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Abstrat

We desribe the design, implementation and performane of a high-performane Web

server aelerator whih runs on an embedded operating system and improves Web server

performane by ahing data. It an serveWeb data at rates an order of magnitude higher than

that whih would be ahieved by a high-performane Web server running on similar hardware

under a onventional operating system suh as Unix or NT. The superior performane of

our system results in part from its highly optimized ommuniations stak. In order to

maximize hit rates and maintain updated ahes, our aelerator provides an API whih allows

appliation programs to expliitly add, delete, and update ahed data. The API allows our

aelerator to ahe dynami as well as stati data. We desribe how our aelerator an

be saled to multiple proessors to inrease performane and availability. The basi design

alternatives inlude a ontent router or a TCP router (without ontent routing) in front of a

set of Web ahe aelerator nodes, with the ahe memory distributed aross the aelerator

nodes. Content-based routing redues ahe node CPU yles but an make the front-end

router a bottlenek. With the TCP router, a request for a ahed objet may initially be

sent to the wrong ahe node; this results in larger ahe node CPU yles, but an provide

a higher aggregate throughput, beause the TCP router beomes a bottlenek at a higher

throughput than the ontent router. We quantify the throughput ranges in whih di�erent

designs are preferable. We also examine a ombination of ontent-based and TCP routing

tehniques. In addition, we present statistis from ritial deployments of our aelerator for

improving performane at highly aessed Sporting and Event Web sites hosted by IBM.

1 Introdution

There has been tremendous growth of the World Wide Web over the past several years in the

number of users, sites, and data. To ope with suh growth, Web servers often need to sustain

high throughput levels. This performane requirement is further ompounded by bursty aess

patterns whih are ommon to many popular Web sites, resulting in high peak-to-average request

rates [18℄. In order to handle high request rates, it is often neessary to use multiple proessors.
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One tehnique for reduing the amount of hardware needed at a Web site and improving through-

put is to plae one or more high-performane ahes in front of the Web servers known as Web

server aelerators. In this paper, we address the problem of improving the performane of a Web

server and present the arhiteture of a high-performane Web server aelerator we have built.

It an be saled to multiple proessors in order to further inrease throughput, main memory

ahe spae, and availability.

The performane of Web servers is limited by several fators. The underlying operating

system on whih a Web server runs may have performane problems whih negatively a�et the

throughput of the Web server. In satisfying a request, the requested data are often opied several

times aross layers of software, suh as between the �le system and the appliation and again

during transmission to the operating system kernel, and often again at the devie driver level.

Other overheads, suh as operating system sheduler and interrupt proessing, an add further

ineÆienies. Performane an be improved by ahing data in a Web server aelerator whih

has signi�antly less overhead than a Web server.

Our aelerator runs under an embedded operating system and an serve Web data at rates an

order of magnitude higher than that whih would be ahieved by a high-performane Web server

running on similar hardware under a onventional operating system suh as Unix or NT. Our

Web server aelerator has been used to improve performane at a number of highly aessed Web

sites inluding the ones for the 2000 Olympi Games and 1999 Wimbledon tennis tournament.

Cahe hit rates of over 85% were ahieved.

The superior performane of our system results largely from the embedded operating system

and its highly optimized ommuniations stak. Bu�er opying is kept to a minimum. In addition,

the operating system does not support multithreading. The operating system is not targeted for

implementing general-purpose software appliations beause of its limited funtionality. However,

it is well-suited to speialized network appliations suh as Web server aeleration beause of

its optimized support for ommuniations.

In order to maximize hit rates and maintain updated ahes, our aelerator provides an API

whih allows appliation programs to expliitly add, delete, and update ahed data. Conse-

quently, we allow dynami Web pages to be ahed as well as stati ones, sine appliations

an expliitly invalidate any page whenever it beomes obsolete. Cahing of dynami Web

pages is essential for improving the performane of Web sites ontaining signi�ant dynami

ontent [17, 16, 3, 2℄.

Multiproessor aelerators an further inrease the performane. Our multiproessor system

arhiteture onsists of a luster of Web aelerator ahe nodes and a front-end load balaner.

From a salability standpoint, the objetive is to ombine the individual ahe spae of eah

member of the ahe array to sale the available spae for ahing, as well as to ombine the

individual throughput of eah member of the ahe array to sale the available throughput.

Beause of the high request rates our aelerator must sustain, all objets are ahed in memory.

The use of multiple ahe members is thus a way to inrease ahe memory (main memory), while

also inreasing the system throughput.

Tehniques for saling Web servers are desribed in [9℄. That study is about a salable

Web server omposed of multiple Web server nodes and supported by traditional �le sharing

mehanisms, or repliated �les. In ontrast, our paper studies the salability of high performane

Web server aelerators, whih are in front of a set of Web server nodes, and whih are based on
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Figure 1: The aelerator resides in front of one or more Web servers and ontains a ahe and

a load balaner whih an funtion as either a ontent-based or TCP router. Cahed objets are

sent diretly from the aelerator to lients.

main memory ahing. Therefore, a fous of this work is to provide eÆient ways of sharing main

memory spae aross di�erent ahe nodes. This leads to signi�antly di�erent design deisions.

The rest of the paper is organized as follows. Setion 2 desribes the basi arhiteture of

our aelerator. Setion 3 desribes arhitetural alternatives for salable aelerators. Setion 4

presents performane measurements we have made of our aelerator and ompares the perfor-

mane of di�erent arhitetural alternatives for salable aelerators. Related work is disussed

in Setion 5. Finally, onluding remarks appear in Setion 6.

2 Web Server Aelerator Design and Charateristis

2.1 System Desription

As illustrated in Figure 1, the aelerator is plaed in front of a set of Web server nodes. Multiple

Web servers would be needed at a Web site whih reeives a high volume of requests. Uniproessor

aelerators onsist of a load balaner and a ahe. The load balaner presents a single IP address

to lients regardless of the number of bak-end servers and routes Web requests to the aelerator

ahe and bak-end Web servers. The load balaner takes on two basi forms: (i) A TCP router

[9, 14℄, whih for performane reasons does not examine the ontents of a Web request, and (ii)

a ontent router [23℄, whih routes requests based on the URL requested.

If the requested page is found in the ahe, the page is returned to the lient. Otherwise, the

load balaner routes the request to a bak-end Web server node using either round-robin or a

method whih takes server load into aount. The use of TCP routing for sending ahe misses

to the server nodes results in better load balaning than using the round-robin Domain Name

Server [9℄. Our aelerator an redue the number of Web servers needed at a Web site sine, as

quanti�ed later, a large fration of the Web requests are handled by the aelerator ahe.

