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Abstra
t

We des
ribe the design, implementation and performan
e of a high-performan
e Web

server a

elerator whi
h runs on an embedded operating system and improves Web server

performan
e by 
a
hing data. It 
an serveWeb data at rates an order of magnitude higher than

that whi
h would be a
hieved by a high-performan
e Web server running on similar hardware

under a 
onventional operating system su
h as Unix or NT. The superior performan
e of

our system results in part from its highly optimized 
ommuni
ations sta
k. In order to

maximize hit rates and maintain updated 
a
hes, our a

elerator provides an API whi
h allows

appli
ation programs to expli
itly add, delete, and update 
a
hed data. The API allows our

a

elerator to 
a
he dynami
 as well as stati
 data. We des
ribe how our a

elerator 
an

be s
aled to multiple pro
essors to in
rease performan
e and availability. The basi
 design

alternatives in
lude a 
ontent router or a TCP router (without 
ontent routing) in front of a

set of Web 
a
he a

elerator nodes, with the 
a
he memory distributed a
ross the a

elerator

nodes. Content-based routing redu
es 
a
he node CPU 
y
les but 
an make the front-end

router a bottlene
k. With the TCP router, a request for a 
a
hed obje
t may initially be

sent to the wrong 
a
he node; this results in larger 
a
he node CPU 
y
les, but 
an provide

a higher aggregate throughput, be
ause the TCP router be
omes a bottlene
k at a higher

throughput than the 
ontent router. We quantify the throughput ranges in whi
h di�erent

designs are preferable. We also examine a 
ombination of 
ontent-based and TCP routing

te
hniques. In addition, we present statisti
s from 
riti
al deployments of our a

elerator for

improving performan
e at highly a

essed Sporting and Event Web sites hosted by IBM.

1 Introdu
tion

There has been tremendous growth of the World Wide Web over the past several years in the

number of users, sites, and data. To 
ope with su
h growth, Web servers often need to sustain

high throughput levels. This performan
e requirement is further 
ompounded by bursty a

ess

patterns whi
h are 
ommon to many popular Web sites, resulting in high peak-to-average request

rates [18℄. In order to handle high request rates, it is often ne
essary to use multiple pro
essors.
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One te
hnique for redu
ing the amount of hardware needed at a Web site and improving through-

put is to pla
e one or more high-performan
e 
a
hes in front of the Web servers known as Web

server a

elerators. In this paper, we address the problem of improving the performan
e of a Web

server and present the ar
hite
ture of a high-performan
e Web server a

elerator we have built.

It 
an be s
aled to multiple pro
essors in order to further in
rease throughput, main memory


a
he spa
e, and availability.

The performan
e of Web servers is limited by several fa
tors. The underlying operating

system on whi
h a Web server runs may have performan
e problems whi
h negatively a�e
t the

throughput of the Web server. In satisfying a request, the requested data are often 
opied several

times a
ross layers of software, su
h as between the �le system and the appli
ation and again

during transmission to the operating system kernel, and often again at the devi
e driver level.

Other overheads, su
h as operating system s
heduler and interrupt pro
essing, 
an add further

ineÆ
ien
ies. Performan
e 
an be improved by 
a
hing data in a Web server a

elerator whi
h

has signi�
antly less overhead than a Web server.

Our a

elerator runs under an embedded operating system and 
an serve Web data at rates an

order of magnitude higher than that whi
h would be a
hieved by a high-performan
e Web server

running on similar hardware under a 
onventional operating system su
h as Unix or NT. Our

Web server a

elerator has been used to improve performan
e at a number of highly a

essed Web

sites in
luding the ones for the 2000 Olympi
 Games and 1999 Wimbledon tennis tournament.

Ca
he hit rates of over 85% were a
hieved.

The superior performan
e of our system results largely from the embedded operating system

and its highly optimized 
ommuni
ations sta
k. Bu�er 
opying is kept to a minimum. In addition,

the operating system does not support multithreading. The operating system is not targeted for

implementing general-purpose software appli
ations be
ause of its limited fun
tionality. However,

it is well-suited to spe
ialized network appli
ations su
h as Web server a

eleration be
ause of

its optimized support for 
ommuni
ations.

In order to maximize hit rates and maintain updated 
a
hes, our a

elerator provides an API

whi
h allows appli
ation programs to expli
itly add, delete, and update 
a
hed data. Conse-

quently, we allow dynami
 Web pages to be 
a
hed as well as stati
 ones, sin
e appli
ations


an expli
itly invalidate any page whenever it be
omes obsolete. Ca
hing of dynami
 Web

pages is essential for improving the performan
e of Web sites 
ontaining signi�
ant dynami



ontent [17, 16, 3, 2℄.

Multipro
essor a

elerators 
an further in
rease the performan
e. Our multipro
essor system

ar
hite
ture 
onsists of a 
luster of Web a

elerator 
a
he nodes and a front-end load balan
er.

From a s
alability standpoint, the obje
tive is to 
ombine the individual 
a
he spa
e of ea
h

member of the 
a
he array to s
ale the available spa
e for 
a
hing, as well as to 
ombine the

individual throughput of ea
h member of the 
a
he array to s
ale the available throughput.

Be
ause of the high request rates our a

elerator must sustain, all obje
ts are 
a
hed in memory.

The use of multiple 
a
he members is thus a way to in
rease 
a
he memory (main memory), while

also in
reasing the system throughput.

Te
hniques for s
aling Web servers are des
ribed in [9℄. That study is about a s
alable

Web server 
omposed of multiple Web server nodes and supported by traditional �le sharing

me
hanisms, or repli
ated �les. In 
ontrast, our paper studies the s
alability of high performan
e

Web server a

elerators, whi
h are in front of a set of Web server nodes, and whi
h are based on
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Figure 1: The a

elerator resides in front of one or more Web servers and 
ontains a 
a
he and

a load balan
er whi
h 
an fun
tion as either a 
ontent-based or TCP router. Ca
hed obje
ts are

sent dire
tly from the a

elerator to 
lients.

main memory 
a
hing. Therefore, a fo
us of this work is to provide eÆ
ient ways of sharing main

memory spa
e a
ross di�erent 
a
he nodes. This leads to signi�
antly di�erent design de
isions.

The rest of the paper is organized as follows. Se
tion 2 des
ribes the basi
 ar
hite
ture of

our a

elerator. Se
tion 3 des
ribes ar
hite
tural alternatives for s
alable a

elerators. Se
tion 4

presents performan
e measurements we have made of our a

elerator and 
ompares the perfor-

man
e of di�erent ar
hite
tural alternatives for s
alable a

elerators. Related work is dis
ussed

in Se
tion 5. Finally, 
on
luding remarks appear in Se
tion 6.

2 Web Server A

elerator Design and Chara
teristi
s

2.1 System Des
ription

As illustrated in Figure 1, the a

elerator is pla
ed in front of a set of Web server nodes. Multiple

Web servers would be needed at a Web site whi
h re
eives a high volume of requests. Unipro
essor

a

elerators 
onsist of a load balan
er and a 
a
he. The load balan
er presents a single IP address

to 
lients regardless of the number of ba
k-end servers and routes Web requests to the a

elerator


a
he and ba
k-end Web servers. The load balan
er takes on two basi
 forms: (i) A TCP router

[9, 14℄, whi
h for performan
e reasons does not examine the 
ontents of a Web request, and (ii)

a 
ontent router [23℄, whi
h routes requests based on the URL requested.

If the requested page is found in the 
a
he, the page is returned to the 
lient. Otherwise, the

load balan
er routes the request to a ba
k-end Web server node using either round-robin or a

method whi
h takes server load into a

ount. The use of TCP routing for sending 
a
he misses

to the server nodes results in better load balan
ing than using the round-robin Domain Name

Server [9℄. Our a

elerator 
an redu
e the number of Web servers needed at a Web site sin
e, as

quanti�ed later, a large fra
tion of the Web requests are handled by the a

elerator 
a
he.

The a

elerator examines ea
h request to see if it 
an be satis�ed from its 
a
he. This

requires the a

elerator to terminate the 
onne
tion with the 
lient. Consequently, there is no

way to forward a request dire
tly to a server after a 
a
he miss. Instead, the a

elerator has

3



to request the information from a server and send the information ba
k to the 
lient. Ca
hing

thus introdu
es some overhead in the event of a 
a
he miss be
ause the a

elerator must now

fun
tion as a proxy for the 
lient. By 
ontrast, when 
a
hing is turned o�, the load balan
er may

fun
tion as a TCP router. The TCP router does not 
omplete a TCP 
onne
tion 
orresponding

to a request; rather it sele
ts a node to handle the request, maintains this sele
tion in a table,

and sends the request to the sele
ted node. The sele
ted node 
ompletes the 
onne
tion and

dire
tly returns the requested Web page to the 
lient without going through the a

elerator on

the return path [9℄.

