checkpoints in the memory of the same 
node. Our model study (Section 5) shows that VM 
availability is largely increased with checkpoints in the 
same node’s memory on reasonably reliable hypervi-
sors. 

Specifically, this paper presents the design, model 

study, and experimental assessment of VM-
µCheckpoint, a VM checkpointing framework to pro-
tect both VMs and applications in the VMs against 
runtime errors. When an error occurs silently in 
memory (e.g. due to radiation), ECC can correct this 
error. This paper targets the types of errors not detect-
ed/corrected by ECC memory, including hardware 
transient errors occurring to the registers, caches, bus-
es, control logics, as well as software transient errors. 

VM-µCheckpoint supports in-place recovery of 
failed VMs using in-memory checkpointing. Ad-
vantages to using VM-µCheckpoint include (i) small 
overhead as compared with the replica-based failover 
approach, (ii) high checkpointing frequency (tens of 
checkpoints per second), which reduces the size of 
each increment when taking a checkpoint, (iii) address-
ing checkpoint corruption due to latency of error detection 
by modeling error latency characteristics and dealing 
with checkpoint corruption properly (checkpoint cor-
ruption is not negligible in high-frequency checkpoint-
ing, e.g. checkpoint every 50ms), and (iv) rapid recovery 
(within one second) as compared with the stop-and-
dump approach (provided by VMMs as a basic capa-
bility). 

As a result, checkpointing (during the normal sys-
tem operation) and the recovery (in response to a fail-
ure of a VM and/or application) are almost completely 
transparent, i.e., the client does not see a service inter-
ruption.  

VM-µCheckpoint significantly improves the availa-
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bility of VMs against transient failures by providing 
rapid recovery (detailed discussion of these failures 
given in Section 5). Moreover, VM-µCheckpoint is de-
signed as a complementary approach to disk-based 
VM checkpointing rather than its replacement. The 
checkpoint kept by VM-µCheckpoint can be dumped 
to disk (to tolerate node failure) at a sufficiently infre-
quent rate to minimize overhead. Such an extension of 
VM-µCheckpoint to support disk-based checkpoint is 
described in Section 3.1. 

The major contributions of this paper are:   
• Design of VM-µCheckpoint and its implementation 
in Xen VMM. The VM-µCheckpoint takes in-memory 
incremental checkpoints (i.e., each increment includes 
only memory pages modified during the current 
checkpoint interval) and employs in-place restoration 
(i.e., recovering a failed VM into its current context) to 
minimize overhead. Copy-on-Write mechanism and 
dirty-page prediction are exploited to further minimize 
checkpoint overhead. 
• Model study of VM-µCheckpoint’s effectiveness in 
enhancing service availability: i) A data-driven analyt-
ical model is constructed and used to evaluate the 
probability of checkpoint corruption. The analysis 
shows that VM-µCheckpoint with proper parameter 
settings can significantly reduce the probability of re-
covery failures due to checkpoint corruption, from a 
high of 31.7% to a low of less than 2% as compared to 
current methods. ii) A comprehensive Markov model 
is constructed to evaluate the availability improvement 
when VM-µCheckpoint is used. The model shows the 
availability of VMs and applications increases from 
99% to 99.98% on reasonably reliable hypervisors 
(these hypervisors have an MTTF of 1.7 years or larg-
er). 
• An experimental assessment of VM-µCheckpoint 
runtime performance shows that VM-µCheckpoint 
incurs low overhead with typical checkpoint intervals 
(an average of 6.3% overhead for SPEC benchmark 
programs with 50 ms checkpoint intervals1).  
• Error injection experiments demonstrate that VM-
µCheckpoint, deployed in the RMK framework [31] to 
leverage a variety of existing error detection tech-
niques, has high coverage of error recovery (100% for 
system crashes and corrupted data, as well as 80% for 
system hangs in our experiments). 

2 ARCHITECTURE 

Our light-weighted checkpoint approach, VM-
µCheckpoint, is based on a well-known observation 
that short-latency errors are dominant. Fault injection 
experiments such as those reported in [1] show that 
about 95% of crashes occur within 100 million CPU 
cycles (or within 50ms on a 2GHz processor) after an 
error occurrence. Fault injections into processor micro- 

1 The work of fault injection into Linux kernels [1] shows that, 
about 95% of crashes occur within 100 million CPU cycles (or within 
50ms on a 2GHz processor) after an error occurs. We select a check-
point interval of 50ms in experiments to cover the latency for 95% of 
errors. 

architecture [26] also show small error latencies. More-
over, state-of-the-art error detection techniques (e.g., 
[3][2][13]) help to limit the error latency to low value. 

Figure 1 depicts the deployment of VM-
µCheckpoint for recovering VMs from errors. We lev-
erage the RMK framework [31] for the deployment 
because RMK provides a modular platform that allows 
for flexible installation of error detection and recovery 
mechanisms. 

 
Figure 1: Error Detection/Recovery in RMK  

Background of the RMK framework. The RMK was 
proposed as a device driver in standalone systems. It 
exploits processor-level features (debugging and moni-
toring facilities available in the current generations of 
processors), and OS-exported interfaces to define a set 
of basic services. These basic services are called RMK 
pins, which are analogous to hardware pins in provid-
ing clearly defined functionalities and inputs/outputs. 
The pins are employed to support mechanisms of error 
detection and recovery, referred to as RMK modules. 
RMK pins and RMK modules are communicated in a 
publish-subscribe fashion, i.e., RMK pins publish pin-
specific events to the RMK framework and RMK mod-
ules subscribe certain events from the RMK frame-
work. 

Figure 1 illustrates how we extend the basic RMK 
scheme in [31] to support a virtualized environment 
and to accommodate the VM-µCheckpoint mechanism. 
Similar to the RMK in a standalone system, the RMK in 
the protected VM is installed as a device driver; no 
kernel source recompilation is needed. In the hypervi-
sor (Xen in our prototype), we implemented a new 
hypercall that encapsulates the hypervisor-level RMK 
(a hypercall is like a system call for a hypervisor). The 
hypervisor source code is instrumented and recom-
piled for this purpose.  

VM-µCheckpoint consists of three RMK modules in 
the deployment (Figure 1): COWB, COWP, and recov-
ery. They implement the two checkpoint algorithms 
and the recovery algorithm of VM-µCheckpoint. De-
tails of the algorithms are presented in Section 3 below. 
Certain RMK pins support VM-µCheckpoint. For ex-
ample, the RMK pins P_VCPU and P_PTABLE wrap 
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the hypervisor functionalities of manipulating virtual 
CPUs and the shadow page table, respectively; 
P_VMSIGNAL intercepts received signals and 
P_VMSCHL intercepts scheduling of VMs by the hy-
pervisor for detection of VM failures. These RMK pins 
are implemented as instrumentation to the hypervisor 
kernel. 

By deploying our checkpoint scheme in RMK, we 
can take advantage of a number of error detection 
techniques provided in RMK, including crash detec-
tion, system hang detection, etc. When an error of the 
protected VM is detected the VM is recovered by the 
VM-µCheckpoint mechanism. 