The aelerator examines eah request to see if it an be satis�ed from its ahe. This

requires the aelerator to terminate the onnetion with the lient. Consequently, there is no

way to forward a request diretly to a server after a ahe miss. Instead, the aelerator has
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to request the information from a server and send the information bak to the lient. Cahing

thus introdues some overhead in the event of a ahe miss beause the aelerator must now

funtion as a proxy for the lient. By ontrast, when ahing is turned o�, the load balaner may

funtion as a TCP router. The TCP router does not omplete a TCP onnetion orresponding

to a request; rather it selets a node to handle the request, maintains this seletion in a table,

and sends the request to the seleted node. The seleted node ompletes the onnetion and

diretly returns the requested Web page to the lient without going through the aelerator on

the return path [9℄.

A bene�t in performing ontent-based routing is that the aelerator an make intelligent

deisions about where to route requests based on the URL [23℄. For example, the aelerator

ould send all requests for stati pages to one set of servers and all requests for dynami pages to

another set of servers. In other situations where the ontents of the servers are not all idential,

the aelerator ould employ more sophistiated algorithms for routing requests based on the

URL.

The ahe operates in one or a ombination of two modes: automati mode and dynami mode.

In automati mode, data are ahed automatially after ahe misses. The Webmaster sets ahe

poliy parameters whih determine whih URLs are automatially ahed. For example, di�erent

ahe poliy parameters determine whether stati image �les, stati nonimage �les, and dynami

pages are ahed and what the default lifetimes are. HTTP headers inluded in the response by

a server an be used to override the default behavior spei�ed by ahe poliy parameters. These

headers an be used to speify both whether the ontents of the spei� URL should be ahed

and what its lifetime should be.

In dynami mode, the ahe ontents are expliitly ontrolled by appliation programs whih

exeute either on the aelerator or a remote node. API funtions allow appliation programs

to ahe, invalidate, query, and speify lifetimes for the ontents of URLs. While dynami mode

ompliates the appliation programmer's task, it is often required for optimal performane. Dy-

nami mode is partiularly useful for prefething hot objets into ahes before they are requested

and for invalidating objets whose lifetimes are not known at the time they are ahed.

The presene of an API for expliitly invalidating ahed objets often makes it feasible to

ahe dynami Web pages. Dynami Web data hange frequently and are typially reated by

server programs whih exeute when a request for the dynami data is reeived. This proess

inurs signi�antly more overhead than serving stati data; a request for stati data is typially

servied by returning a �le. Web servers often onsume several orders of magnitude more CPU

time reating a dynami page than a omparably sized stati page. For Web sites ontaining

signi�ant dynami ontent, it is essential to ahe dynami pages to improve performane [17,

16, 3, 2℄. We are not aware of any httpd aelerator besides our own whih allows dynami pages

to be ahed.

All ahed data must be stored in memory. Cahing objets on disk would slow down the

aelerator too muh. Consequently, ahe sizes are limited by memory sizes. Our aelerator

uses the least reently used (LRU) algorithm for ahe replaement.
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2.2 Key Software Elements

The embedded operating system on whih our ahe runs ontains a multi-layered olletion

of networking software whih performs inter and intra network protool paket forwarding over

various hardware network interfaes. The operating system also provides proess sheduling,

timer servies, bu�er and memory management, and on�guration and monitoring failities.

The prinipal paket forwarding software orresponds to the �rst three layers of the OSI

referene model. Minimal layer four transport and appliation funtionality is also available

whih allows remote login servies for management and monitoring. We extended and optimized

layer four so that the aelerator ould o�er fast TCP appliations suh as the ahe.

Key elements of the arhiteture whih result in good performane inlude the following:

1. The devie drivers �ll in a paket queue on the system ard memory with inoming pakets.

The system proessor dequeues these pakets at a high rate (it is not interrupted on paket

arrival).

2. The aelerator performs its funtions without performing task sheduling, task swithes,

or interrupts.

3. From the time a paket is queued by the network handler until the omplete stak has

proessed it (up to the ahe when appliable), no data opying takes plae.

4. The queue elements that ontain pakets are sized so that no bu�er linking is neessary.

Any paket size that the aelerator reeives an �t in one bu�er. This saves the overhead

of bu�er linking (at the ost of wasted memory spae, and the need to restart the system

when network parameters are hanged).

These arhitetural features result in eÆient IP forwarding. The ombination of a lightweight

operating system, a opyless path from input queue to output queue, a polling mehanism based

on input/output queues with a tasker sanning these queues at high rates (no interrupt overhead)

to feed a network handler, a single bu�er data struture (no linked lists suh as the mbufs used

in general-purpose operating systems), and the absene of ontext swithes signi�antly redue

the overhead of the system. The system an route about 80,000 IP pakets per seond ompared

to 10,000 for a router running a general-purpose operating system on the same hardware.

2.3 TCP stak

In order to obtain optimal ahe performane, it was neessary to modify the TCP stak on the

initial embedded system whih we started out with and modi�ed to produe our aelerator. The

TCP stak in the embedded system was initially designed solely for the purpose of providing

remote login servies for management and monitoring. Consequently, it ontained a number of

ineÆienies suh as task sheduling and unneessary data opying. The TCP stak was modi�ed

to use the same \sheduling logi" as the one applied to the IP path whih was already optimized.

This eliminated all task sheduling during TCP paket proessing.

The system was also modi�ed to use the same data struture for both TCP and IP, with the

devie driver I/O bu�er in one ontiguous piee so that no linkage of multiple bu�ers is neessary.
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The devie drive I/O bu�er is passed along from one layer to the next so that a new opy is not

neessary.

The path length for proessing a TCP ow is far greater than what it is for IP. For example,

proessing an IP paket takes on average 200 instrutions and 400 yles on a PowerPC 604,

while proessing a TCP SYN paket an take up to 3000 instrutions and 10,000 yles. While

one big onstraint of the IP path is low lateny, it is not possible to ahieve this using TCP. In

order to understand the onsequenes and verify that this issue is not ritial for TCP, let us

analyze the reasons for this onstraint.

IP is a onnetionless datagram protool. It does not ontain ow ontrol of any sort. Its

only degree of freedom is to drop pakets when they are arriving too fast. This is what happens

when the forwarder is taking too long to proess a paket; the input queue �lls up (faster than

the network handler an empty it), and �nally, inoming pakets get dropped. Unfortunately,

when this happens, TCP running at eah endpoint of the onnetion beomes fairly ineÆient,

trying to resend dropped pakets, losing windows, et., whih results in poor overall onnetion

throughput. This is why most routers tend to be able to run at media speed. That way, they an

always proess pakets faster than they arrive (dropping a few pakets is aeptable; problems

arise when a signi�ant number of pakets are dropped).

With TCP, it beomes very diÆult to run at media speed, and one would expet the phe-

nomenon just desribed to result in an ineÆient system. However, in the ase where TCP is

terminated inside the embedded system, there is a ow ontrol that an regulate the ow of

inoming pakets provided by TCP itself. This ow ontrol will naturally tend to lose the win-

dow to slow down the data ow on a partiular onnetion, with the e�et that the soure will

send less traÆ to the aelerator. In addition, beause the appliation (suh as the ahe) is

also sitting in the aelerator and engages in \query-response" exhanges, the soure will wait

for a response before sending new pakets. This will further regulate the amount of data the

aelerator reeives. Combining these e�ets, the aelerator will reeive pretty muh what it

an proess.