A bene�t in performing 
ontent-based routing is that the a

elerator 
an make intelligent

de
isions about where to route requests based on the URL [23℄. For example, the a

elerator


ould send all requests for stati
 pages to one set of servers and all requests for dynami
 pages to

another set of servers. In other situations where the 
ontents of the servers are not all identi
al,

the a

elerator 
ould employ more sophisti
ated algorithms for routing requests based on the

URL.

The 
a
he operates in one or a 
ombination of two modes: automati
 mode and dynami
 mode.

In automati
 mode, data are 
a
hed automati
ally after 
a
he misses. The Webmaster sets 
a
he

poli
y parameters whi
h determine whi
h URLs are automati
ally 
a
hed. For example, di�erent


a
he poli
y parameters determine whether stati
 image �les, stati
 nonimage �les, and dynami


pages are 
a
hed and what the default lifetimes are. HTTP headers in
luded in the response by

a server 
an be used to override the default behavior spe
i�ed by 
a
he poli
y parameters. These

headers 
an be used to spe
ify both whether the 
ontents of the spe
i�
 URL should be 
a
hed

and what its lifetime should be.

In dynami
 mode, the 
a
he 
ontents are expli
itly 
ontrolled by appli
ation programs whi
h

exe
ute either on the a

elerator or a remote node. API fun
tions allow appli
ation programs

to 
a
he, invalidate, query, and spe
ify lifetimes for the 
ontents of URLs. While dynami
 mode


ompli
ates the appli
ation programmer's task, it is often required for optimal performan
e. Dy-

nami
 mode is parti
ularly useful for prefet
hing hot obje
ts into 
a
hes before they are requested

and for invalidating obje
ts whose lifetimes are not known at the time they are 
a
hed.

The presen
e of an API for expli
itly invalidating 
a
hed obje
ts often makes it feasible to


a
he dynami
 Web pages. Dynami
 Web data 
hange frequently and are typi
ally 
reated by

server programs whi
h exe
ute when a request for the dynami
 data is re
eived. This pro
ess

in
urs signi�
antly more overhead than serving stati
 data; a request for stati
 data is typi
ally

servi
ed by returning a �le. Web servers often 
onsume several orders of magnitude more CPU

time 
reating a dynami
 page than a 
omparably sized stati
 page. For Web sites 
ontaining

signi�
ant dynami
 
ontent, it is essential to 
a
he dynami
 pages to improve performan
e [17,

16, 3, 2℄. We are not aware of any httpd a

elerator besides our own whi
h allows dynami
 pages

to be 
a
hed.

All 
a
hed data must be stored in memory. Ca
hing obje
ts on disk would slow down the

a

elerator too mu
h. Consequently, 
a
he sizes are limited by memory sizes. Our a

elerator

uses the least re
ently used (LRU) algorithm for 
a
he repla
ement.
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2.2 Key Software Elements

The embedded operating system on whi
h our 
a
he runs 
ontains a multi-layered 
olle
tion

of networking software whi
h performs inter and intra network proto
ol pa
ket forwarding over

various hardware network interfa
es. The operating system also provides pro
ess s
heduling,

timer servi
es, bu�er and memory management, and 
on�guration and monitoring fa
ilities.

The prin
ipal pa
ket forwarding software 
orresponds to the �rst three layers of the OSI

referen
e model. Minimal layer four transport and appli
ation fun
tionality is also available

whi
h allows remote login servi
es for management and monitoring. We extended and optimized

layer four so that the a

elerator 
ould o�er fast TCP appli
ations su
h as the 
a
he.

Key elements of the ar
hite
ture whi
h result in good performan
e in
lude the following:

1. The devi
e drivers �ll in a pa
ket queue on the system 
ard memory with in
oming pa
kets.

The system pro
essor dequeues these pa
kets at a high rate (it is not interrupted on pa
ket

arrival).

2. The a

elerator performs its fun
tions without performing task s
heduling, task swit
hes,

or interrupts.

3. From the time a pa
ket is queued by the network handler until the 
omplete sta
k has

pro
essed it (up to the 
a
he when appli
able), no data 
opying takes pla
e.

4. The queue elements that 
ontain pa
kets are sized so that no bu�er linking is ne
essary.

Any pa
ket size that the a

elerator re
eives 
an �t in one bu�er. This saves the overhead

of bu�er linking (at the 
ost of wasted memory spa
e, and the need to restart the system

when network parameters are 
hanged).

These ar
hite
tural features result in eÆ
ient IP forwarding. The 
ombination of a lightweight

operating system, a 
opyless path from input queue to output queue, a polling me
hanism based

on input/output queues with a tasker s
anning these queues at high rates (no interrupt overhead)

to feed a network handler, a single bu�er data stru
ture (no linked lists su
h as the mbufs used

in general-purpose operating systems), and the absen
e of 
ontext swit
hes signi�
antly redu
e

the overhead of the system. The system 
an route about 80,000 IP pa
kets per se
ond 
ompared

to 10,000 for a router running a general-purpose operating system on the same hardware.

2.3 TCP sta
k

In order to obtain optimal 
a
he performan
e, it was ne
essary to modify the TCP sta
k on the

initial embedded system whi
h we started out with and modi�ed to produ
e our a

elerator. The

TCP sta
k in the embedded system was initially designed solely for the purpose of providing

remote login servi
es for management and monitoring. Consequently, it 
ontained a number of

ineÆ
ien
ies su
h as task s
heduling and unne
essary data 
opying. The TCP sta
k was modi�ed

to use the same \s
heduling logi
" as the one applied to the IP path whi
h was already optimized.

This eliminated all task s
heduling during TCP pa
ket pro
essing.

The system was also modi�ed to use the same data stru
ture for both TCP and IP, with the

devi
e driver I/O bu�er in one 
ontiguous pie
e so that no linkage of multiple bu�ers is ne
essary.
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The devi
e drive I/O bu�er is passed along from one layer to the next so that a new 
opy is not

ne
essary.

The path length for pro
essing a TCP 
ow is far greater than what it is for IP. For example,

pro
essing an IP pa
ket takes on average 200 instru
tions and 400 
y
les on a PowerPC 604,

while pro
essing a TCP SYN pa
ket 
an take up to 3000 instru
tions and 10,000 
y
les. While

one big 
onstraint of the IP path is low laten
y, it is not possible to a
hieve this using TCP. In

order to understand the 
onsequen
es and verify that this issue is not 
riti
al for TCP, let us

analyze the reasons for this 
onstraint.

IP is a 
onne
tionless datagram proto
ol. It does not 
ontain 
ow 
ontrol of any sort. Its

only degree of freedom is to drop pa
kets when they are arriving too fast. This is what happens

when the forwarder is taking too long to pro
ess a pa
ket; the input queue �lls up (faster than

the network handler 
an empty it), and �nally, in
oming pa
kets get dropped. Unfortunately,

when this happens, TCP running at ea
h endpoint of the 
onne
tion be
omes fairly ineÆ
ient,

trying to resend dropped pa
kets, 
losing windows, et
., whi
h results in poor overall 
onne
tion

throughput. This is why most routers tend to be able to run at media speed. That way, they 
an

always pro
ess pa
kets faster than they arrive (dropping a few pa
kets is a

eptable; problems

arise when a signi�
ant number of pa
kets are dropped).

With TCP, it be
omes very diÆ
ult to run at media speed, and one would expe
t the phe-

nomenon just des
ribed to result in an ineÆ
ient system. However, in the 
ase where TCP is

terminated inside the embedded system, there is a 
ow 
ontrol that 
an regulate the 
ow of

in
oming pa
kets provided by TCP itself. This 
ow 
ontrol will naturally tend to 
lose the win-

dow to slow down the data 
ow on a parti
ular 
onne
tion, with the e�e
t that the sour
e will

send less traÆ
 to the a

elerator. In addition, be
ause the appli
ation (su
h as the 
a
he) is

also sitting in the a

elerator and engages in \query-response" ex
hanges, the sour
e will wait

for a response before sending new pa
kets. This will further regulate the amount of data the

a

elerator re
eives. Combining these e�e
ts, the a

elerator will re
eive pretty mu
h what it


an pro
ess.