3 CHECKPOINT ALGORITHMS 

A user-level process in the checkpointing VM, named 
checkpoint agent in Figure 1, takes a checkpoint of the 
protected VM periodically at an interval of Tck. The 
checkpoint is stored in the checkpointing VM. At each 
checkpoint the Copy-on-write (CoW) mechanism is 
invoked to identify and store the needed state infor-
mation. As a result, the checkpoint agent stores only a 
small fraction of the protected VM state rather than the 
entire system image, and checkpoints of multiple pro-
tected VMs on the same physical machine can be 
stored in the checkpointing VM. 

At the beginning of a checkpoint interval, all 
memory pages of the protected VM are set as read-
only. From that point on, any write to a read-only page 
triggers a page fault, original data of the page is copied 
into the checkpoint kept in the checkpoint agent 
memory, and this memory page is set as writable. So 
the checkpoint therefore consists of prior-to-update data of 
those pages updated within the interval. Any transient er-
rors that originate as incorrect values written to 
memory can be recovered by copying back the check-
point data of the updated pages. Besides updated pag-
es, new pages and deleted pages are handled accord-
ingly to save the prior-change state of these pages. 

It is possible that a checkpoint gets corrupted by an 
error before the error is detected. We keep two most 
recent checkpoints at any time (called dual-checkpoint 
scheme) for reducing the probability of a corrupted 
checkpoint failing error recovery. Our model (Section 
4) shows that combining proper selection of Tck and 
the dual-checkpoint scheme greatly reduces the prob-
ability of recovery failures due to checkpoint corrup-
tion. 
The COWB algorithm. The basic algorithm of VM-
µCheckpoint, COWB, is depicted as the timeline (a) in 
Figure 2. [t0, t1) and [t1, t2) are two checkpoint intervals. 
The horizontal axis at the top of the figure represents 
error-free execution of the protected VM, while the 
horizontal axis at the bottom represents execution 
when an error occurs at tf_s. The error is detected at tf_d. 
At tf_d we first restore the data preserved during the 
time interval [t1, tf_d) into the protected VM, and then 
restore the data preserved during [t0, t1), to roll back 
the system to the state at time t0. 

 
Figure 2: Timelines for two checkpoint strategies: (a) COWB 

and (b) COWP 

We formalize the checkpoint problem and our algo-
rithms using the following notations: 
ti   Beginning time of the ith checkpoint interval 

Si   State of the protected VM at time ti. 
DPi (dirty pages) 

Data of the memory pages preserved by VM-
µCheckpoint’s mechanism during [ti, ti+1] 

St  State of the protected VM at any time t (t∈ [ti, ti+1]) 
DPi(t) Data of the memory pages preserved by VM-

µCheckpoint’s mechanism during [ti, t] for any time t (t
∈ [ti, ti+1]) 

The following operation reflects inherent relation-
ship between Si, St, and DPi(t): 

( , ( )),
i t i

S restore S DP t=                           (1) 

where ( , ( ))
t i

restore S DP t  denotes an operation of 
copying the data preserved in DPi(t) into their corre-
sponding memory pages in St to restore the system to 
state Si. 

In Figure 2 we apply the operation (1) twice and 
have 

0 1 0 1

1 _ 0

( , ( ))

( ( , ( )), ),f f d

S restore S DP t

restore restore S DP t DP

=

=

          (2) 

where 
1 1t

S S= , 
0 1 0( )DP t DP= , and Sf denotes the sys-

tem state at tf_d. At tf_d when error recovery occurs, Sf, 
DP1(tf_d) and DP0 are all available and we can restore 
the memory state of the protected VM into S0. After 
restoration, neither DP1(tf_d) nor DP0 is valid any more, 
as the system is now in state S0. They are discarded 
after the recovery. 
The COWP algorithm. A large number of page faults 
are incurred in COWB because all memory pages are 
set as read-only at the beginning of each checkpoint 
interval. We design an optimized version of this basic 
algorithm, called Copy-on-Write Pre-saving (COWP), 
to reduce the number of page faults and corresponding 
performance overhead (checkpoint-caused page faults 
are reduced by 75% when the checkpoint interval is 
50ms in our experiments, see Section 7.3).  

Specifically, COWP predicts the pages to be updat-
ed in the upcoming checkpoint interval and pre-saves 
the predicted pages in the checkpoint when this inter-
val begins. These pre-saved pages are marked as writ-
able and do not raise page faults. Typical checkpoint 
intervals selected in our scheme range from tens of 
milliseconds to several seconds. Due to the space and 
time locality of memory accesses, the pages dirtied in 
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the previous checkpoint interval are used as prediction 
of the pages to be updated in the upcoming interval. 
Two control bits —the write permission bit and the 
dirty bit— of each memory page entry maintained in 
current-generation processors are leveraged for im-
plementing the COWP algorithm. Figure 2 (b) shows 
the timeline of the COWP. 

More formally, let Hi denote data of the memory 
pages updated in the checkpoint interval [ti-1, ti) (H0 is 
obtained by profiling system execution before t0), DPi' 
denote data of the pages preserved by COWP during 
[ti, ti+1), and DPi'(t) be data of the pages preserved by 
COWP during [ti, t) for any t∈[ti, ti+1]. Then we use Hi 
as prediction of DPi. Using the restore() operation de-
fined in (1), we have: 

( , '( ) ).i t i iS restore S DP t H= U                         (3) 

Due to the inaccuracy of dirty page prediction, Hi 
includes data of pages that are not updated in [ti, t]. 
Similar to the discussion on COWB, the expression that 
represents restoration of S0 is derived as: 

0 1 0 1 0

1 _ 1 0 0

( , '( ) )

( ( , '( ) ), ' ),f f d

S restore S DP t H

restore restore S DP t H DP H

=

=

U

U U
 (4) 

   where 
1 1t

S S= , 
0 1 0'( ) 'DP t DP= . 

3.1 Disk-based Checkpointing 

In order to recover a VM against a permanent failure 
or a hypervisor failure, VM checkpoints can be saved 
in disks. Figure 3 illustrates the extension of VM-
µCheckpoint to support disk-based VM checkpoint. 

Specifically, in addition to the in-memory check-
pointing described above, the checkpoint agent scans 
the protected VM and saves every memory page (i.e. 
the SCANDATA in Figure 3). Suppose the scan starts 
in [t0, t1) and finishes in [tk, tk+1). We define an opera-
tion collect such that 

0 1
( , )collect DP DP  merges the data in 

DP0 and DP1: if a memory page is saved in both DP0 
and DP1, only the data of the page in DP0 is preserved 
after the merge. Then, 

 
Figure 3: Disk-based checkpointing  

0 1 2
(... ( ( , ), )..., )

k
DPS collect collect collect DP DP DP DP=  

0
( , ),S collect DPS SCANDATA=  

where DPS is the t0-state of the memory pages 
which are modified (updated/created/deleted) during 
[t0, tk+1). So the checkpoint agent keeps DP0, DP1, …, 
DPk as well as SCANDATA in order to support disk-
based checkpoint. After tk+1  the checkpoint agent 
writes collect(DPS, SCANDATA) to disk, the VM 
checkpoint at t0. 