3 Salable Web Server Aelerator Design and System Flows

In ertain situations, it is desirable to sale a Web server aelerator to ontain more than one

proessor. This may be desirable for several reasons:

� Multiple nodes provide more ahe memory. Web server aelerators have to be extremely

fast. In order to improve performane, the working set of Web objets should be ahed

in main memory instead of on disk. Multiple proessors provide more main memory for

ahing data.

� Multiple proessors provide higher throughputs than a single node.

� Multiple proessors funtioning as aelerators an o�er high availability. If one aelerator

proessor fails, one or more other aelerator proessors an ontinue to funtion.

� In some situations, it may be desirable to distribute an aelerator aross multiple geo-

graphi loations.
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In this setion, we examine design alternatives for salable Web server aelerators whih

ahe data on multiple proessors for both improved performane and high availability. The

system onsists of a luster of uniproessor Web aelerator nodes desribed in the previous

setion. The luster design alternatives are the fous of this setion.

In the salable arhiteture, a load balaner direts Web requests to one of several Web

aelerator nodes (Figure 2); eah node is referred to as a ahe member, and the set of all nodes

is known as a ahe array. The load balaner operates either as a TCP router or as a ontent

router. The Web aelerator is plaed in front of one or more Web server nodes. The Web URL

spae is hash partitioned among ahe members suh that one of the ahe members is designated

as the primary owner of eah URL. If an objet orresponding to a URL is ahed in at least

one ahe member, the primary owner is guaranteed to ontain a opy. A seondary owner of

an objet is a ahe member other than the primary owner whih ontains the objet. From a

salability standpoint, the objetive is to ombine the individual ahe spae of eah member

of the ahe array to sale the available spae for ahing, as well as to ombine the individual

throughput of eah member of the ahe array to sale the available throughput.

Using a TCP router as the load balaner, there is a high probability that a request for a

ahed objet will initially be routed to a ahe node whih is not an owner of the ahed objet.

When this happens, the �rst node sends the request to a seond ahe node whih is an owner

of the objet using di�erent methods whih will be desribed later in this setion. In order to

redue the probability of the TCP router routing a request for a ahed objet to a wrong node,

hot objets are repliated on multiple ahe nodes. By ontrast, the ontent router has the

ability to route the request to the proper ahe node. However, it adds signi�ant overhead to

the front-end load balaner and may result in the front end beoming a bottlenek. There are

other situations as well where ontent-based routing annot be assumed to always work or be

available. In some arhitetures, objets may migrate between ahes before the router is aware

of the migration. This ould result in a ontent-based router sending some requests for a ahed

objet to a wrong ahe node. In other situations, it may be desirable for a set of ahe nodes

to interoperate with a variety of routers both with and without the apability to route requests

based on ontent. The set of ahe nodes should still o�er good performane for routers whih

annot perform ontent-based routing.

Sine the load balaner presents a single IP address to lients regardless of the number of

bak-end ahe members and servers, it is thus possible to add and remove ahe members or

servers behind the load balaner without lients being aware of it. In Figure 2, the load balaner

runs on a separate node. This design results in maximum throughput sine the load balaner is

able to handle more requests. A load balaner an also be on�gured to run on a ahe member

node; this is useful for ases where the load balaner is not a bottlenek, suh as when the ahe

array is omposed of a small number of nodes.

The load balaner obtains availability as well as load information about eah member of

the ahe array via its normal operations. This information is used to route requests to ahe

members.
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3.1 Request Flows Through the System

In the rest of the setion, we detail and ompare di�erent on�gurations of the salable aelerator.

We ompare the ontent router versus the TCP router as the load balaner. We then ompare

di�erent ommuniation and data delivery methods. Furthermore, we investigate the e�et of

objet size on the di�erent methods.

For the performane omparison of the di�erent on�gurations, we have measured the number

of CPU yles required at eah system omponent for di�erent situations. The measurement is

done on a salable Web server aelerator whih is omposed of two ahe member nodes and a

front-end load balaner. These ahe member nodes as well as the load balaner run on 200 MHz

PowerPC proessors. These nodes were diretly inter-onneted to eah other using Token Ring.

The measurement of our aelerator shows that the number of CPU yles inurred at a ahe

node to serve an HTTP request for an objet of 2 KB is about 31,500, and this number does not

vary muh for objets smaller than 2 KB. From now on, we use this number as the relative ost of

1 for the omparison of di�erent on�gurations. After detailed study of di�erent on�gurations,

we summarize in Table 1 the relative CPU osts in eah on�guration for di�erent situations.

3.1.1 Content Router as the Load Balaner

The ahe member whih initially reeives a request from the load balaner is designated as the

�rst member. When the load balaner is a ontent-based router, it an diretly route a request to

an owner of the requested objet (i.e., the �rst member is the owner). This is done by examining

the HTTP request, and in order to examine it, the ontent router has to omplete a onnetion

with the lient. After the ontent router has examined a request and seleted an owner of the

requested objet, it uses one of two methods for sending the request to the owner.

The �rst approah is for the ontent router to hand o� the onnetion to the owner regardless

of the size of the requested objet. The owner always responds diretly to the lient without going

through the ontent router. A similar method for performing ontent-based routing is presented

in [23℄. Our measurement of CPU overheads shows that in this sheme, the relative CPU ost

inurred is 0.5 at the ontent router and 0.9 at the ahe node (see Figure 3).

In the seond method, di�erent interfaes are used between the ontent router and the seleted

ahe node depending upon the size of the objets. If the requested objet is small, the objet

is �rst returned from the owner to the ontent router via a UDP interfae. It is then returned

from the ontent router to the lient. If the requested objet is large, the owner performs a

TCP hando� and responds diretly to the lient without going through the ontent router. More

details of this adaptive method are desribed in Setion 3.1.2 in the ontext of a TCP router-based

aelerator.

Comparing the two approahes, the advantage to the latter is that it inurs very little overhead

on the ahe array for small objets. For objets up to 2 KB, the relative ost for the UDP

interfae is only 0.1 in ahe array CPU yles. The disadvantage is that signi�ant overhead is

inurred at the ontent router. For objets up to 2 KB, the relative ost for the UDP interfae

is 1.1 in ontent router CPU yles. For large objets, both approahes use the hando� interfae

and hene have similar performane. In short, this approah inurs less total overhead for small

objets. The overhead at the ontent router is higher while the overhead at ahe members is

lower.
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While the approah using a ontent-based router as the load balaner redues CPU yles

onsumed by ahe members, the disadvantage is that it onsumes extra CPU yles on the

ontent router whih an make the ontent router a bottlenek. A TCP router running on a

200 MHz PowerPC 604 an route 15 K requests per seond (i.e., without doing ontent-based

routing). A ontent-based router running on the same CPU an route 9.8 K requests per seond

using the hando� mehanism and 4 K requests per seond using the UDP interfae. If ahe

array CPUs are the bottlenek, ontent-based routing is a good approah. If, on the other hand,

the load balaner is a bottlenek, ontent-based routing should not be used. If it is not lear

whether the load balaner or the ahe array will be the bottlenek, some requests an be routed

by examining ontent while others an be routed without examining ontent.