3 S
alable Web Server A

elerator Design and System Flows

In 
ertain situations, it is desirable to s
ale a Web server a

elerator to 
ontain more than one

pro
essor. This may be desirable for several reasons:

� Multiple nodes provide more 
a
he memory. Web server a

elerators have to be extremely

fast. In order to improve performan
e, the working set of Web obje
ts should be 
a
hed

in main memory instead of on disk. Multiple pro
essors provide more main memory for


a
hing data.

� Multiple pro
essors provide higher throughputs than a single node.

� Multiple pro
essors fun
tioning as a

elerators 
an o�er high availability. If one a

elerator

pro
essor fails, one or more other a

elerator pro
essors 
an 
ontinue to fun
tion.

� In some situations, it may be desirable to distribute an a

elerator a
ross multiple geo-

graphi
 lo
ations.
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In this se
tion, we examine design alternatives for s
alable Web server a

elerators whi
h


a
he data on multiple pro
essors for both improved performan
e and high availability. The

system 
onsists of a 
luster of unipro
essor Web a

elerator nodes des
ribed in the previous

se
tion. The 
luster design alternatives are the fo
us of this se
tion.

In the s
alable ar
hite
ture, a load balan
er dire
ts Web requests to one of several Web

a

elerator nodes (Figure 2); ea
h node is referred to as a 
a
he member, and the set of all nodes

is known as a 
a
he array. The load balan
er operates either as a TCP router or as a 
ontent

router. The Web a

elerator is pla
ed in front of one or more Web server nodes. The Web URL

spa
e is hash partitioned among 
a
he members su
h that one of the 
a
he members is designated

as the primary owner of ea
h URL. If an obje
t 
orresponding to a URL is 
a
hed in at least

one 
a
he member, the primary owner is guaranteed to 
ontain a 
opy. A se
ondary owner of

an obje
t is a 
a
he member other than the primary owner whi
h 
ontains the obje
t. From a

s
alability standpoint, the obje
tive is to 
ombine the individual 
a
he spa
e of ea
h member

of the 
a
he array to s
ale the available spa
e for 
a
hing, as well as to 
ombine the individual

throughput of ea
h member of the 
a
he array to s
ale the available throughput.

Using a TCP router as the load balan
er, there is a high probability that a request for a


a
hed obje
t will initially be routed to a 
a
he node whi
h is not an owner of the 
a
hed obje
t.

When this happens, the �rst node sends the request to a se
ond 
a
he node whi
h is an owner

of the obje
t using di�erent methods whi
h will be des
ribed later in this se
tion. In order to

redu
e the probability of the TCP router routing a request for a 
a
hed obje
t to a wrong node,

hot obje
ts are repli
ated on multiple 
a
he nodes. By 
ontrast, the 
ontent router has the

ability to route the request to the proper 
a
he node. However, it adds signi�
ant overhead to

the front-end load balan
er and may result in the front end be
oming a bottlene
k. There are

other situations as well where 
ontent-based routing 
annot be assumed to always work or be

available. In some ar
hite
tures, obje
ts may migrate between 
a
hes before the router is aware

of the migration. This 
ould result in a 
ontent-based router sending some requests for a 
a
hed

obje
t to a wrong 
a
he node. In other situations, it may be desirable for a set of 
a
he nodes

to interoperate with a variety of routers both with and without the 
apability to route requests

based on 
ontent. The set of 
a
he nodes should still o�er good performan
e for routers whi
h


annot perform 
ontent-based routing.

Sin
e the load balan
er presents a single IP address to 
lients regardless of the number of

ba
k-end 
a
he members and servers, it is thus possible to add and remove 
a
he members or

servers behind the load balan
er without 
lients being aware of it. In Figure 2, the load balan
er

runs on a separate node. This design results in maximum throughput sin
e the load balan
er is

able to handle more requests. A load balan
er 
an also be 
on�gured to run on a 
a
he member

node; this is useful for 
ases where the load balan
er is not a bottlene
k, su
h as when the 
a
he

array is 
omposed of a small number of nodes.

The load balan
er obtains availability as well as load information about ea
h member of

the 
a
he array via its normal operations. This information is used to route requests to 
a
he

members.
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3.1 Request Flows Through the System

In the rest of the se
tion, we detail and 
ompare di�erent 
on�gurations of the s
alable a

elerator.

We 
ompare the 
ontent router versus the TCP router as the load balan
er. We then 
ompare

di�erent 
ommuni
ation and data delivery methods. Furthermore, we investigate the e�e
t of

obje
t size on the di�erent methods.

For the performan
e 
omparison of the di�erent 
on�gurations, we have measured the number

of CPU 
y
les required at ea
h system 
omponent for di�erent situations. The measurement is

done on a s
alable Web server a

elerator whi
h is 
omposed of two 
a
he member nodes and a

front-end load balan
er. These 
a
he member nodes as well as the load balan
er run on 200 MHz

PowerPC pro
essors. These nodes were dire
tly inter-
onne
ted to ea
h other using Token Ring.

The measurement of our a

elerator shows that the number of CPU 
y
les in
urred at a 
a
he

node to serve an HTTP request for an obje
t of 2 KB is about 31,500, and this number does not

vary mu
h for obje
ts smaller than 2 KB. From now on, we use this number as the relative 
ost of

1 for the 
omparison of di�erent 
on�gurations. After detailed study of di�erent 
on�gurations,

we summarize in Table 1 the relative CPU 
osts in ea
h 
on�guration for di�erent situations.

3.1.1 Content Router as the Load Balan
er

The 
a
he member whi
h initially re
eives a request from the load balan
er is designated as the

�rst member. When the load balan
er is a 
ontent-based router, it 
an dire
tly route a request to

an owner of the requested obje
t (i.e., the �rst member is the owner). This is done by examining

the HTTP request, and in order to examine it, the 
ontent router has to 
omplete a 
onne
tion

with the 
lient. After the 
ontent router has examined a request and sele
ted an owner of the

requested obje
t, it uses one of two methods for sending the request to the owner.

The �rst approa
h is for the 
ontent router to hand o� the 
onne
tion to the owner regardless

of the size of the requested obje
t. The owner always responds dire
tly to the 
lient without going

through the 
ontent router. A similar method for performing 
ontent-based routing is presented

in [23℄. Our measurement of CPU overheads shows that in this s
heme, the relative CPU 
ost

in
urred is 0.5 at the 
ontent router and 0.9 at the 
a
he node (see Figure 3).

In the se
ond method, di�erent interfa
es are used between the 
ontent router and the sele
ted


a
he node depending upon the size of the obje
ts. If the requested obje
t is small, the obje
t

is �rst returned from the owner to the 
ontent router via a UDP interfa
e. It is then returned

from the 
ontent router to the 
lient. If the requested obje
t is large, the owner performs a

TCP hando� and responds dire
tly to the 
lient without going through the 
ontent router. More

details of this adaptive method are des
ribed in Se
tion 3.1.2 in the 
ontext of a TCP router-based

a

elerator.

Comparing the two approa
hes, the advantage to the latter is that it in
urs very little overhead

on the 
a
he array for small obje
ts. For obje
ts up to 2 KB, the relative 
ost for the UDP

interfa
e is only 0.1 in 
a
he array CPU 
y
les. The disadvantage is that signi�
ant overhead is

in
urred at the 
ontent router. For obje
ts up to 2 KB, the relative 
ost for the UDP interfa
e

is 1.1 in 
ontent router CPU 
y
les. For large obje
ts, both approa
hes use the hando� interfa
e

and hen
e have similar performan
e. In short, this approa
h in
urs less total overhead for small

obje
ts. The overhead at the 
ontent router is higher while the overhead at 
a
he members is

lower.
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While the approa
h using a 
ontent-based router as the load balan
er redu
es CPU 
y
les


onsumed by 
a
he members, the disadvantage is that it 
onsumes extra CPU 
y
les on the


ontent router whi
h 
an make the 
ontent router a bottlene
k. A TCP router running on a

200 MHz PowerPC 604 
an route 15 K requests per se
ond (i.e., without doing 
ontent-based

routing). A 
ontent-based router running on the same CPU 
an route 9.8 K requests per se
ond

using the hando� me
hanism and 4 K requests per se
ond using the UDP interfa
e. If 
a
he

array CPUs are the bottlene
k, 
ontent-based routing is a good approa
h. If, on the other hand,

the load balan
er is a bottlene
k, 
ontent-based routing should not be used. If it is not 
lear

whether the load balan
er or the 
a
he array will be the bottlene
k, some requests 
an be routed

by examining 
ontent while others 
an be routed without examining 
ontent.