4 CHECKPOINT CORRUPTION MODEL 

In this section, we construct a model of checkpoint cor-
ruption scenarios to study how proper selection of Tck 
and the dual-checkpoint scheme in VM-µCheckpoint 
greatly reduces the probability of failing to recover the 
protected VM due to error detection latency.  

Two factors are important in determining check-
point corruption: error occurrence instant and error 
detection latency. We use TB to denote a bound on er-
ror detection latency. By setting Tck greater than an ac-
ceptable latency bound TB (for example, 95th percen-
tile) we impose a certain bound on the probability of a 
latent/undetected error affecting the checkpoint (less 
than 5% in the best case for this example).  

The following three assumptions are made in our 
model to simplify the analysis while still providing 
valuable insight into checkpoint corruption behavior: 

(i) Unmasked errors are eventually detected by ei-
ther application-level (e.g., embedded assertions) or 
system-level (e.g., application failure, exception han-
dling, kernel panic) detection mechanisms; only an 
error detection can trigger checkpoint-based recovery. 
Here an unmasked error is defined as a transient error 
that remains alive throughout the program life and is 
not overwritten but is manifested by the program. Er-
ror injection study [1] shows that an unmasked error, 
i.e. a manifested error, only leads to one of the follow-
ing results: crash/abortion, hang, or fail-silence viola-
tion (silent data corruption), and fail-silence violation 
cases are rare (no more than 2.3% in the experiments). 
The crash/abortion and hang failures are regarded as 
two forms of detection in our study because typically 
they should be detected in reliability-enhanced sys-
tems to trigger checkpoint-based recovery. Because the 
probability of fail-silence violation cases is very small 
and such cases can be regarded as “being detected af-
ter a very long time” in our model study without los-
ing the model’s expressiveness, it is reasonable to as-
sume unmasked errors are eventually detected.    

(ii) The probability of error occurrence is uniformly 
distributed during any given checkpoint interval. Note 
that a checkpoint interval in high-frequency check-
point schemes typically ranges from tens of millisec-
onds to seconds or at most minutes. During so short a 
period a transient error, triggered either by a hardware 
bit-flip due to radiation or current disturbance, or by a 
software issue such as race condition, an incorrect pa-
rameter or bad transmission, is a completely inde-
pendent event with respect to the elapsed time in the 
period. The assumed uniform distribution well cap-
tures this independence of the transient error.  

(iii) Error latency is exponentially distributed. Error 
injection study [1] illustrates the distribution of error 
latency measured in all experiments. The illustration 
shows that, basically the count of error latency values 
measured in the experiments largely reduces as the 
value continues to increase, but there is still a long tail 
of the error latency values. In the reliability area if it is 
unable to accurately obtain the analytical formulation 
of a random variable’s distribution but the distribution 

t0 t1 tk
Tck

S0 DP0 S1 DP1 Sk DPk
execution 
time

tk+1

SCANDATA

…
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has aforementioned characteristics, we often model the 
random variable as exponentially distributed to sim-
plify the analytical tractability while still provide in-
sightful discussion. Examples are the assumptions of 
exponential distribution for “service time at a server in 
a queuing network” and “time required to repair a 
component that has malfunctioned” in [25], the classi-
cal textbook on probability (page 120). 

The checkpoint corruption model is constructed for 
a given unmasked error occurrence. We first identify 
the checkpoint interval in which the error occurrence 
falls. As an example, Figure 4 (a) shows that an error 
occurs between chkpt0 and chkpt1. The time offset of 
the error occurrence relative to the time of chkpt0 is 
denoted as a (0 ≤ a<Tck). The system continues execu-
tion after the error occurrence, and the error is detect-
ed after latency of l (also shown in Figure 4 (a)). a and l 
are two random variables. a is uniformly distributed 
within [0, Tck), and l is exponentially distributed at a 
rate λ . Then, the pdf (probability distribution func-
tion) for a is given by: 

1
( ) : ( ) , [0, )

ck

ck

pdf a f x x T
T

= ∈
, 

and the pdf for l is given by: 

( ) : ( ) , [0, )ypdf l g y e yλ
λ

−
= ∈ +∞ . 

Because the error latency is independent of the error 
occurrence, a and l are independent random variables. 
Then, we can derive the pdf for a+l as follows: 

( ) : ( , ) ( ) ( ), [0, ), [0, )ckpdf a l h x y f x g y x T y+ = ∈ ∈ +∞ . 

 
Figure 4: Timeline of checkpoint corruption scenarios  

Note that any checkpoint taken after the occurrence 
of an unmasked error and before the detection of the 
error (e.g., chkpt1 in Figure 4(a)), is corrupted. In our 
model, this condition of checkpoint corruption is rep-
resented as &ck cka T a l T< + > . The probability of the 

error corrupting this checkpoint is: 

{ & } { } 1 { }ck ck ck ckP a T a l T P a l T P a l T< + > = + > = − + ≤  for 

[0, )cka T∈ . 

( )

0 0 0

{ } ( , ) ( ) ( )

1 1 1
(1 ) 1 (1 )

ck ck

ck ck ck

ck ck

ck

x y T x y T

T T x T

T x Ty

ck ck ck

P a l T h x y dxdy f x g y dydx

e dydx e dx e
T T T

λ λλ
λ

λ

+ ≤ + ≤

−

− − −−

+ ≤ = =

= = − = − −

∫∫ ∫∫
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Consequently,  
1

{ & } (1 )ckT

ck ck

ck

P a T a l T e
T

λ

λ

−
< + > = −

  (5) 

Selecting Tck to cover short-lived errors. To mitigate 
checkpoint corruption, we want to select the check-
point interval to be larger than the latency of most er-

rors. To do that, it is crucial to get realistic estimates of 
error latency. How does one obtain such estimates in 
practice? Two methods come to mind: (i) analyze de-
tection characteristics of detectors deployed in the sys-
tem/application and (ii) inject faults into the target 
application/system to measure error latency. For ex-
ample, according to Gu et al. [1], 95% of Linux kernel 
crashes have error latency less than 100M CPU cycles 
(or 50ms on 2G Hz processors). If we use this data in 
our model, then { } 0.95

B
P l T p≤ = =  for TB=50ms.  As 

{ } 1 BT

B
P l T e

λ−
≤ = − , we can compute the value λ = 

0.0599 (1/ms) for the test system in [1]. 
If we select 50ms as the checkpoint interval Tck, i.e., 

a value covering 95% of error latency, the probability 
of checkpoint corruption is 31.7% (computed using 

formula (5)). For { } 1 0.99BT

B
P l T e

λ−
≤ = − =  and λ = 

0.0599, we can compute the value TB=77ms. So when 
we increase the checkpoint interval to 77ms that covers 
99% of error latency, the probability of checkpoint cor-
ruption is reduced to 21.5% (computed by formula (5)). 
Dual checkpoint. Selecting the checkpoint interval to 
be larger than a given bound of latency TB reduces 
checkpoint corruption probability. However, it does 
not ensure that any error occurrence with latency less 
than TB does not corrupt a checkpoint. A dual-
checkpoint scheme (as shown in Figure 4 (b)) is neces-
sary to provide this assurance. In this scheme, two 
checkpoints are kept at any time, and the older of the 
two (chkpt1 in Figure 4 (b)) is the rollback target during 
recovery. In this scenario chkpt1 is corrupted only 
when & 2ck cka T a l T< + > . Then the probability of 

checkpoint corruption is: 
{ & 2 } { 2 }ck ck ckP a T a l T P a l T< + > = + > 1 { 2 }ckP a l T= − + ≤  

for [0, )cka T∈ . 