3.1.2 TCP Router as the Load Balaner

When the load balaner operates as a TCP router, it sends a request to a �rst member using

a weighted round-robin poliy. We say that a ahe member hit ours when the �rst member

reeiving a request from the TCP router is an owner of the requested objet (Figure 4). Likewise,

a ahe member miss indiates the ase when the �rst member is not an owner of the objet

(Figures 5, 6).

If no repliation is used, the probability of a ahe member hit is roughly 1/n where n is the

number of ahe members in the ahe array. The exat probability is dependent on the way

objets are partitioned aross the ahe array, request traÆ, and the load and availability of

ahe members. A ahe member hit is distint from a ahe array hit whih ours when the

ahe array as a whole an satisfy a request (i.e., at least one ahe member has a opy of the

requested objet). Note that it is possible to have a ahe member hit and a ahe array miss.

This would our when the �rst member reeiving a request from the TCP router is the primary

owner of the requested objet but the objet is not ahed. Conversely, it is possible to have a

ahe member miss and a ahe array hit. This would our when the �rst member reeiving a

request from the TCP router does not ontain a ahed opy of the requested objet but another

ahe does.

There are multiple methods for returning objets in the event of a ahe member miss. An

easy way is to use a separate HTTP onnetion between the �rst member and the owner, having

the �rst member ating as an HTTP proxy. However, this method results in high overhead to

the ahe array. Alternatively, a UDP interfae an be used. The UDP interfae signi�antly

redues overhead in the system and is feasible in a ahe luster beause the paket loss rate is

minimal, espeially when the ahe nodes are in lose proximity. Lastly, the �rst member an

hand o� the request to the owner along with the TCP onnetion. The owner then returns the

data diretly to the lient whih eliminates a hop along the return path. The di�erent request

ows through the system are thus summarized by the following:

1. Cahe member hit, ahe array hit.

2. Cahe member hit, ahe array miss.

3. Cahe member miss, ahe array hit,

(a) page retrieved using HTTP;
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(b) page retrieved using UDP;

() page retrieved via a request hando�.

4. Cahe member miss, ahe array miss,

(a) page retrieved using HTTP;

(b) page retrieved using UDP;

() page retrieved via a request hando�.

Cahe member hit

Upon a ahe member hit, if the �rst member has the requested objet, it sends the objet

diretly bak to the lient. Otherwise, the �rst member obtains the requested objet from a

bak-end server and returns it to the lient (Figure 4). In both ases, requested objets are

returned diretly from a ahe member to the lient without going through the TCP router.

The relative ost for the ahe array CPU yles onsumed by a request for an objet of up

to 2 KB is 1 for a ahe member hit and a ahe array hit. This is the same as the ost for a

ahe hit in a uniproessor aelerator. The ost for a ahe member hit and a ahe array miss

is 2.1. This is further broken down into a ost of 1 per onnetion (two onnetions are used, one

from ahe member to lient, and one from ahe member to bak-end server), plus about .1 to

logially bind the two onnetions together inside the ahe member.

Cahe member miss - HTTP interfae

When no repliation is used, a ahe member miss ours roughly n-1 times out of n in

a balaned system with n ahe members. When this happens, the �rst member aepts the
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Figure 5: TCP router as load balaner: HTTP or UDP interfae is used between the �rst member

and the owner. Request results in ahe member miss, followed by ahe array hit or ahe array

miss

onnetion with the lient, omputes an owner of the requested objet, and ontats the owner

to get the requested objet. In Figure 5, the �rst member ommuniates with the owner of the

requested objet via HTTP or a UDP interfae.

We have measured the relative CPU ost (sum at both ahe nodes) of a request for an objet

of up to 2 KB resulting in a ahe member miss and a ahe array hit to be 3.1 when the �rst

member and the owner of the requested objet ommuniate via HTTP. The TCP onnetions

onstitute the prinipal omponent of the overhead. The �rst member has two onnetions (one

to the lient and one to the owner of the requested objet) while the owner of the requested

objet has one onnetion (to the �rst member). In addition, the overhead for binding the two

onnetions in the �rst member is about 0.1.

As requested objet sizes inrease, the ahe array CPU ost of serving an objet for a ahe

member miss and a ahe array hit inreases three times faster than it would inrease for a

request resulting in a ahe member hit and a ahe array hit. The additional overhead results

from the total number of times the objet is sent or reeived by a ahe member. In the ase of

a ahe member hit, the objet is sent only one (from the owner to the lient) resulting in only

one send/reeive. In the ase of a ahe member miss, the objet is sent twie (one by the owner

and one by the �rst member) and reeived one (one by the �rst member) resulting in a total

of 3 sends/reeives.

The ahe array CPU ost of a ahe member miss (for objets up to 2 KB) resulting in a

ahe array miss is 4.2. This is beause of the extra onnetion from the owner to the bak-end

server and another binding of two onnetions together in the owner. As the requested objet

size inreases, the ahe array CPU ost of serving an objet upon a ahe member miss and a

12



ahe array miss inreases twie as fast as it would inrease for a request resulting in a ahe

member hit and a ahe array miss. In the former ase, the objet is sent twie (one by the

owner and one by the �rst member) and reeived twie (one by the owner and one by the �rst

member). In the latter ase, the objet is sent one and reeived one.

Cahe member miss - UDP interfae

This is similar to the previous ase, exept that the interfae between the �rst member

and owner of the requested objet is UDP, whih has lower CPU overhead than HTTP. Our

measurement shows that the ahe array CPU ost of a ahe member miss (for objets up to

2 KB) resulting in a ahe array hit is only 1.2 using the UDP interfae (Figure 5). This is

further broken down into a ost of 1.1 at the �rst member and 0.1 at the owner node. UDP has

lower overhead than HTTP largely beause it avoids making a TCP onnetion. The ost of a

ahe member miss resulting in a ahe array miss (for objets up to 2 KB) is 2.3, sine an extra

onnetion from the owner to a bak-end server and an extra binding of two onnetions in the

owner are needed.

While UDP is not as reliable as HTTP for ommuniating aross the Internet, the unreliability

of UDP is not a signi�ant fator in our system beause ahe members ommuniate diretly

with eah other on a private loal network without going through any intermediate nodes. The

paket loss rate is thus small. Any pakets lost by UDP are handled by timeouts and garbage

olletion. While the orresponding Web request is lost, the probability of this ourring is low.

Cahe member miss - Hando� interfae

In this ase, instead of the �rst member funtioning as a proxy in order to obtain the requested

objet and return it to the lient, the �rst member hands o� the request, along with the TCP

onnetion, to an owner of the requested objet. The owner then sends the requested objet

diretly bak to the lient without going through the �rst member (Figure 6).