3.1.2 TCP Router as the Load Balan
er

When the load balan
er operates as a TCP router, it sends a request to a �rst member using

a weighted round-robin poli
y. We say that a 
a
he member hit o

urs when the �rst member

re
eiving a request from the TCP router is an owner of the requested obje
t (Figure 4). Likewise,

a 
a
he member miss indi
ates the 
ase when the �rst member is not an owner of the obje
t

(Figures 5, 6).

If no repli
ation is used, the probability of a 
a
he member hit is roughly 1/n where n is the

number of 
a
he members in the 
a
he array. The exa
t probability is dependent on the way

obje
ts are partitioned a
ross the 
a
he array, request traÆ
, and the load and availability of


a
he members. A 
a
he member hit is distin
t from a 
a
he array hit whi
h o

urs when the


a
he array as a whole 
an satisfy a request (i.e., at least one 
a
he member has a 
opy of the

requested obje
t). Note that it is possible to have a 
a
he member hit and a 
a
he array miss.

This would o

ur when the �rst member re
eiving a request from the TCP router is the primary

owner of the requested obje
t but the obje
t is not 
a
hed. Conversely, it is possible to have a


a
he member miss and a 
a
he array hit. This would o

ur when the �rst member re
eiving a

request from the TCP router does not 
ontain a 
a
hed 
opy of the requested obje
t but another


a
he does.

There are multiple methods for returning obje
ts in the event of a 
a
he member miss. An

easy way is to use a separate HTTP 
onne
tion between the �rst member and the owner, having

the �rst member a
ting as an HTTP proxy. However, this method results in high overhead to

the 
a
he array. Alternatively, a UDP interfa
e 
an be used. The UDP interfa
e signi�
antly

redu
es overhead in the system and is feasible in a 
a
he 
luster be
ause the pa
ket loss rate is

minimal, espe
ially when the 
a
he nodes are in 
lose proximity. Lastly, the �rst member 
an

hand o� the request to the owner along with the TCP 
onne
tion. The owner then returns the

data dire
tly to the 
lient whi
h eliminates a hop along the return path. The di�erent request


ows through the system are thus summarized by the following:

1. Ca
he member hit, 
a
he array hit.

2. Ca
he member hit, 
a
he array miss.

3. Ca
he member miss, 
a
he array hit,

(a) page retrieved using HTTP;

10
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Servers

Clients

cache array hit

1.0

C1 C3C2
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Servers

Clients

2.1

cache array miss

COST: 2.1COST: 1.0

Cache array Cache array

0.3 0.3

Figure 4: TCP router as load balan
er: request results in 
a
he member hit.

(b) page retrieved using UDP;

(
) page retrieved via a request hando�.

4. Ca
he member miss, 
a
he array miss,

(a) page retrieved using HTTP;

(b) page retrieved using UDP;

(
) page retrieved via a request hando�.

Ca
he member hit

Upon a 
a
he member hit, if the �rst member has the requested obje
t, it sends the obje
t

dire
tly ba
k to the 
lient. Otherwise, the �rst member obtains the requested obje
t from a

ba
k-end server and returns it to the 
lient (Figure 4). In both 
ases, requested obje
ts are

returned dire
tly from a 
a
he member to the 
lient without going through the TCP router.

The relative 
ost for the 
a
he array CPU 
y
les 
onsumed by a request for an obje
t of up

to 2 KB is 1 for a 
a
he member hit and a 
a
he array hit. This is the same as the 
ost for a


a
he hit in a unipro
essor a

elerator. The 
ost for a 
a
he member hit and a 
a
he array miss

is 2.1. This is further broken down into a 
ost of 1 per 
onne
tion (two 
onne
tions are used, one

from 
a
he member to 
lient, and one from 
a
he member to ba
k-end server), plus about .1 to

logi
ally bind the two 
onne
tions together inside the 
a
he member.

Ca
he member miss - HTTP interfa
e

When no repli
ation is used, a 
a
he member miss o

urs roughly n-1 times out of n in

a balan
ed system with n 
a
he members. When this happens, the �rst member a

epts the

11
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HTTP: 2.1
UDP  : 1.2

HTTP: 1.0
UDP  : 0.1

Cache array
Cache array

0.3 0.3

Figure 5: TCP router as load balan
er: HTTP or UDP interfa
e is used between the �rst member

and the owner. Request results in 
a
he member miss, followed by 
a
he array hit or 
a
he array

miss


onne
tion with the 
lient, 
omputes an owner of the requested obje
t, and 
onta
ts the owner

to get the requested obje
t. In Figure 5, the �rst member 
ommuni
ates with the owner of the

requested obje
t via HTTP or a UDP interfa
e.

We have measured the relative CPU 
ost (sum at both 
a
he nodes) of a request for an obje
t

of up to 2 KB resulting in a 
a
he member miss and a 
a
he array hit to be 3.1 when the �rst

member and the owner of the requested obje
t 
ommuni
ate via HTTP. The TCP 
onne
tions


onstitute the prin
ipal 
omponent of the overhead. The �rst member has two 
onne
tions (one

to the 
lient and one to the owner of the requested obje
t) while the owner of the requested

obje
t has one 
onne
tion (to the �rst member). In addition, the overhead for binding the two


onne
tions in the �rst member is about 0.1.

As requested obje
t sizes in
rease, the 
a
he array CPU 
ost of serving an obje
t for a 
a
he

member miss and a 
a
he array hit in
reases three times faster than it would in
rease for a

request resulting in a 
a
he member hit and a 
a
he array hit. The additional overhead results

from the total number of times the obje
t is sent or re
eived by a 
a
he member. In the 
ase of

a 
a
he member hit, the obje
t is sent only on
e (from the owner to the 
lient) resulting in only

one send/re
eive. In the 
ase of a 
a
he member miss, the obje
t is sent twi
e (on
e by the owner

and on
e by the �rst member) and re
eived on
e (on
e by the �rst member) resulting in a total

of 3 sends/re
eives.

The 
a
he array CPU 
ost of a 
a
he member miss (for obje
ts up to 2 KB) resulting in a


a
he array miss is 4.2. This is be
ause of the extra 
onne
tion from the owner to the ba
k-end

server and another binding of two 
onne
tions together in the owner. As the requested obje
t

size in
reases, the 
a
he array CPU 
ost of serving an obje
t upon a 
a
he member miss and a

12




a
he array miss in
reases twi
e as fast as it would in
rease for a request resulting in a 
a
he

member hit and a 
a
he array miss. In the former 
ase, the obje
t is sent twi
e (on
e by the

owner and on
e by the �rst member) and re
eived twi
e (on
e by the owner and on
e by the �rst

member). In the latter 
ase, the obje
t is sent on
e and re
eived on
e.

Ca
he member miss - UDP interfa
e

This is similar to the previous 
ase, ex
ept that the interfa
e between the �rst member

and owner of the requested obje
t is UDP, whi
h has lower CPU overhead than HTTP. Our

measurement shows that the 
a
he array CPU 
ost of a 
a
he member miss (for obje
ts up to

2 KB) resulting in a 
a
he array hit is only 1.2 using the UDP interfa
e (Figure 5). This is

further broken down into a 
ost of 1.1 at the �rst member and 0.1 at the owner node. UDP has

lower overhead than HTTP largely be
ause it avoids making a TCP 
onne
tion. The 
ost of a


a
he member miss resulting in a 
a
he array miss (for obje
ts up to 2 KB) is 2.3, sin
e an extra


onne
tion from the owner to a ba
k-end server and an extra binding of two 
onne
tions in the

owner are needed.

While UDP is not as reliable as HTTP for 
ommuni
ating a
ross the Internet, the unreliability

of UDP is not a signi�
ant fa
tor in our system be
ause 
a
he members 
ommuni
ate dire
tly

with ea
h other on a private lo
al network without going through any intermediate nodes. The

pa
ket loss rate is thus small. Any pa
kets lost by UDP are handled by timeouts and garbage


olle
tion. While the 
orresponding Web request is lost, the probability of this o

urring is low.