2 2

2

(2 )

0 0 0

{ 2 } ( , ) ( ) ( )

1 1
(1 ) 1 (1 )

ck ck

ck ck ck ck

ck ck

ck

x y T x y T

T T x T T
T x Ty

ck ck ck

P a l T h x y dxdy f x g y dydx

e
e dydx e dx e

T T T

λ

λ λλ
λ

λ

+ ≤ + ≤

− −

− − −−

+ ≤ = =

= = − = − −

∫∫ ∫∫
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Consequently,  

{ & 2 } (1 )
ck

ck

T
T

ck ck

ck

e
P a T a l T e

T

λ

λ

λ

−

−
< + > = −

 (6) 

Table 1 lists the checkpoint corruption probabilities 
for different error latency percentiles in single-
checkpoint and dual-checkpoint scenarios. When dual-
checkpoint is used for Tck of 50ms (covering latency of 
95% of errors), the checkpoint corruption probability in 
the dual-checkpoint scheme, i.e. the probability of cor-
rupting the older checkpoint, is largely reduced to 
1.59% (using formula (6)). As a comparison, selection 
of Tck as 115ms in the single-checkpoint scheme has a 
checkpoint corruption probability of 14.5%, though 
115ms is longer than twice of 50ms. As another com-
parison, selection of Tck as 20ms in the dual-checkpoint 
scheme has the checkpoint corruption probability of 
17.6%, much larger than 1.59%. It is clear that both the 
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dual-checkpoint scheme and the proper selection of Tck 
must be combined for reducing the checkpoint corrup-
tion probability. 
Table 1: Checkpoint corruption probabilities in different sce-

narios 

Error 

latency 

percentile 

(p) 

p-percentile 

point of error 

latency as Tck 

(ms) 

Prob. of checkpoint 

corruption in single-

checkpoint at Tck 

Prob. of checkpoint 

corruption in dual-

checkpoint at Tck 

70% 20 58.3% 17.6% 

90% 38 39.1% 4.05% 

95% 50 31.7% 1.59% 

99% 77 21.5% 0.21% 

99.9% 115 14.5% 0.015% 

5 AVAILABILITY MODEL 

We construct a Markov model to study the availability 
improvement provided by VM-µCheckpoint to pro-
tected VMs. The model captures failure and recovery 
behavior of all the involved components. 
Modeled Behavior. Specifically, the following behav-
iors are modeled for different types of failures: 

a) Transient failure of a protected VM (or an applica-
tion in the VM): the VM is recovered by the check-
pointing VM if there is no checkpoint corruption that 
VM-µCheckpoint cannot handle (see Section 4). When 
there is such corruption, a new VM is started on the 
same physical host, and the jobs being executed at the 
time of the failure are re-executed from the beginning.  

b) Transient failure of the checkpointing VM: the 
checkpointing VM is restarted on the same physical 
host and begins to receive checkpoints from protected 
VMs; at the same time, the protected VM is still availa-
ble for job execution. When a protected VM fails dur-
ing the failure/restart of the checkpointing VM, our 
recovery protocol first restarts the checkpointing VM, 
and then restarts the protected VM (and as before, in-
terrupted jobs are restarted from beginning). 

c) Failure of the hypervisor, and permanent failure of the 
protected VM or checkpointing VM: a hypervisor is start-
ed either on the same physical node or on another 
node, the checkpointing VM is started on the hypervi-
sor, and then the protected VM is started (we assume 
that the disk images of VMs can be loaded from any 
physical host, which is true in most of current virtual-
ized environments).  
Model. Exponential distribution is assumed for the 
time to failure and the recovery time for all the com-
ponents. For ease of explanation and brevity, here we 
present the availability model for only one protected 
VM on top of the hypervisor. Following notations are 
used in the model: 
λv  Rate of the hypervisor software failure and all 

permanent failures.  
λs  Failure rate of the checkpointing VM alone. 
λp  Failure rate of the protected VM alone.  
rv  Restart rate of the hypervisor software.  
rs  Rate of restarting the checkpointing VM, including 

saving the first checkpoint.  
r’p  Rate of successfully recovering a protected VM by 

VM-µCheckpoint.  
rp  Rate of recovering a protected VM when VM-

µCheckpoint fails to do that (due to checkpoint 
corruption). Job re-computation is considered as 
recovery overhead. 

pc  Probability of checkpoint corruption given an er-
ror. 

The Markov model in Figure 5 depicts the fail-
ure/recovery behavior of the system with VM-
µCheckpoint deployed. The state of the system is de-
noted as a vector (k, j), where k represents the state of 
the protected VM and j indicates the state of the 
checkpointing VM (Figure 5 gives more details). The 
model consists of two sub-models: (a) the sub-model 
for transient failures of the protected VM and the 
checkpointing VM and (b) the sub-model for perma-
nent failures and hypervisor failures. 

 
Figure 5: Availability model for one protected VM (a) sub-

model for transient failures of guest VMs, (b) sub-model for 

permanent failures and hypervisor failures 

Figure 5 captures all the failure/recovery behavior 
described above (a), b) and c)). For example, when a 
permanent failure occurs during execution of the pro-
tected VM, the entire physical node fails, and a hyper-
visor is restarted on a physical node (shown as a se-
quence of transitions, (1,1)->FS->(0,F), in sub-model 
(b)). Then the checkpointing VM and the protected VM 
(including interrupted jobs) are recovered in turn 
(shown as (0,F)->(0,0)->(1,1) in sub-model (a)). The 
checkpoint corruption probability derived from the 
checkpoint corruption model in Section 4 is multiplied 
by the failure rate of a protected VM to obtain the rate 
of failures causing corruptions unhandled by VM-
µCheckpoint. 
Solving the Model. The Markov model is solved by 
computing the equilibrium condition, i.e., the “input 
flow” into each state equal to the “output flow” out of 
the state [25]. We use the mathematics tool package 
CLAPACK [27] to solve these equations and obtain the 
probability of the system staying in each state. Solving 
the model is required for our availability study in Sec-
tion 5.1. 

We extended the availability model in Figure 5 to 
capture the behavior of disk-based checkpointing (Fig-
ure 3). We also generalized the model in Figure 5 to 
cases when there are n VMs on top of a hypervisor. 
Due to the space constraints these models are not pre-
sented here; they are available upon request. 

5.1 Availability Study 

After the model is solved, we obtain the availability of 
the protected VM by adding up the probabilities of the 
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system staying in the states (1,1) and (1,F). To demon-
strate the performance of our technique in availability 
enhancement, we also construct the Markov models 
for both the baseline case and an existing technique of 
VM checkpointing based on live migration (Remus [7]) 
for comparison. 
Availability Model for Baseline. In the baseline case, 
a VM is on top of the hypervisor and there is no any 
checkpoint of the VM. When a failure occurs to the 
VM, the VM is restarted with all interrupted jobs re-
started from the beginning. The model in Figure 6 cap-
tures the baseline behavior with n VMs on top of a hy-
pervisor. 

