EventGuard: A System Architecture for Securing
Publish-Subscribe Networks

Mudhakar Srivatsa®, Ling Liut and Arun lyengart
IBM T.J. Watson Research Center, Yorktown Heights, NY 10562f
College of Computing, Georgia Institute of Technology, Atlanta, GA 30332!

{msrivats, aruni}@us.ibm.com, lingliu@cc.gatech.edu

I Publish-subscribe (pub-sub) is an emerging paradigm for building a large number of distributed
systems. A wide area pub-sub system is usually implemented on an overlay network infrastructure
to enable information dissemination from publishers to subscribers. Using an open overlay network
raises several security concerns such as: confidentiality and integrity, authentication, authorization
and denial-of-service (DoS) attacks. In this paper we present EventGuard — a framework for
building secure wide area pub-sub systems. The EventGuard architecture is comprised of three
key components: (1) a suite of security guards that can be seamlessly plugged-into a content-
based pub-sub system, (2) a scalable key management algorithm to enforce access control on
subscribers, and (3) a resilient pub-sub network design that is capable of scalable routing, handling
message dropping-based DoS attacks and node failures. The design of EventGuard mechanisms
aims at providing security guarantees while maintaining the system’s overall simplicity, scalability
and performance metrics. We describe an implementation of the EventGuard pub-sub system
to show that EventGuard is easily stackable on any content-based pub-sub core. We present
detailed experimental results that quantify the overhead of the EventGuard pub-sub system and
demonstrate its resilience against various attacks.

Categories and Subject Descriptors: C.2.4 [Distributed Systems]: Distributed Applications—

Security and Performance

General Terms: Security
Additional Key Words and Phrases: Publish-Subscribe System, Access Control, DoS Attacks,
Resilient Overlay Network, Performance and Scalability

1. INTRODUCTION

An increasingly large number of Internet applications require information dissem-
ination across different organizational boundaries, heterogeneous platforms, and
a large, dynamic population of publishers and subscribers. A publish-subscribe
overlay service (hereafter refer to as pub-sub) is a wide-area communication infras-
tructure that enables data dissemination across potentially unlimited numbers of
publishers and subscribers, scattered geographically across the wired and wireless
Internet [Carzaniga et al. 2001]. In such an environment, publishers publish infor-
mation in the form of event notifications and subscribers have the ability to express
their interests in an event or a pattern of events by sending subscriptions to the
pub-sub overlay network. The pub-sub overlay network uses content-based routing
schemes to dynamically match each publication to all the active subscriptions, and
notifies the subscribers of any publication that matches their registered interest,
ensuring that subscribers only receive notifications of those events that match their
interests.

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1-077.

An important characteristic of pub-sub overlay services is the decoupling of pub-
lishers and subscribers combined with content-based routing protocols, enabling a
many-to-many communication model. Such a model presents many inherent ben-
efits as well as potential risks. On one hand, by offloading the task of identifying
destination addresses of publications to the pub-sub overlay network, it not only
allows message routing to be handled in a way that avoids unnecessary message
replications but also enables dynamic and fine-grained subscriptions. As a result,
pub-sub overlay services have proven to be scalable and effective for wide-area in-
formation dissemination. On the other hand, many security concerns exist in such
an environment regarding authenticity, confidentiality, integrity and availability of
publications and subscriptions: such as the confidentiality, integrity and authentic-
ity of subscriptions and publications.

Most research and development of pub-sub systems to date have been largely
dedicated to the performance and scalability of pub-sub networks as well as the
expressiveness of event publication and subscription models nodes [Carzaniga et al.
2001][Banavar et al. 1999][Datta et al. 2003]. Only recently, a few researchers
have studied specific security requirements of pub-sub networks [Wang et al. 2002,
pointing out attacks threatening message integrity (unauthorized writes) and au-
thenticity (fake origins) in addition to message confidentiality (unauthorized reads),
and the risks of bogus publications and fake subscriptions. Unfortunately, most of
the existing secure event distribution protocols proposed so far focus only on the
content confidentiality risks in pub-sub networks [Raiciu and Rosenblum 2006][Opy-
rchal and Prakash 2001]. The lack of a more holistic security framework has been
a major hurdle in deploying pub-sub systems for mission-critical applications that
could greatly benefit from them.

In this paper, we present FventGuard — a framework for securing a pub-sub
overlay service. EventGuard simultaneously supports in-network matching and
secure content-based routing, but makes careful design choices to tradeoff perfor-
mance with security. This is achieved by separating event attributes into two types:
routable attributes (that are used for in-network matching) and secret attributes
(whose confidentiality needs to be guaranteed). For example, the secret attribute
patientRecord in an event e = ({topic, cancerTrail), (age, 25), (patientRecord,
record)) should be intelligible to only a subscriber S who has subscribed for f =
((topic, FQ, cancerTrail), (age, >, 20)), but not to a subscriber S’ who has sub-
scribed for f' = ((topic, FQ), cancerTrail), (age, >, 30)). The pub-sub network
nodes should be capable of matching the routable attributes in an event e (topic
and age in the above example) against the constraints in a subscription filter f
without obtaining any information about the secret attribute patientRecord.