Ca
he member miss - Hando� interfa
e

In this 
ase, instead of the �rst member fun
tioning as a proxy in order to obtain the requested

obje
t and return it to the 
lient, the �rst member hands o� the request, along with the TCP


onne
tion, to an owner of the requested obje
t. The owner then sends the requested obje
t

dire
tly ba
k to the 
lient without going through the �rst member (Figure 6).

The hando� is possible be
ause the di�erent entities in the system share an IP address. This

virtual 
luster address provides the framework so that an established 
onne
tion with a 
lient


an be shared and dynami
ally moved to di�erent entities even in the middle of an operation. In

a sense, this hando� 
an be thought of as an extension of TCP routing in whi
h a TCP router

sele
ts a node in the 
luster and dispat
hes TCP 
onne
tions to it. However, the implementation

of the dynami
 hando� of an already established and operating TCP 
onne
tion is di�erent and

more 
ompli
ated. First, it is an operation where three di�erent entities, i.e., the TCP router, the

�rst member, and the se
ond member (i.e., the owner node), should parti
ipate in a 
oordinated

fashion. Se
ond, the operation should o

ur transparently to 
lients. The major steps are as

follows:

1. The se
ond member node opens a TCP 
onne
tion with the 
lient. This 
onne
tion is

established transparently without the regular 3-way handshaking.

2. The se
ond member dupli
ates exa
tly the same state of the TCP 
onne
tion whi
h was

already established between the 
lient and the �rst member.

3. The se
ond member emulates the pro
ess of re
eiving the request whi
h was initially sent

to the �rst member from the 
lient.
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Figure 6: TCP router as load balan
er: hando� interfa
e is used between the �rst member and

the owner. Request results in 
a
he member miss, followed by 
a
he array hit or 
a
he array miss

4. The TCP router redire
ts any follow-up messages from the 
lient to the se
ond member.

5. The �rst member 
leans up data stru
tures related to the TCP 
onne
tion with the 
lient

(e.g., so
ket and TCP 
ontrol blo
ks).

To open a TCP 
onne
tion and dupli
ate the 
onne
tion state in the se
ond member node, we


opy parts of the TCP 
ontrol blo
k from the �rst member. This information is then sent to the

se
ond member along with the requests whi
h were sent from the 
lient. The 
onne
tion set-up

at the se
ond member is done by taking steps similar to the TCP Passive Open [27℄. Then, the

information re
eived from the �rst member is 
opied to the TCP 
ontrol blo
k of the new TCP


onne
tion.

The 
a
he array CPU 
ost of a 
a
he member miss (for obje
ts up to 2 KB) when the hando�

interfa
e is used is 0.5 at the �rst member and 0.9 at the owner node, resulting in total of 1.4

for a 
a
he array hit (Figure 6). For a 
a
he array miss, an additional 1.1 is added to the owner

node. This additional overhead results from an extra 
onne
tion from the owner to the ba
k-end

server and an extra binding of two 
onne
tions in the owner.

For obje
ts of 2 KB or less, the performan
e of the hando� interfa
e is superior to that of the

HTTP interfa
e but inferior to that of the UDP interfa
e. For large obje
ts, however, the perfor-

man
e of the hando� interfa
e is superior to that of both the HTTP and UDP interfa
es. This

is be
ause a system using the hando� interfa
e eliminates the step of 
ommuni
ating requested

obje
ts between 
a
he members. Consequently, the in
rease in 
a
he array CPU 
ost resulting

from obje
t sizes over 2 KB for the hando� interfa
e is similar to that whi
h would be in
urred

by a 
a
he member hit.
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Load

Node


a
he array hit 
a
he array miss

balan
er HTTP UDP Hando� HTTP UDP Hando�

TCP router 0.3

member hit 
a
he array 1.0 2.1

TCP

member

�rst member 2.1 1.1 0.5 2.1 1.1 0.5

router

miss

owner 1.0 0.1 0.9 2.1 1.2 2.0


a
he array (total) 3.1 1.2 1.4 4.2 2.3 2.5

Content 
ontent router 2.1 1.1 0.5 2.1 1.1 0.5

router 
a
he array 1 0.1 0.9 2.1 1.2 2.0

Table 1: Summary of relative CPU 
osts for obje
ts of size up to 2KB in di�erent a

elerator


on�gurations.

Ca
he member miss - Mixed Strategy

Among the options 
onsidered, the UDP interfa
e o�ers the best performan
e for small ob-

je
ts, while the hando� interfa
e o�ers the best performan
e for large obje
ts. Therefore, a mixed

strategy for handling 
a
he member misses whi
h uses the UDP interfa
e for small obje
ts and

the hando� interfa
e for large ones has better performan
e than the individual strategies. As we

shall see in Se
tion 4, the 
rossover point for our system when the UDP and hando� interfa
es

result in similar performan
e o

urs when requested obje
ts are between 3 KB and 4 KB.

To optimize performan
e, our system implements a mixed strategy for 
a
he member misses

as in the following steps:

1. The �rst member sends the request and TCP 
onne
tion information to an owner of the

requested obje
t.

2. If the requested obje
t is not 
a
hed, the owner obtains it from a ba
k-end server (whi
h

may result in the obje
t being 
a
hed).

3. If the obje
t is small, the owner returns it to the �rst member whi
h subsequently returns

it to the 
lient.

4. If the requested obje
t is large, the owner performs a TCP hando�. There is no need for

the �rst member to do anything during this pro
ess.

5. The owner returns the requested obje
t dire
tly to the 
lient without going through the

�rst member.

6. Asyn
hronously, the owner informs the �rst member to 
lean up 
onne
tion information


orresponding to the request.

In our system, this 
oordination is entirely driven by the owner. It has all the information needed

to perform the TCP hando�. All the �rst member has to do is wait until the owner either sends

ba
k the requested obje
t or informs it that it will 
lean up the 
onne
tion information (o�-line).
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3.2 High Availability

Our system provides high availability via the load balan
er and repli
ation. The load balan
er

has the ability to dete
t when a 
a
he member fails. When this happens, it informs the remaining

live members of the failure and dire
ts all requests to live members of the 
a
he array.

Our system hashes obje
ts a
ross the 
a
he array using an enhan
ed versions of CARP (Ca
he

Array Routing Proto
ol) [21℄. CARP is a hashing me
hanism whi
h allows a 
a
he to be added

or removed from a 
a
he array without relo
ating more than a single 
a
he's share of obje
ts.

When a new 
a
he is added, only the obje
ts assigned to the new 
a
he are relo
ated. All other


a
hed obje
ts remain in their 
urrent 
a
he. Similarly, removing a 
a
he from the array will

only 
ause obje
ts in the removed 
a
he to be relo
ated.

CARP 
al
ulates a hash not only for the keys referen
ing obje
ts (e.g. URLs) but also for

the address of ea
h 
a
he. It then 
ombines key hash values with ea
h address hash value using

bitwise XOR (ex
lusive OR). The primary owner for an obje
t is the one resulting in the highest


ombined hash s
ore.

Whenever a 
a
he member fails, no rehashing is ne
essary. The new primary owner for any

obje
t whose primary owner used to be the failed 
a
he member is simply the live 
a
he member

resulting in the highest 
ombined s
ore. After a failed 
a
he member is revived, obje
ts for whi
h

the revived member is now the primary owner must be 
opied to the revived member. This


an take pla
e in the ba
kground while the a

elerator 
ontinues to operate. While the revived

member is warming up, an obje
t for whi
h the revived member is the primary owner might not

yet be 
a
hed in the revived member but might be 
a
hed in the previous primary owner before

the revival. In order to handle these situations, misses for su
h obje
ts in the revived member

will 
ause a lookup in the 
a
he member whi
h used to be the primary owner before the revival.

This additional lookup is no longer ne
essary after all hot obje
ts primarily owned by the revived

member have been 
opied to the revived member.

In a TCP router-based 
on�guration, repli
ation of hot pages on multiple 
a
he members not

only improves the a

elerator performan
e (by in
reasing the probability of 
a
he member hits)

but also redu
es 
a
he array miss rates after a 
a
he member failure. This is be
ause a 
opy of

a hot page may still be in the 
a
he array after an owner of the page fails. In order to store

an obje
t in n 
a
hes where n > 1, the obje
t is stored in the n 
a
hes resulting in the highest


ombined hashing s
ore for the obje
ts.