 
Figure 6: The availability model for baseline (n protected VMs) 

 
Figure 7: The availability model for Remus (1 protected VM) 

Availability Model for Remus. Remus maintains a 
backup of a VM on a remote host by migrating the 
state from the primary to the backup periodically (e.g., 
every 50ms). When the VM fails, the backup VM be-
gins to execute from the last checkpoint. The model in 
Figure 7 captures the Remus behavior (both check-
point and recovery) for the cases in which there is only 
one VM on top of a hypervisor. Due to the space con-
straints detailed presentation and explanation of this 
model is not given here, and is available upon request.  
Model parameters. The parameters selected in our 
model are based on previous empirical study of off-
the-shelf servers. In the availability study for Windows 
servers [28] it is reported that, though the average 
availability of the servers is around 99.9% there are 
also servers with availability around 99% or less. [28] 
also reports the MTTR (mean time to recovery) for all 
the failures as 0.25 hour (or 15 mins). This MTTR in-
cludes the response time of an administrator who dis-
covers the failure and restarts the failed machine with 
appropriate recovery. 

So in the availability models for VM-µCheckpoint 
we set the following parameters: 

 
rv = rs = 1/15min 
rp = 1/(0.5*average job duration), because the VM is restarted 

immediately and the mean job recomputation during re-
covery is half of the average job duration  

r’p = 1/600ms = 100, as overhead around 600ms is measured 
in our experiments  

λv = 1/15000hours + 1/3years = 0.000001492/min. 
1/15000hours = 1/1.712year is the hypervisor failure 
rate; 1/3 years is the permanent failure rate (according 
to presentations made by several Intel engineers in 
DARPA and other forums)  

λs = 1/15000min, for the checkpointing VM with 99.9% avail-
ability (rs = 1/15min) 

λp = 1/1500min (for a protected VM with 99% availability 
without considering job recomputation) or 1/15000 min 
(for a protected VM with 99.9% availability)  

pc = 1.59%, the value is derived in the checkpoint corruption 
model for Tck= 50ms, which covers 95% of error latency 

In this parameter selection, λv is much smaller than 
λs or λp because hardware and hypervisor is usually 
assumed to be much more reliable than the server 
software and the operating system. This is a realistic 
assumption (also assumed in [24]) because the hyper-
visor kernel is small (e.g., 434KB for Xen-3.3.1 vs. 
1.5MB for Linux 2.6.18) and hence, verification and test 
of the hypervisor code is relatively easier.  

The parameter values above are also used in the 
availability models for the baseline and Remus (so the 
recovery rate of Remus is also 1/600ms), except that a 
different pc value is selected in the model for Remus. 
As VM-µCheckpoint uses the dual-checkpoint scheme 
with the checkpoint interval of 50ms in our model 
study, for fair comparison, we consider the Remus case 
with the checkpoint interval of around 100ms because 
the single-checkpoint scheme is used in Remus. Ac-
cording to the data reported in Section 4, the check-
point corruption probability is 14.5% in a single-
checkpoint scheme at the checkpoint interval of 115ms. 
Therefore, we select pc=15% in the Remus model (ac-
cording to an experimental study in [29], the probabili-
ties of checkpoint corruption range from 27% to 41% 
for different application workloads; so 15% is a con-
servative value). 
Results. The availability values computed from these 
models are compared in Table 2. Our results are better 
than Remus’s for all the experiment cases. For exam-
ple, for average job duration of 8 hours (i.e., 1/rp=240 
min) on a 99%-available server (λp=1/1500min), we 
achieve an availability of 99.7% while Remus achieves 
97.7%. 

Table 2: Availability comparison with checkpoint corruption 

(note that 1/rp = 0.5*average job duration)  

 1/rp (min) 15 60 240 1440 

λp=1/15

00min 

VM-uchkpt 99.98% 99.92% 99.7% 98.2% 

Remus 99.8% 99.4% 97.7% 87.4% 

Baseline 99.0% 96.1% 86.2% 51.0% 

λp=1/15

000min 

VM-uchkpt 99.99% 99.98% 99.93% 99.6% 

Remus 99.98% 99.94% 99.76% 98.6% 

Baseline 99.90% 99.6% 98.4% 91.1% 

The better results are achieved because the impact of 
checkpoint corruption on availability is much larger than 
that of permanent failures in high-frequency checkpointing. 
As transient failures are much more frequent than 
permanent failures, our model shows that VM-
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µCheckpoint loses little in handling permanent fail-
ures, but gains much more in reducing checkpoint cor-
ruption by i) selecting the proper checkpoint interval 
to cover 95% of errors’ detection latency and ii) apply-
ing a dual-checkpoint scheme to provide the 100% as-
surance for recovering these 95% of errors (the rest 
errors are probabilistically covered). 

6 DISCUSSIONS 

Error model. VM-µCheckpoint recovers VMs and ap-
plications in the VMs from any transient hardware 
error or transient software error (including both appli-
cation error and system error) that escape detection of 
ECC. These transient hardware errors include those 
occurring on processors (functional units, registers, 
caches, buses, and control logics) due to events such as 
radiation or current disturbance. Transient software 
errors, or Heisenbugs [4], include exceptional condi-
tions (e.g., counter overflow and interrupt arrival with 
bad timing), occasional device driver fault, race condi-
tions, and corrupted parameter or data due to bad 
transmission.   

We target the errors that escape detection of ECC, 
which originate as values incorrectly computed and 
written to memory. The checkpoint stores the prior-to-
update data of the updated pages. The rest part of the 
VM resident in memory is regarded as correct state.  

When there is corruption of checkpoint that VM-
µCheckpoint is unable to address, VM-µCheckpoint 
aborts recovery and restarts the VM and the interrupt-
ed jobs. Moreover, when a transient error in the hy-
pervisor causes the entire hypervisor to fail, we first 
restart the hypervisor and restart all jobs executing 
prior to the failure; if this is unsuccessful, we move to 
an adjacent physical node and restart the hypervisor.  
I/O handling. This paper focuses on the analysis, de-
sign, modeling, and implementation of memory-state 
checkpointing in VM-µCheckpoint. For I/O handling, 
we can adapt the output-commit mechanism applied 
in [7][16] to fit into VM-µCheckpoint. In this mecha-

nism, output of a system is held (i.e., not delivered to 
hardware devices) until a checkpoint is taken. This 
mechanism masks recovered errors of the system, i.e., 
these errors are not viewed by other components 
(disks, network cards, nodes, etc.).  

Here is how VM-µCheckpoint can be extended to 
support I/O checkpoint. The checkpoint agent in VM-
µCheckpoint is designed to hold and release output of 
the protected VM; if preferred, a copy of input to the 
protected VM is saved in the checkpoint agent for re-
play. The hypervisor and the checkpointing VMs are 
instrumented to provide support to the checkpoint 
agent for this purpose. Note that the checkpoint agent 
maintains two pools of held outputs and saved inputs 
in the dual-checkpoint scheme. 

7 EXPERIMENTAL PERFORMANCE EVALUATION 

Fully working prototype of VM-µCheckpoint is im-
plemented in Xen VMM. The source codes of the Xen 
hypervisor and the checkpointing VM are instrument-
ed while there is no change to the protected VM2. 