The hando� is possible beause the di�erent entities in the system share an IP address. This

virtual luster address provides the framework so that an established onnetion with a lient

an be shared and dynamially moved to di�erent entities even in the middle of an operation. In

a sense, this hando� an be thought of as an extension of TCP routing in whih a TCP router

selets a node in the luster and dispathes TCP onnetions to it. However, the implementation

of the dynami hando� of an already established and operating TCP onnetion is di�erent and

more ompliated. First, it is an operation where three di�erent entities, i.e., the TCP router, the

�rst member, and the seond member (i.e., the owner node), should partiipate in a oordinated

fashion. Seond, the operation should our transparently to lients. The major steps are as

follows:

1. The seond member node opens a TCP onnetion with the lient. This onnetion is

established transparently without the regular 3-way handshaking.

2. The seond member dupliates exatly the same state of the TCP onnetion whih was

already established between the lient and the �rst member.

3. The seond member emulates the proess of reeiving the request whih was initially sent

to the �rst member from the lient.
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Figure 6: TCP router as load balaner: hando� interfae is used between the �rst member and

the owner. Request results in ahe member miss, followed by ahe array hit or ahe array miss

4. The TCP router redirets any follow-up messages from the lient to the seond member.

5. The �rst member leans up data strutures related to the TCP onnetion with the lient

(e.g., soket and TCP ontrol bloks).

To open a TCP onnetion and dupliate the onnetion state in the seond member node, we

opy parts of the TCP ontrol blok from the �rst member. This information is then sent to the

seond member along with the requests whih were sent from the lient. The onnetion set-up

at the seond member is done by taking steps similar to the TCP Passive Open [27℄. Then, the

information reeived from the �rst member is opied to the TCP ontrol blok of the new TCP

onnetion.

The ahe array CPU ost of a ahe member miss (for objets up to 2 KB) when the hando�

interfae is used is 0.5 at the �rst member and 0.9 at the owner node, resulting in total of 1.4

for a ahe array hit (Figure 6). For a ahe array miss, an additional 1.1 is added to the owner

node. This additional overhead results from an extra onnetion from the owner to the bak-end

server and an extra binding of two onnetions in the owner.

For objets of 2 KB or less, the performane of the hando� interfae is superior to that of the

HTTP interfae but inferior to that of the UDP interfae. For large objets, however, the perfor-

mane of the hando� interfae is superior to that of both the HTTP and UDP interfaes. This

is beause a system using the hando� interfae eliminates the step of ommuniating requested

objets between ahe members. Consequently, the inrease in ahe array CPU ost resulting

from objet sizes over 2 KB for the hando� interfae is similar to that whih would be inurred

by a ahe member hit.
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Load

Node

ahe array hit ahe array miss

balaner HTTP UDP Hando� HTTP UDP Hando�

TCP router 0.3

member hit ahe array 1.0 2.1

TCP

member

�rst member 2.1 1.1 0.5 2.1 1.1 0.5

router

miss

owner 1.0 0.1 0.9 2.1 1.2 2.0

ahe array (total) 3.1 1.2 1.4 4.2 2.3 2.5

Content ontent router 2.1 1.1 0.5 2.1 1.1 0.5

router ahe array 1 0.1 0.9 2.1 1.2 2.0

Table 1: Summary of relative CPU osts for objets of size up to 2KB in di�erent aelerator

on�gurations.

Cahe member miss - Mixed Strategy

Among the options onsidered, the UDP interfae o�ers the best performane for small ob-

jets, while the hando� interfae o�ers the best performane for large objets. Therefore, a mixed

strategy for handling ahe member misses whih uses the UDP interfae for small objets and

the hando� interfae for large ones has better performane than the individual strategies. As we

shall see in Setion 4, the rossover point for our system when the UDP and hando� interfaes

result in similar performane ours when requested objets are between 3 KB and 4 KB.

To optimize performane, our system implements a mixed strategy for ahe member misses

as in the following steps:

1. The �rst member sends the request and TCP onnetion information to an owner of the

requested objet.

2. If the requested objet is not ahed, the owner obtains it from a bak-end server (whih

may result in the objet being ahed).

3. If the objet is small, the owner returns it to the �rst member whih subsequently returns

it to the lient.

4. If the requested objet is large, the owner performs a TCP hando�. There is no need for

the �rst member to do anything during this proess.

5. The owner returns the requested objet diretly to the lient without going through the

�rst member.

6. Asynhronously, the owner informs the �rst member to lean up onnetion information

orresponding to the request.

In our system, this oordination is entirely driven by the owner. It has all the information needed

to perform the TCP hando�. All the �rst member has to do is wait until the owner either sends

bak the requested objet or informs it that it will lean up the onnetion information (o�-line).
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3.2 High Availability

Our system provides high availability via the load balaner and repliation. The load balaner

has the ability to detet when a ahe member fails. When this happens, it informs the remaining

live members of the failure and direts all requests to live members of the ahe array.

Our system hashes objets aross the ahe array using an enhaned versions of CARP (Cahe

Array Routing Protool) [21℄. CARP is a hashing mehanism whih allows a ahe to be added

or removed from a ahe array without reloating more than a single ahe's share of objets.

When a new ahe is added, only the objets assigned to the new ahe are reloated. All other

ahed objets remain in their urrent ahe. Similarly, removing a ahe from the array will

only ause objets in the removed ahe to be reloated.

CARP alulates a hash not only for the keys referening objets (e.g. URLs) but also for

the address of eah ahe. It then ombines key hash values with eah address hash value using

bitwise XOR (exlusive OR). The primary owner for an objet is the one resulting in the highest

ombined hash sore.

Whenever a ahe member fails, no rehashing is neessary. The new primary owner for any

objet whose primary owner used to be the failed ahe member is simply the live ahe member

resulting in the highest ombined sore. After a failed ahe member is revived, objets for whih

the revived member is now the primary owner must be opied to the revived member. This

an take plae in the bakground while the aelerator ontinues to operate. While the revived

member is warming up, an objet for whih the revived member is the primary owner might not

yet be ahed in the revived member but might be ahed in the previous primary owner before

the revival. In order to handle these situations, misses for suh objets in the revived member

will ause a lookup in the ahe member whih used to be the primary owner before the revival.

This additional lookup is no longer neessary after all hot objets primarily owned by the revived

member have been opied to the revived member.

In a TCP router-based on�guration, repliation of hot pages on multiple ahe members not

only improves the aelerator performane (by inreasing the probability of ahe member hits)

but also redues ahe array miss rates after a ahe member failure. This is beause a opy of

a hot page may still be in the ahe array after an owner of the page fails. In order to store

an objet in n ahes where n > 1, the objet is stored in the n ahes resulting in the highest

ombined hashing sore for the objets.

It is possible to on�gure our system with a bakup load balaner node to handle failure of a

load balaner.