It is possible to 
on�gure our system with a ba
kup load balan
er node to handle failure of a

load balan
er.

4 Performan
e

4.1 Breakdown of CPU Cy
les

This se
tion analyzes the CPU 
y
les 
onsumed by the a

elerator. Sin
e the system under test

is pre
isely and intentionally separated from any operating system involvement (no s
hedul-

ing, no blo
king, no timing, no 
opying), CPU overhead 
an be measured by breaking the

TCP/appli
ation 
ows into measurable elementary pie
es, setting up the measurement points,

and generating suÆ
ient traÆ
 to obtain enough samples (PowerPC registers give both the num-
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Application called listen and accept, and
provided TCP a set of call−back functions

TCP calls socket interface
Socket interface calls applic. call−back func.
Application performs open action

TCP finds tcb, processes ACK

TCP finds tcb, processes PUSH, ACK
TCP calls socket interface with data
Socket calls application (http) with data
http processes request, builds response
http calls socket to send response
Socket calls TCP to send data
TCP processes outgoing data and queues IP packets

http closes the socket (non−persistent connection)

TCP sends connection termination

TCP finds tcb, processes ACK

TCP finds tcb, processes FIN
TCP sends ACK, puts tcb into close table

Every second, TCP processes table of "closed"
connections to remove tcb’s

m1

m2

m3

m4

m5

m6

m7

TCP searches listen table
TCP retrieves a tcb (TCP control block)

TCP responds to TCP connection request

TCP moves tcb into connection table
TCP prefetches next tcb in listen table

SYN

SYN, ACK

ACK

PUSH, ACK (http get)

PUSH, ACK (http rsp)

FIN, PUSH, ACK

ACK

FIN, ACK

ACK

Figure 7: TCP 
ow in a unipro
essor Web server a

elerator. Blo
ks m

1

through m

7

depi
t

operations performed by the CPU. The numbers of CPU 
y
les spent for ea
h blo
k are shown

in Table 2.
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ber of 
y
les and the numbers of instru
tions, as well as details on 
a
he hits and misses). The

TCP 
ow is depi
ted in Figure 7.

Request traÆ
 was generated by WebStone. WebStone is a ben
hmark whi
h measures the

number of requests per se
ond a Web server 
an handle. It is done by simulating one or more


lients and seeing how many requests 
an be satis�ed during the duration of the test [22℄.

Table 2 shows the measurements we obtained for the 
omponents of the TCP 
ow depi
ted

in Figure 7. Component m3 is the only one whi
h varies signi�
antly with data size.

For a 200 MHz PowerPC 604 pro
essor, the theoreti
al 
apability would be 6000 requests

per se
ond for an 8 Kbyte page. In pra
ti
e, several fa
tors degrade this number, as will be

seen in the subsequent results in terms of the number of requests per se
ond measured. First,

as the number of 
onne
tion re
ords in the a

elerator in
reases, so does the time to retrieve

a 
onne
tion 
ontrol blo
k, an operation performed an average of six times per 
onne
tion. In

order to redu
e this dependen
y, a large hash table (256,000 bu
kets) and an eÆ
ient hashing

fun
tion (98% of the bu
kets o

upied with 256,000 
onne
tions) were used. Consequently, even

with as many as 150,000 
onne
tion re
ords at any given time of the test, few 
ollisions o

urred.

Flow Des
ription Instru
tions Cy
les Size

m1 
onne
tion request from 
lient 2,778 8,589 N/A

m2 end of 
onne
tion setup 2,770 5,409 N/A

3,448 8,221 64 bytes

3,608 8,330 128 bytes

3,707 8,460 256 bytes

m3 http request re
eived and served 3,990 7,280 1K bytes

4,310 9,600 2K bytes

4,608 8,740 4K bytes

4,730 10,990 8K bytes

m4 server initiates 
onne
tion end 2,041 2,933 N/A

m5 
lient a
knowledgement 678 1,163 N/A

m6 
lient terminates 
onne
tion 1,545 2,349 N/A

m7 server deletes 
onne
tion re
ord 1,330 1,390 N/A

m1-m7 
omplete request 15,812 32,823 8 Kbytes

Table 2: Measurements for the 
omponents of the TCP 
ow depi
ted in Figure 7. The 
ows m1

through m7 
orrespond to the boxes in the �gure. Component m3 varies with data size.

A se
ond degradation due to the number of 
on
urrent 
onne
tion re
ords is the \
onne
tion

re
ord 
leanup laten
y". Every se
ond, one out of every 30 
onne
tions are examined for possible

deletion. With 150,000 
onne
tion re
ords, 5000 will potentially go through them7 
ow, resulting

in 5000 * 1390 or about seven million 
y
les. During that time (whi
h is the worst 
ase laten
y

of the system), many pa
kets will arrive and be dropped be
ause the system pro
essor is not

de-queueing the input queue. Dropping pa
kets has a negative e�e
t on the overall throughput of

the system. In order to redu
e this problem, the frequen
y with whi
h the wait 
lose 
onne
tions
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Figure 8: Web Server Throughput: measurement of an Apa
he Web server running on an AIX

system with a 200 MHz Power PC 604e (data from [12, 13℄) using the WebStone ben
hmark [22℄.

By 
ontrast, our a

elerator running on similar hardware a
hieves an order of magnitude higher

throughput.

were examined as 
andidates for dropping was redu
ed. In addition, timer management was

improved so that fewer 
onne
tions had to be s
anned.

Finally, be
ause of the laten
y of the http request and response (> 10; 000 
y
les), when the

number of pa
kets re
eived was high (
orresponding to high request rates), a signi�
ant number

of pa
kets (but less than one per
ent) were dropped by the devi
e be
ause the input queue

was full. As mentioned earlier, dropping pa
kets has an e�e
t on overall throughput whi
h is

greater than just the per
entage of dropped pa
kets. This fa
tor also 
ontributed to redu
ing the

maximum throughput of the system from the theoreti
al maximum. Despite all of these fa
tors,

the measured 
apa
ity of the system was within about 80% of the theoreti
al limit as we show

in the next se
tion.

4.2 Unipro
essor Web Server A

elerator Throughput

The system used to measure the Web a

elerator throughput is illustrated in Figure 9. It 
onsisted

of two Web a

elerators and two SP2 frames 
ontaining a total of 16 nodes. The a

elerators ran

on 200 MHz powerPC pro
essors and were 
onne
ted to ea
h other via four 16 Mbit/s token rings.

The �rst a

elerator was the a

elerator under test and the se
ond a

elerator fun
tioned both

as a Web server for handling 
a
he misses as well as a 
lient in order to issue additional requests

to the �rst a

elerator's 
a
he. The SP2 frames were 
onne
ted to the a

elerator under test

through four 16 Mbit/s token rings. The SP2 nodes issued requests to the a

elerator by running

WebStone. The total I/O bandwidth to the a

elerator under test was thus 128 Mbit/s, half from

the SP2 frames and half from the other a

elerator. Ea
h SP2 node typi
ally ran about 20-40

WebStone 
lients at a time. The se
ond a

elerator ran up to 100 WebStone 
lients at a time.

Ea
h a

elerator had 512 Mbytes of main memory. The performan
e numbers in this se
tion and
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Figure 9: The system used to test our a

elerator's performan
e: 16 SP/2 nodes were used for


lients, ea
h node generating 20 to 40 
lients. Totally, there were 320 to 640 
lients. Also, an

extra a

elerator was used for 5 to 100 additional 
lients.

Se
tion 4.3 are for prototypes we have implemented and are not for any IBM produ
ts.

Figure 10 shows the number of 
a
he hits per se
ond a unipro
essor a

elerator 
an sustain

as a fun
tion of requested page size. For pages smaller than 2 Kbytes, the a

elerator was the

bottlene
k. For pages larger than 2 Kbytes, the network was the bottlene
k. Sin
e the network

be
omes the bottlene
k for requested pages greater than 2 Kbytes, it is useful to estimate the

throughput attainable for larger sizes assuming a higher bandwidth network and the path lengths

presented previously. If we assume that the maximum segment size is 2 Kbytes and that the

network is not the bottlene
k, the path length for sending any additional 2 Kbytes is on the

order of 3000 
y
les. Ea
h 2 Kbyte delta involves one or two additional pa
kets, some minimum

TCP pro
essing, but no so
ket, 
a
he pro
essing, or data 
opying. For instan
e, a request for 20

Kbytes will require another 30,000 
y
les, doubling the path length and redu
ing the throughput

by a fa
tor of two. The resulting proje
tions are shown in Figure 11.