The testbed consists of a physical machine with an 
AMD Athlon 2800 (1.8G Hz) processor and 1.5GB 
memory. There are only two VMs (Linux 2.6.18) run-
ning on top of Xen 3.3.1 in the testbed. The Dom0 is 
selected as the checkpointing VM and the other VM (a 
DomU) is the protected VM. 512MB and 1GB memory 
are assigned to the Dom0 and the DomU, respectively. 
We use only two VMs in experiments in order to accu-
rately measure performance overhead in a relatively 
simple deployment.  

We summarize major findings in our experiments 
below: 

a) VM-µCheckpoint achieves much better per-
formance than existing migration-based VM check-
point. For workload of SPEC CINT 2006 benchmark 
and checkpoint frequency of 20 times per second 
 

2 The I/O recovery mechanism is not implemented in the current pro-
totype. 

 

Figure 8: Experiment results in terms of execution time of SPEC CINT 2006  
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(Tck=50ms), an average of 6.3% overhead is incurred 
when COWP is deployed. With the same checkpoint 
algorithm and checkpoint frequency Apache server 
throughput is reduced by 17.5%, compared with cases 
without any checkpoint mechanism applied. In con-
trast, Remus [7], a migration-based VM replica-
tion/checkpoint technique, reports approximately 50% 
overhead in their experiments for the same checkpoint 
frequency. If we reduce the frequency to 5 times per 
second the average overhead is only 3.8% for the SPEC 
CINT 2006 workload and around 9% for the Apache 
web server (using COWP). 

b) The speedup the COWP algorithm gains over 
COWB is significant when checkpoint frequency is 
high. With COWP deployed with 50ms checkpoint 
intervals Apache throughput is 82.5% of the baseline 
performance, which is larger than 74.3% when COWB 
is deployed. 

c) Checkpoint sizes are relatively small with 
short checkpoint intervals selected in our experiments. 
The results show that, with 50ms checkpoint intervals 
(using COWP) all checkpoint sizes are less than 2000 
memory pages (8MB) with an average of 655 pages 
(2.6MB), for the SPEC CINT 2006 workload (the size of 
the entire system state is up to 51461 memory pages, or 
206MB). 

7.1 Program Execution Time 

A set of SPEC CINT 2006 benchmark programs are 
executed in the protected VM with VM-µCheckpoint 
deployed. A suite of experiments are conducted in-
volving each of these benchmark programs: (i) a base-
line case (no checkpoint), (ii) COWB algorithm de-
ployed with 4 different checkpoint intervals (1000ms, 
600ms, 200ms, and 50ms), and (iii) COWP algorithm 
deployed with the same 4 intervals. A given program 
executes with the same input across all experiments. 

Program execution times are measured. The execu-
tion times normalized against the execution time in the 
corresponding baseline case are illustrated in Figure 8. 
The following can be observed from Figure 8: 

i) For all programs the impact of the checkpoint on 
the program execution time is no more than 11% (the 
normalized execution times are no more than 1.11) and 
the average overhead is 6.3% (the average of the nor-
malized execution times is 1.063) when the COWP al-
gorithm is deployed with 50ms checkpoint intervals. 
Comparing with around 50% overhead in Remus this 
is great improvement. If we increase the checkpoint 
interval to 200ms, the average overhead is now 3.8% 
(using COWP). 

ii) The performance overhead increases as check-
point frequency grows. 

iii) Use of COWP gains larger speedup over COWB 
for high checkpoint frequency. This is because the pre-
saving in COWP reduces the number of page faults 
when the checkpoint interval is small. For low-
frequency checkpoint the pre-saving does not provide 
much improvement; in certain cases it even degrades 
checkpoint performance. Such performance degrada-

tion can be observed in experiments for perlbench and 
omnetpp in Figure 8. This result is due to the fact that 
memory access locality plays a significant role when 
checkpoint intervals are short. With a checkpoint in-
terval as large as 1s there are (in general) a lot of mis-
predictions, and the pre-saving does a lot of wasteful 
work of preserving pages not to be updated. 

7.2 Web Server Throughput 

Apache web server runs on the protected VM in our 
experiments. Web clients reside on three physical ma-
chines with each machine hosting 50 clients. These cli-
ents simultaneously request the same load of web pag-
es, one request immediately after another, from the 
server via a 100Mbps LAN. The output-commit mech-
anism is disabled in these experiments (as the I/O 
handling is not the focus of this paper), and conse-
quently, we compare our performance with Remus 
results when the output commit is also disabled. 

Figure 9 shows the measured server throughput 
with VM-µCheckpoint deployed at different check-
point intervals. The percentages indicated along the 
data points on the graph represent the ratio between 
the throughput measured with the checkpoint de-
ployed and the throughput in the baseline case (when 
checkpoint is not deployed). The three observations in 
Section 7.1 are confirmed by the throughput results. 

i) The throughput is reduced by 17.5% when check-
point is taken 20 times per second. Remus reports ap-
proximately 50% overhead for SPECweb benchmark 
with the same checkpoint frequency (with output 
commit disabled). If the checkpoint interval is in-
creased to 200ms in VM-µCheckpoint, the throughput 
is reduced by only 9%. Our overhead results are con-
servative because we run a stressful load of web re-
quests in experiments, and the typical server workload 
is not as intensive. 

ii) Checkpoint overhead increases with higher 
checkpoint frequency.  

iii) The COWP algorithm improves performance 
over COWB, especially in cases with small checkpoint 
intervals (the gaps between the two curves keep in-
creasing as the checkpoint interval decreases in Figure 
9). 

 

Figure 9: Impacts of VM-µCheckpoint on Apache web server 
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7.3 Overhead Measurement 

The number of checkpoint-caused page faults is a di-
rect measurement of the time overhead of VM-
µCheckpoint (other page faults are not checkpoint 
overhead). Checkpoint size, i.e., the number of 
memory pages kept in a checkpoint, is the space over-
head measurement. 

A number of experiments are conducted to study 
VM-µCheckpoint’s overhead with COWB or COWP at 
different checkpoint intervals. In each of these experi-
ments, 12 programs of SPEC CINT 2006 benchmark 
were executed in a sequential way. We measured the 
numbers of checkpoint-caused page faults and the 
checkpoint sizes (in terms of numbers of memory pag-
es) in each checkpoint interval (e.g., 50ms) of the ex-
periment duration. 
Table 3: Average checkpoint-caused page faults in experiments 

Algorithm Tck(ms) Overall ①perl-

bench 

③gcc ④milc ⑥dealII 

COWB 50 491.1 342.4 396.0 1112.7 235.8 

1000 1057.2 1076.6 1398.1 1298.0 996.0 

COWP 50 124.7 139.7 172.2 35.7 163.3 

1000 521.5 182.0 527.9 319.7 842.8 

Table 4: Average checkpoint sizes (in number of memory pag-
es) in experiments 

Algo-

rithm 

Tck(ms

) 