4 Performane

4.1 Breakdown of CPU Cyles

This setion analyzes the CPU yles onsumed by the aelerator. Sine the system under test

is preisely and intentionally separated from any operating system involvement (no shedul-

ing, no bloking, no timing, no opying), CPU overhead an be measured by breaking the

TCP/appliation ows into measurable elementary piees, setting up the measurement points,

and generating suÆient traÆ to obtain enough samples (PowerPC registers give both the num-
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Application called listen and accept, and
provided TCP a set of call−back functions

TCP calls socket interface
Socket interface calls applic. call−back func.
Application performs open action

TCP finds tcb, processes ACK

TCP finds tcb, processes PUSH, ACK
TCP calls socket interface with data
Socket calls application (http) with data
http processes request, builds response
http calls socket to send response
Socket calls TCP to send data
TCP processes outgoing data and queues IP packets

http closes the socket (non−persistent connection)

TCP sends connection termination

TCP finds tcb, processes ACK

TCP finds tcb, processes FIN
TCP sends ACK, puts tcb into close table

Every second, TCP processes table of "closed"
connections to remove tcb’s

m1

m2

m3

m4

m5

m6

m7

TCP searches listen table
TCP retrieves a tcb (TCP control block)

TCP responds to TCP connection request

TCP moves tcb into connection table
TCP prefetches next tcb in listen table

SYN

SYN, ACK

ACK

PUSH, ACK (http get)

PUSH, ACK (http rsp)

FIN, PUSH, ACK

ACK

FIN, ACK

ACK

Figure 7: TCP ow in a uniproessor Web server aelerator. Bloks m

1

through m

7

depit

operations performed by the CPU. The numbers of CPU yles spent for eah blok are shown

in Table 2.
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ber of yles and the numbers of instrutions, as well as details on ahe hits and misses). The

TCP ow is depited in Figure 7.

Request traÆ was generated by WebStone. WebStone is a benhmark whih measures the

number of requests per seond a Web server an handle. It is done by simulating one or more

lients and seeing how many requests an be satis�ed during the duration of the test [22℄.

Table 2 shows the measurements we obtained for the omponents of the TCP ow depited

in Figure 7. Component m3 is the only one whih varies signi�antly with data size.

For a 200 MHz PowerPC 604 proessor, the theoretial apability would be 6000 requests

per seond for an 8 Kbyte page. In pratie, several fators degrade this number, as will be

seen in the subsequent results in terms of the number of requests per seond measured. First,

as the number of onnetion reords in the aelerator inreases, so does the time to retrieve

a onnetion ontrol blok, an operation performed an average of six times per onnetion. In

order to redue this dependeny, a large hash table (256,000 bukets) and an eÆient hashing

funtion (98% of the bukets oupied with 256,000 onnetions) were used. Consequently, even

with as many as 150,000 onnetion reords at any given time of the test, few ollisions ourred.

Flow Desription Instrutions Cyles Size

m1 onnetion request from lient 2,778 8,589 N/A

m2 end of onnetion setup 2,770 5,409 N/A

3,448 8,221 64 bytes

3,608 8,330 128 bytes

3,707 8,460 256 bytes

m3 http request reeived and served 3,990 7,280 1K bytes

4,310 9,600 2K bytes

4,608 8,740 4K bytes

4,730 10,990 8K bytes

m4 server initiates onnetion end 2,041 2,933 N/A

m5 lient aknowledgement 678 1,163 N/A

m6 lient terminates onnetion 1,545 2,349 N/A

m7 server deletes onnetion reord 1,330 1,390 N/A

m1-m7 omplete request 15,812 32,823 8 Kbytes

Table 2: Measurements for the omponents of the TCP ow depited in Figure 7. The ows m1

through m7 orrespond to the boxes in the �gure. Component m3 varies with data size.

A seond degradation due to the number of onurrent onnetion reords is the \onnetion

reord leanup lateny". Every seond, one out of every 30 onnetions are examined for possible

deletion. With 150,000 onnetion reords, 5000 will potentially go through them7 ow, resulting

in 5000 * 1390 or about seven million yles. During that time (whih is the worst ase lateny

of the system), many pakets will arrive and be dropped beause the system proessor is not

de-queueing the input queue. Dropping pakets has a negative e�et on the overall throughput of

the system. In order to redue this problem, the frequeny with whih the wait lose onnetions
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Figure 8: Web Server Throughput: measurement of an Apahe Web server running on an AIX

system with a 200 MHz Power PC 604e (data from [12, 13℄) using the WebStone benhmark [22℄.

By ontrast, our aelerator running on similar hardware ahieves an order of magnitude higher

throughput.

were examined as andidates for dropping was redued. In addition, timer management was

improved so that fewer onnetions had to be sanned.

Finally, beause of the lateny of the http request and response (> 10; 000 yles), when the

number of pakets reeived was high (orresponding to high request rates), a signi�ant number

of pakets (but less than one perent) were dropped by the devie beause the input queue

was full. As mentioned earlier, dropping pakets has an e�et on overall throughput whih is

greater than just the perentage of dropped pakets. This fator also ontributed to reduing the

maximum throughput of the system from the theoretial maximum. Despite all of these fators,

the measured apaity of the system was within about 80% of the theoretial limit as we show

in the next setion.

4.2 Uniproessor Web Server Aelerator Throughput

The system used to measure the Web aelerator throughput is illustrated in Figure 9. It onsisted

of two Web aelerators and two SP2 frames ontaining a total of 16 nodes. The aelerators ran

on 200 MHz powerPC proessors and were onneted to eah other via four 16 Mbit/s token rings.

The �rst aelerator was the aelerator under test and the seond aelerator funtioned both

as a Web server for handling ahe misses as well as a lient in order to issue additional requests

to the �rst aelerator's ahe. The SP2 frames were onneted to the aelerator under test

through four 16 Mbit/s token rings. The SP2 nodes issued requests to the aelerator by running

WebStone. The total I/O bandwidth to the aelerator under test was thus 128 Mbit/s, half from

the SP2 frames and half from the other aelerator. Eah SP2 node typially ran about 20-40

WebStone lients at a time. The seond aelerator ran up to 100 WebStone lients at a time.

Eah aelerator had 512 Mbytes of main memory. The performane numbers in this setion and
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Figure 9: The system used to test our aelerator's performane: 16 SP/2 nodes were used for

lients, eah node generating 20 to 40 lients. Totally, there were 320 to 640 lients. Also, an

extra aelerator was used for 5 to 100 additional lients.

Setion 4.3 are for prototypes we have implemented and are not for any IBM produts.

Figure 10 shows the number of ahe hits per seond a uniproessor aelerator an sustain

as a funtion of requested page size. For pages smaller than 2 Kbytes, the aelerator was the

bottlenek. For pages larger than 2 Kbytes, the network was the bottlenek. Sine the network

beomes the bottlenek for requested pages greater than 2 Kbytes, it is useful to estimate the

throughput attainable for larger sizes assuming a higher bandwidth network and the path lengths

presented previously. If we assume that the maximum segment size is 2 Kbytes and that the

network is not the bottlenek, the path length for sending any additional 2 Kbytes is on the

order of 3000 yles. Eah 2 Kbyte delta involves one or two additional pakets, some minimum

TCP proessing, but no soket, ahe proessing, or data opying. For instane, a request for 20

Kbytes will require another 30,000 yles, doubling the path length and reduing the throughput

by a fator of two. The resulting projetions are shown in Figure 11.