A 
a
he miss for a page of 8 Kbytes or less 
onsumes around 100 K
y
les. In the event

of a 
a
he miss, the a

elerator must request the information from a ba
k-end server before

sending it ba
k to the 
lient. Requesting the information from a server requires 
onsiderably

more instru
tions than fet
hing the obje
t from 
a
he. If the miss rate is 100%, the a

elerator


an serve about 2000 pages per se
ond before its CPU is 100% utilized.

Our own measurements as well as published performan
e reports on Web servers [22℄ indi
ate

that Web servers running under Unix or NT on hardware of similar 
apa
ity to that of our

a

elerator 
an serve a maximum of several hundred pages per se
ond, an order of magnitude less

than the rate a
hieved by our a

elerator. The performan
e di�eren
e between our a

elerator

and a 
onventional Web server 
an be seen by 
omparing Figures 10 and 11 to Figure 8.
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Figure 10: The number of 
a
he hits per se
ond a unipro
essor a

elerator 
an sustain and the

proje
ted number whi
h would be expe
ted if the network were not a bottlene
k.
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The API our a

elerator provides whi
h allows an appli
ation program to expli
itly 
ontrol the


ontents of the 
a
he makes it feasible to 
a
he dynami
 data in many situations. The presen
e of

dynami
 Web pages 
an hurt performan
e signi�
antly. We have en
ountered several 
ommer
ial

Web sites where a single request for a dynami
 page typi
ally 
onsumes several se
onds of CPU

time. However, our a

elerator serves dynami
 data at the same high rate at whi
h it serves

stati
 data. Consequently, our 
a
he 
an often speed up the rate at whi
h dynami
 data is served

by several orders of magnitude 
ompared with a single order of magnitude for stati
 pages.

The overall performan
e of a system deploying our 
a
he is summarized in Figure 12. Ea
h


urve represents a ba
k-end server 
on�guration with a di�erent 
apa
ity. For example, the 
urve

marked WST (Web server throughput)1000 ops/se
 
orresponds to a system whi
h 
an handle

1000 
a
he misses per se
ond. In order to obtain a ba
k-end server 
on�guration of this 
apa
ity,

it may be ne
essary to pla
e multiple servers behind the a

elerator. For Web sites whi
h generate

signi�
ant dynami
 
ontent, it is not un
ommon to have server throughputs of well below 100

requests per se
ond.
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Figure 12: The overall performan
e of a system utilizing a unipro
essor a

elerator. (WST: Web

server throughput)

4.3 S
alable A

elerator Performan
e

We have built a s
alable Web server a

elerator where ea
h 
a
he member runs on a 200 MHz

PowerPC pro
essor. The system used to measure the Web a

elerator throughput 
onsisted of

two SP2 frames 
ontaining a total of 16 nodes whi
h were 
onne
ted through lo
al area networks

to the TCP router. Some of the SP2 nodes issued requests to the 
a
he array by running the
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Figure 13: Throughput versus number of 
a
he nodes, up to 2 KB obje
ts

WebStone ben
hmark [22℄. Other nodes were used as ba
k-end servers to handle 
a
he array

misses.

Our test 
on�guration did not have the 
apa
ity to drive more than two 
a
he member nodes.

We measured the CPU overheads for the various 
ases des
ribed in Se
tion 3.1 for two 
a
he array

nodes. Then, we 
onstru
ted a separate slow a

elerator 
onsisting of multiple 
a
he members

and measured the performan
e on it for multiple 
a
he array nodes. (Ea
h 
a
he member of

this slow a

elerator runs on a Motorola 68040 pro
essor.) We proje
t the performan
e of fast

a

elerators 
ontaining multiple 
a
he members from that of slow ones, and that of a single node

fast a

elerator. We validated our proje
tions by 
omparing measurements of the CPU overhead

for TCP hando�s and other 
ases des
ribed in Se
tion 3.1 for both slow and fast a

elerators.

We �rst show how the system s
ales when we in
rease the number of 
a
he nodes in the 
a
he

array. Figure 13 shows the results for the number of requests served by the 
a
he array for obje
ts

up to 2 KB. In this �gure, the number of nodes ex
ludes the load balan
er. The 
urves 
atten

out when the load balan
er be
omes the bottlene
k. For the TCP-router based approa
hes, the

UDP interfa
e s
ales the best for both 
a
he array hits and 
a
he array misses. The HTTP

interfa
e has signi�
ant overhead. Ca
he array hits in a multi-node system in
ur more overhead

on average using HTTP than 
a
he array misses using other interfa
es. For the 
ase of 
a
he

array hits, the HTTP interfa
e with two nodes results in slightly lower throughput than using

a single node. The UDP interfa
e for two nodes only results in higher throughputs for 
a
he

array hits 
ompared with a single node for obje
ts up to about 40 KB (Figure 14). However, no

repli
ation was used in these runs. By repli
ating hot obje
ts, the overhead for 
a
he array hits

using all three interfa
es 
an be redu
ed. In addition, a 2-node system using any of the three

interfa
es results in higher throughputs than a 1-node system for 
a
he array misses for small

obje
ts.

Figures 14 and 15 show the system performan
e when the sizes of the requested data obje
ts
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Figure 14: Impa
t of obje
t size, 2 to 100 KB obje
ts

are in
reased. The measurement was made in the 
a
he array with 2 
a
he nodes (faster a

eler-

ators). As mentioned earlier, the UDP interfa
e has the best performan
e with small size obje
ts.

However, the relative performan
e of the hando� interfa
e improves with in
reasing obje
t size.

This is be
ause the advantage of eliminating one hop from the data return path be
omes greater

as the data size gets larger. The graph shows that the 
ross-over point between the two 
ases is

when the obje
t size is between 3 and 4 KB.

Figure 16 
ompares the maximum a
hievable throughputs when using the TCP router versus

the 
ontent-based router as the load balan
er while the number of nodes in the 
a
he array varies.

In the �gure, the number of 
a
he nodes in
ludes the load balan
er (unlike the previous �gures).

The �gure shows that with a small number of 
a
he nodes in an a

elerator, a 
ontent-based

router results in a higher throughput whereas for a higher-end system, the TCP router results

in a higher throughput. When the 
a
he array is 
omposed of two or three nodes, the front-end

load balan
er also works partly as a 
a
he node.

Maximum throughput is limited to 15,000 
onne
tions per se
ond due to the front-end router.

In order to get higher throughputs, it is possible to use multiple s
alable a

elerators and route

requests to the a

elerators using domain name servers (DNS) [9℄.

In all of the graphs in this se
tion, the 
a
he array did not perform any repli
ation of hot

obje
ts on multiple 
a
he members. When the TCP router is used, performan
e 
an be improved

further by repli
ation of hot data. When the load balan
er is a potential bottlene
k, routing

requests without examining 
ontent while repli
ating hot obje
ts to redu
e 
a
he member misses

is preferable to 
ontent-based routing.

4.4 Experien
e in Real Deployments

The Web server a

elerator has been used at a number of highly a

essed Web sites in
luding

those for the 2000 Olympi
 Games, the US Open Tennis Tournament, Masters Golf Tourna-

ment, and the Wimbledon Open Tennis Tournament. We �rst report on our experien
e at the

Wimbledon Open Tennis Tournament whi
h was held from June 23 to July 2, 1999. The Web

24



2 4 6 8 10

Object Size (KBytes)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

T
h

ro
u

g
h

p
u

t 
(c

o
n

n
e

c
ti
o

n
s
/s

e
c
)

1 node - array hits

2 nodes - array hits - udp

2 nodes - array hits - handoff

1 node - array misses

2 nodes - array misses - udp

2 nodes - array misses - handoff

Figure 15: Impa
t of obje
t size, 2 K to 10 KB obje
ts. This graph expands a portion of the

graph in Figure 14.
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ontent-based routers.
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Figure 17: Hits, misses (array hits and array misses), and hit ratios on the Web a

elerators at

the Wimbledon Tennis site for ten hours on July 2, 1999.

site was distributed over three lo
ations: S
haumburg, Illinois; Columbus, Ohio; and Bethesda,

Maryland. Fifty Web servers and four Web server a

elerators were used for the site. Initially,

two a

elerators were used, and two were added later. There was a separate TCP router as a

front-end load balan
er and thus the a

elerators fun
tioned only as 
a
hes. The traÆ
 to a

el-

erators was 
ontrolled by the front-end load balan
er with a relative weight of four 
ompared to

the regular Web servers. (The load balan
er dispat
hed the requests in a weighted round robin

fashion 
onsidering the relative 
apa
ities of respe
tive nodes. The 
apa
ity of the a

elerators

was assumed to be four times that of the regular Web servers.) During the event, there were a

total of about one billion requests over two weeks. Pro
essing by a single a

elerator peaked at

66,095 requests per minute around 10:30 a.m. at the Bethesda site.