Over-

all 

①perl-

bench 

③gcc ④milc ⑥dealII 

COWB 50 491.1 342.4 396.0 1112.7 235.8 

1000 1057.2 1076.6 1398.1 1298.0 996.0 

COWP 50 654.5 565.7 626.3 1154.6 524.2 

1000 2162.4 1260.0 2144.6 1873.9 3151.6 

Results. The overall checkpointing overheads meas-
ured throughout the experiments, as well as the over-
heads for several individual programs, are presented 
in Table 3 (time overhead) and Table 4 (space over-
head). The major findings from the experimental re-
sults are summarized below. 
• Average checkpoint sizes are very small, less than 2% 
of the size of the entire system state when checkpoint inter-
val is 50ms. Table 5 shows that with COWP deployed at 
a checkpoint interval of 50ms, the average checkpoint 
size is 654.5 memory pages or 2.6MB, while the size of 
the entire system state during the experiment is up to 
51,461 memory pages (206MB). The maximum check-
point size observed is less than 8MB (2000 pages; due 
to space constraints the figure showing the distribution 
of checkpoint sizes is not given here), less than 4% of 
the entire system state size. When the checkpoint in-
terval is increased to 1000ms, most checkpoints are less 
than 10,000 pages, and the average size is 2162.4 pages 
(8.6MB, or 4.2% of the entire state). 
• Dirty page prediction and pre-saving effectively reduce 
page faults by 75% when the checkpoint interval is 50ms 
(124.7 page faults in COWP, while 491.1 in COWB, as 
shown in Table 3). When the checkpoint interval is 
1000ms, COWP still achieves 51% reduction of page 
faults (1057.2 reduced to 521.5). The reduction percent-
age is less for larger checkpoint intervals, as there is 
more memory access locality within shorter intervals. 

8 ERROR INJECTION EXPERIMENTS 

Detections of a variety of errors are provided by the 
RMK, including detection of VM crashes and hangs. 
As discussed in Section 2, VM-µCheckpoint consists of 
three RMK modules in the deployment (Figure 1): 
COWB, COWP, and recovery. The error detections and 
the VM-µCheckpoint are integrated by the RMK 
framework, which is briefly described here (VM crash 
is used as the example error in the description): 

When a protected VM crashes, an exception is 
raised by the hardware and reported to the hypervisor. 
The P_VMSIGNAL pin (illustrated in Figure 1) inter-
cepts this exception, determines whether the exception 
is caused by a crash (e.g., segmentation fault) or not 
(e.g., a page fault), and produces an 
EVT_ERRORDETECTED event if the exception is 
raised by a crash. Detections of other errors (e.g. sys-
tem hangs) also raise this event to the RMK frame-
work. 

The recovery module receives the event 
EVT_ERRORDETECTED from the RMK, then sus-
pends the failed VM and invokes the checkpoint agent 
for recovering the VM state with its checkpoint (the 
recovery module knows whether COWB or COWP is 
currently used). 

Table 5 lists the experiment results. Three kinds of 
errors were injected, as described below. 

Table 5: Results of Error Injection Experiments 

Experiments Fault/Error Injected 

Faults/Er

rors 

Activat-

ed and 

Detected 

Recov-

ered 

Signal-triggered 

crashes (check-

point interval= 

100ms) 

Sends SIGTERM 

to the applica-

tion in the pro-

tected VM (fail-

stop) 

35 35 35 

Bit flips into ker-

nel registers 

(checkpoint inter-

val= 100ms) 

Suspends the 

protected VM, 

flips a bit in a 

register value in 

the VM, and 

resumes the VM 

85 31 acti-

vated 

and de-

tected 

31 

System hangs 

(threshold of 200 

ms, checkpoint 

interval= 500ms) 

Loads a device 

driver which 

runs an infinite 

loop in the pro-

tected VM 

30 30 24* 

*Recovery failed in several experiments due to inconsistent shared 

state between the protected VM and Dom0 for I/O operations 

8.1 Signal-Triggered Crash 

We use signals to emulate VM crashes in these exper-
iments. We send a SIGTERM signal to the application 
process; this signal traps the processor into the hyper-
visor; the P_VMSIGNAL pin in the hypervisor injects 
an error of a VM crash by generating the 
EVT_ERRORDETECTED event; the recovery module 
then restores the checkpoint to the protected VM. We 
conducted 35 experiments, and in all of them the pro-
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tected VM was successfully recovered. 

8.2 Bit Flips in VM Kernel Registers 

We also injected bit-flip faults into kernel registers of 
the protected VM. The error injector is placed outside 
the protected VM, i.e., in the dom0, to avoid repeating 
the same error injection after recovery from the check-
point. Our experiments showed that if the error injec-
tor is inside the protected VM, the VM is recovered 
from the checkpoint successfully after error detection, 
but the same error is injected again immediately after 
recovery as the error injector process was running be-
fore the error was injected. A simple program is used 
as the workload in these error injection experiments. 

The error injector in the dom0 first suspends the 
protected VM via the hypervisor. As a result, the state 
of the virtual CPUs in the VM is saved in a hypervisor 
data structure called vcpu_guest_context. Then we ran-
domly select a bit in the generic register file (i.e. EAX, 
EBX, ESI, EDI, ESP, EIP, CS, SS, ES, etc.) in the 
vcpu_guest_context and flip it. We resume the protect-
ed VM, and the flipped value is written back to the 
corresponding register in the virtual CPUs.  

We did tens of experiments and found that the acti-
vation rate is fairly small (i.e., only 31 out of 85 injected 
faults get activated). All of the activated and manifest-
ed errors in the experiments are detected by the 
P_VMSIGNAL pin and are successfully recovered. 

8.3 System Hangs 

We injected system hangs in the protected VM as fol-
lows: we loaded in the VM a device driver that ran an 
infinite loop. In the 30 experiments conducted, there 
are 6 cases in which the recovery from the checkpoint 
fails. 

We looked into the details of the cases when the re-
covery failed, and discovered the failures were related 
to a certain I/O issue: the shared state between the 
protected VM and the dom0 for handling I/O opera-
tions is inconsistent with the state of the protected VM 
after recovery from the checkpoint. Figure 10 illus-
trates the details of the inter-domain shared memory 
for I/O operations in Xen.  

 
Figure 10: Inter-Domain Shared Memory for I/O Operations in 

Xen 

The Xen hypervisor uses a split driver model for 
handling I/O operations (network, disk, etc.). The 
blkfront is the front end of the driver in the protected 
VM, and the blkback is the back end in Dom0 (as 
shown in Figure 10). Shared memory is used to facili-
tate I/O data transfer. These shared states include re-
quest ring buffer, producer/consumer pointers 
(blkfront and blkback follow a producer-consumer 

model), buffers, protocol status for the split driver, 
event channel state, etc. 

When a request arrives at either the blkfront or the 
blkback, a shared buffer is created in the protected VM 
or the dom0 to host I/O data, and this buffer is regis-
tered through the grant table mechanism in the hyper-
visor. After processing of the request, the buffer is re-
leased through the grant table.  

After the protected VM is recovered from check-
point, there are cases when the blkfront expects a 
shared buffer to be present and registered in the hy-
pervisor’s grant table. But this may not be true. The 
recovery then fails because a non-existent buffer is ac-
cessed. Our experiments show that this scenario hap-
pens when the error detection latency is large. That is 
why we only observed failure of recovery in cases 
when system hangs are injected (200 ms is used as the 
threshold value for detecting VM hangs).  