A ahe miss for a page of 8 Kbytes or less onsumes around 100 Kyles. In the event

of a ahe miss, the aelerator must request the information from a bak-end server before

sending it bak to the lient. Requesting the information from a server requires onsiderably

more instrutions than fething the objet from ahe. If the miss rate is 100%, the aelerator

an serve about 2000 pages per seond before its CPU is 100% utilized.

Our own measurements as well as published performane reports on Web servers [22℄ indiate

that Web servers running under Unix or NT on hardware of similar apaity to that of our

aelerator an serve a maximum of several hundred pages per seond, an order of magnitude less

than the rate ahieved by our aelerator. The performane di�erene between our aelerator

and a onventional Web server an be seen by omparing Figures 10 and 11 to Figure 8.
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Figure 10: The number of ahe hits per seond a uniproessor aelerator an sustain and the

projeted number whih would be expeted if the network were not a bottlenek.
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The API our aelerator provides whih allows an appliation program to expliitly ontrol the

ontents of the ahe makes it feasible to ahe dynami data in many situations. The presene of

dynami Web pages an hurt performane signi�antly. We have enountered several ommerial

Web sites where a single request for a dynami page typially onsumes several seonds of CPU

time. However, our aelerator serves dynami data at the same high rate at whih it serves

stati data. Consequently, our ahe an often speed up the rate at whih dynami data is served

by several orders of magnitude ompared with a single order of magnitude for stati pages.

The overall performane of a system deploying our ahe is summarized in Figure 12. Eah

urve represents a bak-end server on�guration with a di�erent apaity. For example, the urve

marked WST (Web server throughput)1000 ops/se orresponds to a system whih an handle

1000 ahe misses per seond. In order to obtain a bak-end server on�guration of this apaity,

it may be neessary to plae multiple servers behind the aelerator. For Web sites whih generate

signi�ant dynami ontent, it is not unommon to have server throughputs of well below 100

requests per seond.
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Figure 12: The overall performane of a system utilizing a uniproessor aelerator. (WST: Web

server throughput)

4.3 Salable Aelerator Performane

We have built a salable Web server aelerator where eah ahe member runs on a 200 MHz

PowerPC proessor. The system used to measure the Web aelerator throughput onsisted of

two SP2 frames ontaining a total of 16 nodes whih were onneted through loal area networks

to the TCP router. Some of the SP2 nodes issued requests to the ahe array by running the
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Figure 13: Throughput versus number of ahe nodes, up to 2 KB objets

WebStone benhmark [22℄. Other nodes were used as bak-end servers to handle ahe array

misses.

Our test on�guration did not have the apaity to drive more than two ahe member nodes.

We measured the CPU overheads for the various ases desribed in Setion 3.1 for two ahe array

nodes. Then, we onstruted a separate slow aelerator onsisting of multiple ahe members

and measured the performane on it for multiple ahe array nodes. (Eah ahe member of

this slow aelerator runs on a Motorola 68040 proessor.) We projet the performane of fast

aelerators ontaining multiple ahe members from that of slow ones, and that of a single node

fast aelerator. We validated our projetions by omparing measurements of the CPU overhead

for TCP hando�s and other ases desribed in Setion 3.1 for both slow and fast aelerators.

We �rst show how the system sales when we inrease the number of ahe nodes in the ahe

array. Figure 13 shows the results for the number of requests served by the ahe array for objets

up to 2 KB. In this �gure, the number of nodes exludes the load balaner. The urves atten

out when the load balaner beomes the bottlenek. For the TCP-router based approahes, the

UDP interfae sales the best for both ahe array hits and ahe array misses. The HTTP

interfae has signi�ant overhead. Cahe array hits in a multi-node system inur more overhead

on average using HTTP than ahe array misses using other interfaes. For the ase of ahe

array hits, the HTTP interfae with two nodes results in slightly lower throughput than using

a single node. The UDP interfae for two nodes only results in higher throughputs for ahe

array hits ompared with a single node for objets up to about 40 KB (Figure 14). However, no

repliation was used in these runs. By repliating hot objets, the overhead for ahe array hits

using all three interfaes an be redued. In addition, a 2-node system using any of the three

interfaes results in higher throughputs than a 1-node system for ahe array misses for small

objets.

Figures 14 and 15 show the system performane when the sizes of the requested data objets
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Figure 14: Impat of objet size, 2 to 100 KB objets

are inreased. The measurement was made in the ahe array with 2 ahe nodes (faster aeler-

ators). As mentioned earlier, the UDP interfae has the best performane with small size objets.

However, the relative performane of the hando� interfae improves with inreasing objet size.

This is beause the advantage of eliminating one hop from the data return path beomes greater

as the data size gets larger. The graph shows that the ross-over point between the two ases is

when the objet size is between 3 and 4 KB.

Figure 16 ompares the maximum ahievable throughputs when using the TCP router versus

the ontent-based router as the load balaner while the number of nodes in the ahe array varies.

In the �gure, the number of ahe nodes inludes the load balaner (unlike the previous �gures).

The �gure shows that with a small number of ahe nodes in an aelerator, a ontent-based

router results in a higher throughput whereas for a higher-end system, the TCP router results

in a higher throughput. When the ahe array is omposed of two or three nodes, the front-end

load balaner also works partly as a ahe node.

Maximum throughput is limited to 15,000 onnetions per seond due to the front-end router.

In order to get higher throughputs, it is possible to use multiple salable aelerators and route

requests to the aelerators using domain name servers (DNS) [9℄.

In all of the graphs in this setion, the ahe array did not perform any repliation of hot

objets on multiple ahe members. When the TCP router is used, performane an be improved

further by repliation of hot data. When the load balaner is a potential bottlenek, routing

requests without examining ontent while repliating hot objets to redue ahe member misses

is preferable to ontent-based routing.

4.4 Experiene in Real Deployments

The Web server aelerator has been used at a number of highly aessed Web sites inluding

those for the 2000 Olympi Games, the US Open Tennis Tournament, Masters Golf Tourna-

ment, and the Wimbledon Open Tennis Tournament. We �rst report on our experiene at the

Wimbledon Open Tennis Tournament whih was held from June 23 to July 2, 1999. The Web
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hits misses requests hit ratio

Figure 17: Hits, misses (array hits and array misses), and hit ratios on the Web aelerators at

the Wimbledon Tennis site for ten hours on July 2, 1999.

site was distributed over three loations: Shaumburg, Illinois; Columbus, Ohio; and Bethesda,

Maryland. Fifty Web servers and four Web server aelerators were used for the site. Initially,

two aelerators were used, and two were added later. There was a separate TCP router as a

front-end load balaner and thus the aelerators funtioned only as ahes. The traÆ to ael-

erators was ontrolled by the front-end load balaner with a relative weight of four ompared to

the regular Web servers. (The load balaner dispathed the requests in a weighted round robin

fashion onsidering the relative apaities of respetive nodes. The apaity of the aelerators

was assumed to be four times that of the regular Web servers.) During the event, there were a

total of about one billion requests over two weeks. Proessing by a single aelerator peaked at

66,095 requests per minute around 10:30 a.m. at the Bethesda site.