Figure 17 shows the number of requests, hits, and misses pro
essed by the Web server a
-


elerators for ten hours on July 2 along with the 
orresponding hit ratios. The number of total

requests dire
ted to the four a

elerators was 8,932,303. The total number of requests to the site

for the 10 hours was about 38 million. Out of them, 8,190,429 were 
a
he hits and the rest were


a
he misses, resulting in a 92% 
a
he hit ratio.

Our Web server a

elerator was also a 
riti
al 
omponent for the 2000 Olympi
 Games Web

site. The Web site deployed 71 front-end a

elerator nodes distributed geographi
ally a
ross seven

sites. All requests to the Web site initially went to a front-end a

elerator node (By 
ontrast,

at the Wimbledon site, only a fra
tion of the requests were dire
ted to an a

elerator node).

The hit rates a
ross all front-end a

elerator nodes was 87%. For the most a
tive time period

from September 15 through O
tober 1, the site re
eived 5,544,552,719 total requests of whi
h

4,816,070,515 were 
a
he hits. The traÆ
 to the front-end a

elerators and hit rates are shown

in Figure 18.

Ea
h Web server a

elerator had 512 Mbytes of memory. This memory was used for both


a
he storage and 
onne
tion management. The amount of usable 
a
he spa
e depended on the

traÆ
. When traÆ
 to an a

elerator was light, most of the 512 Mbytes 
ould be used for the
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Figure 18: Hits, misses (array hits and array misses), and hit ratios on the Web a

elerators at

the 2000 Olympi
 Games Web site.


a
he. When traÆ
 to the a

elerator was high, less 
a
hing spa
e was available.

The Web server a

elerators had suÆ
ient throughput to deliver responses qui
kly at all times

at both the 1999 Wimbledon and 2000 Olympi
 Games Web sites.

5 Related Work

Web server a

elerators are 
ontained in both the Harvest and Squid 
a
hes [5, 10℄. Our httpd

a

elerator results in 
onsiderably better performan
e than the Harvest and Squid a

elerators

partly be
ause our a

elerator runs on an embedded operating system. Novell sells an httpd

a

elerator as part of its BorderManager produ
t [19℄. Mi
rosoft's S
alable Web Ca
he (SWC) [8℄

and kHTTPd for Linux (http://www.fenrus.demon.nl/) are Web server a

elerators whi
h are

implemented as kernel-mode 
a
hes on the serving platform. Su
h a

elerators require spe
ial

operating system support on servers. By 
ontrast, our a

elerator 
an be used in 
onjun
tion

with any server platform and allows a single a

elerator to be asso
iated with multiple servers.

A key di�erentiating feature of our a

elerator from others is that we allow dynami
 pages

to be 
a
hed in addition to stati
 ones. This is possible be
ause we provide an API for an

appli
ation to expli
itly 
ontrol what is 
a
hed. None of the other a

elerators we are aware of

provide the s
alability features whi
h we provide wherein multiple pro
essors are used to in
rease

the throughput, memory, and availability of the a

elerator.

Several Web proxy 
a
hes are available su
h as Inktomi's TraÆ
 Server [6, 11℄, Network

Applian
e's NetCa
he [1℄, the Ca
heFlow 2000 [15℄, and IBM's Web TraÆ
 Express [7℄. As far

as we know, none of these produ
ts provide s
alability using our approa
h in whi
h all obje
ts

are 
a
hed in main memory and multiple pro
essors are used to s
ale the size of main memory.

There have been a few papers des
ribing enabling te
hnologies whi
h are utilized by our

a

elerator. The TCP router used to route requests to 
a
hes is analyzed in [9, 14℄. Content-
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based routing is dis
ussed by Pai et. al. in [23℄. A key di�eren
e in our work is that we analyze

the overhead for doing 
ontent-based routing and present alternative methods for routing requests

when the overhead for performing 
ontent-based routing is likely to make the router be
ome a

bottlene
k.

6 Con
lusions

In this paper, we presented the design, key issues in the implementation, and the performan
e

of a Web server a

elerator. Our a

elerator improves Web server performan
e by 
a
hing data

and runs under an embedded operating system. Our a

elerator has been deployed at several

highly a

essed Web sites for improving performan
e. Hit rates of over 85% were a
hieved at the

2000 Olympi
 Games and 1999 Wimbledon Open Tennis Tournament Web sites. By 
ontrast, a

Web server running under a general-purpose operating system on similar hardware 
an serve a

maximum of several hundred pages a se
ond. We des
ribed how the a

elerator's OSI layer four

was extended and optimized to support TCP appli
ations su
h as the 
a
he. Our a

elerator

provides an API whi
h allows appli
ation programs to expli
itly 
a
he, invalidate, and modify


a
hed data. This API 
an be used to 
a
he dynami
 as well as stati
 data.

We have also presented a multipro
essor a

elerator as a s
alable and highly available solution.

The memory of our a

elerator s
ales linearly with the number of 
a
he nodes, and the throughput

s
ales almost linearly with the number of 
a
he nodes as long as the front-end load balan
er is

not a bottlene
k. We have 
ompared design alternatives for the s
alable a

elerators and have

quanti�ed the eÆ
ien
y and s
aling a
hieved by the s
hemes.

The multipro
essor a

elerator in
ludes a load balan
er sending requests to multiple pro
es-

sors 
olle
tively known as a 
a
he array. The load balan
er takes on one or a 
ombination of two

forms: a 
ontent router, in whi
h requests are sent to spe
i�
 nodes of the 
a
he array based

on the URL requested; and a TCP router, where the request is routed without regard to the

requested URL. While 
ontent-based routing redu
es CPU usage on 
a
he nodes, it adds over-

head to the load balan
er, whi
h 
an result in the load balan
er be
oming a bottlene
k. Greater

throughputs 
an often be a
hieved when some or all requests are routed without their 
ontent

being examined.

A ba
k-up load balan
er 
an be integrated into our system in order to handle load balan
er

failure. Our Web a

elerator 
an also 
ontinue to fun
tion if some but not all of the pro
essors


omprising the 
a
he array fail. Repli
ation of hot obje
ts minimizes de
reased performan
e

resulting from a 
a
he node failure.

There are a number of extensions to our Web server a

elerator whi
h we are 
urrently

working on. One su
h extension is to apply similar ideas to improve the performan
e of Web

proxy 
a
hes [25, 24℄. Sin
e miss rates to proxy 
a
hes are often 50% or higher, performan
e


an be adversely a�e
ted by the time to servi
e 
a
he misses. Our proxy a

elerator ar
hite
ture

redu
es 
a
he miss overheads by using an a

elerator to o�oad requests to a proxy 
a
he whi
h

are likely to be misses.

A se
ond area we are exploring is te
hniques whi
h allow personalized pages to be 
a
hed.

Personalized Web pages 
ontain 
ontent spe
i�
 to users; a personalized page 
annot be shared

by a large pool of 
lients, so 
onventional 
a
hing te
hniques are not very e�e
tive. Our approa
h

breaks up Web pages into fragments [4℄ and represents personalized information via fragments.
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A 
a
he stores nonpersonalized fragments. When a 
omplete Web page is needed, it is 
on-

stru
ted from nonpersonalized 
a
hed fragments and personalized fragments whi
h are typi
ally

not 
a
hed.

A third area we are working on is s
alable te
hniques for a
hieving 
a
he 
onsisten
y when

an a

elerator is not tightly 
oupled with a server. An a

elerator 
ould be at a remote point in

the network. Sin
e expiration times are often insuÆ
ient for a
hieving strong 
a
he 
onsisten
y,

servers must have the ability to invalidate 
ontent in remote a

elerator 
a
hes. The 
a
he


onsisten
y te
hniques need to be s
alable to a

ommodate large numbers of a

elerator 
a
hes

and 
a
hed obje
ts [28℄.
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