To handle this problem, we will instrument the hy-
pervisor and the blkback driver in the dom0 to save 
the shared memory and the grant table in the check-
point. This work is in our next stage of the research 
focusing on I/O checkpoint. 

8.4 Recovery Overhead 

Besides the error injection experiments for testing the 
correctness of the checkpoint/recovery mechanism of 
VM-µCheckpoint, we also measured the recovery time 
to evaluate the performance. The hypervisor-level ex-
ception handler is instrumented to provide the meas-
urement information. The SPEC CINT 2006 benchmark 
programs ran as the workload on the protected VM in 
these experiments. The measured recovery time de-
pends on the number of memory pages restored dur-
ing recovery. As most of checkpoint sizes range from 
several hundred to several thousand memory pages 
(shown in Table 4), the measured recovery time ranges 
from 144ms to 1017ms with the average of 639.4ms 

(the 95% confidence interval is 639.4ms± 193.1ms). 

9 RELATED WORK 

Checkpoint and rollback techniques have been exten-
sively studied in the literature. Checkpoints can be 
taken in different levels (application, runtime library, 
compiler, operating system, virtual machine, or hard-
ware). Here we focus on checkpoint techniques in the 
virtual machine level, as they are more relevant to our 
objective.  
VM checkpointing. Most existing VM checkpoint/ 
replication techniques are based on live migration of 
VMs (e.g., VMWare VMotion [5] and Xen Live Migra-
tion [6]), which continually transmit dirty pages of a 
VM from a source node to a destination node. These 
techniques exploit the live migration mechanism for 
the purposes of VM checkpointing, VM rejuvenation, 
load-balancing, and fast VM forking.  

CEVM [17], VNsnap [23], and VM Snapshots [12] 
are techniques of disk-based VM checkpointing. These 
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techniques employ VM live migration or copy-on-
write to create a replica image of a VM with low 
downtime incurred; then they write the image to disk 
offline. Another project on VM checkpoint [12] tries to 
provide a generic API in Xen product for saving a VM 
snapshot to disk on demand. Basically, the VM 
memory is scanned and saved to files while the VM 
runs simultaneously. Copy-on-write is exploited to 
save the original data of modified VM state during 
checkpointing. 

VM-µCheckpoint is different from these disk-based 
VM checkpointing in that we aim at i) providing high-
frequency checkpointing and rapid recovery of VMs 
with low overhead, which allows VM failures to be 
masked to clients, and ii) proposing a mechanism to 
address checkpoint corruption in high-frequency 
checkpointing. Checkpoint corruption has large im-
pacts on service availability when checkpoint frequen-
cy is high, as shown in our model study in Section 4 
and 5.  

The existing approach that is closest to our work is 
Remus [7], which maintains a backup VM on a sepa-
rate physical node by periodically transmitting the 
VM’s dirty pages to the backup. Similar to VM-
µCheckpoint, Remus is a mechanism of high-
frequency VM checkpointing and failover. But VM-
µCheckpoint focuses on error behavior and reliabil-
ity/availability improvement, while Remus focuses on 
migration overhead. No study of error behavior or re-
liability/availability is reported in [7]. As checkpoint 
corruption is not handled in Remus (fail-stop errors 
are assumed in Remus), our technique is better in im-
proving service availability, as shown by our availabil-
ity study in section 5.1. 

Other techniques that may be relevant to VM 
checkpointing are briefly described as follows. Brad-
ford et al. [22] focus on migrating persistent state of a 
VM across WAN so that the VM can migrate to a node 
that does not share storage with the original node. [11] 
revises Xen live migration to fit in a self-migration sce-
nario. [10] and [8] implement proactive VM rejuvena-
tion based on live migration, and [9] uses live migra-
tion for load-balancing. Potemkin [19] employs copy-
on-write to share data between VMs for efficiently 
provisioning VMs. Another technique of fast VM fork-
ing is [20]. Though one may use these techniques to 
checkpoint a VM by periodically forking a shadow VM 
and tearing down out-dated shadow VMs, spawning a 
VM and tearing down a VM involve a lot of overhead 
not necessary for checkpointing. Moreover, error anal-
ysis and reliability/availability study is an integral 
part of a checkpointing technique for failure mitiga-
tion. 
Multi-checkpoint mechanisms. As far as we know, 
none of the existing checkpoint techniques considers 
handling checkpoint corruption by explicitly studying 
error detection latency and including a bound of the 
latency as a parameter, though multi-checkpoint 
mechanisms can be leveraged to deal with checkpoint 
corruption. IBM System Z [18] allows multiple check-

points of an application to be recorded in persistent 
storage on demand. Ping-Pong checkpoint [21] main-
tains two checkpoints to deal with incomplete check-
point due to errors during the checkpointing proce-
dure. None of these techniques study the characteris-
tics of error detection latency to address the checkpoint 
corruption. 
In-place restoration. Hardware-level checkpoint tech-
niques [14][15] use special hardware to take and store 
a checkpoint. When an error is detected, the check-
point saved in the special hardware is restored into the 
architecture state of the physical machine, including 
register file and memory. For example, the first update 
of a memory word or a register during a checkpoint 
interval is preserved in special hardware in SafetyNet 
[14]. 

10 CONCLUSIONS 

This paper proposes VM-µCheckpoint, a lightweight 
VM checkpointing technique, which minimizes over-
head by placing checkpoints in memory and perform-
ing in-place recovery. VM-µCheckpoint provides high-
frequency checkpointing (e.g. 20 times of checkpoints 
per second) and rapid recovery of VMs. As checkpoint 
corruption has large impacts on the probability of re-
covery failures when checkpoint frequency is high, 
VM-µCheckpoint explicitly addresses checkpoint cor-
ruption based on study of the characteristics of error 
detection latency. We constructed Markov models to 
study the error detection latency and system availabil-
ity under different checkpoint mechanisms. The results 
of the model study clearly show that VM-µCheckpoint 
effectively handles checkpoint corruption and largely 
improves service availability by means of i) proper 
selection of checkpoint interval based on the 
knowledge on error detection latency and ii) the dual-
checkpoint scheme. 

VM-µCheckpoint was implemented in the Xen 
VMM. Experimental results show that the proposed 
technique achieves much better performance than ex-
isting techniques based on VM live migration. There is 
an average of 6.3% overhead in terms of program exe-
cution time for the SPEC CINT 2006 benchmark when 
VM-µCheckpoint is deployed at a checkpoint frequen-
cy of 20 times per second. (An approximately 50% 
overhead is reported in a previous technique [7] at the 
same checkpoint frequency.) Moreover, the checkpoint 
size is small in VM-µCheckpoint: an average of 2.6MB 
in our experiments when the COWP algorithm is ap-
plied with 50ms checkpoint intervals.  

We conducted error injection experiments by de-
ploying VM-µCheckpoint in RMK to leverage the ex-
isting error detection techniques in RMK. The error 
injection experiments demonstrate that VM-
µCheckpoint has high coverage of error recovery 
(100% for system crashes and corrupted data in our 
experiments). 
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