Figure 17 shows the number of requests, hits, and misses proessed by the Web server a-

elerators for ten hours on July 2 along with the orresponding hit ratios. The number of total

requests direted to the four aelerators was 8,932,303. The total number of requests to the site

for the 10 hours was about 38 million. Out of them, 8,190,429 were ahe hits and the rest were

ahe misses, resulting in a 92% ahe hit ratio.

Our Web server aelerator was also a ritial omponent for the 2000 Olympi Games Web

site. The Web site deployed 71 front-end aelerator nodes distributed geographially aross seven

sites. All requests to the Web site initially went to a front-end aelerator node (By ontrast,

at the Wimbledon site, only a fration of the requests were direted to an aelerator node).

The hit rates aross all front-end aelerator nodes was 87%. For the most ative time period

from September 15 through Otober 1, the site reeived 5,544,552,719 total requests of whih

4,816,070,515 were ahe hits. The traÆ to the front-end aelerators and hit rates are shown

in Figure 18.

Eah Web server aelerator had 512 Mbytes of memory. This memory was used for both

ahe storage and onnetion management. The amount of usable ahe spae depended on the

traÆ. When traÆ to an aelerator was light, most of the 512 Mbytes ould be used for the
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hits misses requests hit ratio

Figure 18: Hits, misses (array hits and array misses), and hit ratios on the Web aelerators at

the 2000 Olympi Games Web site.

ahe. When traÆ to the aelerator was high, less ahing spae was available.

The Web server aelerators had suÆient throughput to deliver responses quikly at all times

at both the 1999 Wimbledon and 2000 Olympi Games Web sites.

5 Related Work

Web server aelerators are ontained in both the Harvest and Squid ahes [5, 10℄. Our httpd

aelerator results in onsiderably better performane than the Harvest and Squid aelerators

partly beause our aelerator runs on an embedded operating system. Novell sells an httpd

aelerator as part of its BorderManager produt [19℄. Mirosoft's Salable Web Cahe (SWC) [8℄

and kHTTPd for Linux (http://www.fenrus.demon.nl/) are Web server aelerators whih are

implemented as kernel-mode ahes on the serving platform. Suh aelerators require speial

operating system support on servers. By ontrast, our aelerator an be used in onjuntion

with any server platform and allows a single aelerator to be assoiated with multiple servers.

A key di�erentiating feature of our aelerator from others is that we allow dynami pages

to be ahed in addition to stati ones. This is possible beause we provide an API for an

appliation to expliitly ontrol what is ahed. None of the other aelerators we are aware of

provide the salability features whih we provide wherein multiple proessors are used to inrease

the throughput, memory, and availability of the aelerator.

Several Web proxy ahes are available suh as Inktomi's TraÆ Server [6, 11℄, Network

Appliane's NetCahe [1℄, the CaheFlow 2000 [15℄, and IBM's Web TraÆ Express [7℄. As far

as we know, none of these produts provide salability using our approah in whih all objets

are ahed in main memory and multiple proessors are used to sale the size of main memory.

There have been a few papers desribing enabling tehnologies whih are utilized by our

aelerator. The TCP router used to route requests to ahes is analyzed in [9, 14℄. Content-
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based routing is disussed by Pai et. al. in [23℄. A key di�erene in our work is that we analyze

the overhead for doing ontent-based routing and present alternative methods for routing requests

when the overhead for performing ontent-based routing is likely to make the router beome a

bottlenek.

6 Conlusions

In this paper, we presented the design, key issues in the implementation, and the performane

of a Web server aelerator. Our aelerator improves Web server performane by ahing data

and runs under an embedded operating system. Our aelerator has been deployed at several

highly aessed Web sites for improving performane. Hit rates of over 85% were ahieved at the

2000 Olympi Games and 1999 Wimbledon Open Tennis Tournament Web sites. By ontrast, a

Web server running under a general-purpose operating system on similar hardware an serve a

maximum of several hundred pages a seond. We desribed how the aelerator's OSI layer four

was extended and optimized to support TCP appliations suh as the ahe. Our aelerator

provides an API whih allows appliation programs to expliitly ahe, invalidate, and modify

ahed data. This API an be used to ahe dynami as well as stati data.

We have also presented a multiproessor aelerator as a salable and highly available solution.

The memory of our aelerator sales linearly with the number of ahe nodes, and the throughput

sales almost linearly with the number of ahe nodes as long as the front-end load balaner is

not a bottlenek. We have ompared design alternatives for the salable aelerators and have

quanti�ed the eÆieny and saling ahieved by the shemes.

The multiproessor aelerator inludes a load balaner sending requests to multiple proes-

sors olletively known as a ahe array. The load balaner takes on one or a ombination of two

forms: a ontent router, in whih requests are sent to spei� nodes of the ahe array based

on the URL requested; and a TCP router, where the request is routed without regard to the

requested URL. While ontent-based routing redues CPU usage on ahe nodes, it adds over-

head to the load balaner, whih an result in the load balaner beoming a bottlenek. Greater

throughputs an often be ahieved when some or all requests are routed without their ontent

being examined.

A bak-up load balaner an be integrated into our system in order to handle load balaner

failure. Our Web aelerator an also ontinue to funtion if some but not all of the proessors

omprising the ahe array fail. Repliation of hot objets minimizes dereased performane

resulting from a ahe node failure.

There are a number of extensions to our Web server aelerator whih we are urrently

working on. One suh extension is to apply similar ideas to improve the performane of Web

proxy ahes [25, 24℄. Sine miss rates to proxy ahes are often 50% or higher, performane

an be adversely a�eted by the time to servie ahe misses. Our proxy aelerator arhiteture

redues ahe miss overheads by using an aelerator to o�oad requests to a proxy ahe whih

are likely to be misses.

A seond area we are exploring is tehniques whih allow personalized pages to be ahed.

Personalized Web pages ontain ontent spei� to users; a personalized page annot be shared

by a large pool of lients, so onventional ahing tehniques are not very e�etive. Our approah

breaks up Web pages into fragments [4℄ and represents personalized information via fragments.
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A ahe stores nonpersonalized fragments. When a omplete Web page is needed, it is on-

struted from nonpersonalized ahed fragments and personalized fragments whih are typially

not ahed.

A third area we are working on is salable tehniques for ahieving ahe onsisteny when

an aelerator is not tightly oupled with a server. An aelerator ould be at a remote point in

the network. Sine expiration times are often insuÆient for ahieving strong ahe onsisteny,

servers must have the ability to invalidate ontent in remote aelerator ahes. The ahe

onsisteny tehniques need to be salable to aommodate large numbers of aelerator ahes

and ahed objets [28℄.
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