While past work on secure content-based routing have suggested using group
key management algorithms, the need to keep a publisher informed of such groups
of subscribers breaks the decoupling between publishers and subscribers, thereby,
consequently weakening the flexibility, performance and scalability of the pub-sub
system. In contrast, EventGuard proposes to decouple key management between
publishers and subscribers as follows: we associate an authorization key K (f) with
a subscription filter f and an encryption key K(e) with an event e. The publisher
uses the encryption key K (e) to encrypt the secret attributes in an event e; and

ACM Journal Name, Vol. V, No. N, Month 20YY.

Replicated Trusted Meta-Service (MS)

Publisher

Publish | Advertise [Unadvertise| Subscribe [Unsubscribel —Routing

Guard Guard Guard Guard Guard Guard
EventGuard EventGuard [EventGuard|
Publisher Subscriber Router

Resilient Pub-Sub Network
Network (TCP/UDP/SSL)

Fig. 1. Basic Pub-Sub System Fig. 2. EventGuard Architecture

the subscriber uses the authorization key K(f) to decrypt the secret attributes in
a matching event e. We use hierarchical key derivation algorithms [Wong et al.
2000] to map the authorization keys and the encryption keys into a common key
space. The mapping ensures that a subscriber can efficiently derive an encryption
key K (e) for an event e using an authorization key K (f) for the subscription filter
f if and only if the event e matches the subscription filter f. As shown in this
paper, disassociating the publisher’s encryption key (K (f)) with subscriber groups
offers significant benefits in terms of both flexibility and scalability.

EventGuard supports token-based subscription matching in the pub-sub network.
For content-based subscriptions, events may be safely filtered at the subscriber
nodes by deriving the decryption key for the event from the authorization key cor-
responding to the subscription filter. In order to reduce the risk of targeted selective
message dropping attack through passive logging, we develop a probabilistic multi-
path routing scheme to minimize the amount of information (about the routable
attributes) that can be inferred by the routing nodes.

Besides a decoupled key management scheme and a probabilistic content-based
routing scheme, EventGuard comprises of suite of security guards to protect a pub-
sub overlay service from various vulnerabilities and threats and ensuring authen-
ticity, availability, confidentiality, and integrity of publications, subscriptions, and
pub-sub overlay routing. We present a prototype implementation of EventGuard
on top of Siena [Carzaniga et al. 2001] to show that EventGuard is easily stack-
able on any content-based pub-sub core. With this prototype, we have conducted
experimental evaluation of the overhead added by EventGuard to the pub-sub sys-
tem by comparing EventGuard with Siena. Our experimental results show that
EventGuard can secure a pub-sub network with minimal performance penalty.

The rest of this paper is organized as follows. We first present a formal pub-sub
system model and a threat model, which serve as the basic system model for the
design of EventGuard in Section 2. Section 3 details the design of our security
guards, Section 4 presents our scalable key management algorithm and Section 5
describes EventGuard’s resilient network design. We present an implementation of
EventGuard and evaluate it in Section 6. Section 7 discusses some related work
followed by the conclusion in Section 8.

ACM Journal Name, Vol. V, No. N, Month 20YY.

2. PRELIMINARIES
2.1 Reference Pub-Sub Model

In content-based pub-sub systems, publishers publish their contents in terms of
event notifications. An event notification is a set of attributes where an attribute
is defined by its name, type, and value [Carzaniga et al. 2001]. Subscribers have
the ability to express their interest in an event by sending a subscription to the
pub-sub overlay network infrastructure. The subscription is a predicate containing
one or more constraints (filters). The infrastructure notifies the subscribers of any
published notification that matches their subscribed interests.

Pub-sub systems typically support two levels of event matching — topic-based and
content-based. In a topic-based matching scheme [Aguilera and Strom 2000], every
event is marked with a topic. A topic could be a simple keyword or any unique
numeric identifier. A subscriber subscribes to one or more topics, and receives
all the events published under these topics. The pub-sub network routes events
based on simple topic matching. Content-based matching schemes [Carzaniga et al.
2001][Aguilera et al. 1999][Banavar et al. 1999] are layered on top of topic-based
matching schemes and allow more sophisticated event matching and filtering. For
example, a subscriber may specify a condition on the event (say, stock price
> 100) as a part of its subscription.

A typical pub-sub system implements five important primitives: subscribe, adver-
tise, publish, unsubscribe and unadvertise. Subscribers specify the events in which
they are interested using the subscribe function. Publishers advertise the type of
events they would publish using advertise. Publishers publish events via the pub-
lish function. A subscription is repeatedly matched until it is canceled by a call
to unsubscribe. An advertisement remains in effect until it is canceled by an un-
advertise. We use the term messages to loosely denote all traffic on the pub-sub
network, including publications, subscriptions, advertisements, unsubscriptions and
unadvertisements.

Publications are specified in terms of events and subscriptions are expressed in
terms of predicate filters. Formally, an event e = {(a)* = (name, type, value)*,
where « is some attribute of the form (name, type, value), name refers to some
attribute name, type refers to the data type of the attribute, value corresponds
to its published value, and the notation * indicates that an event may comprise
one or more attributes. A filter selects events by specifying a set of attributes
and constraints on the values of those attributes. Formally, filter f = (¢)* =
(name, operator, value)*, where ¢ is some constraint of the form (name, operator,
value), name refers to some attribute name, value specifies an attribute value,
operator refers to a binary operator, and the notation * indicates that a filter may
be comprised of one or more constraints in a conjunctive form. Operators typically
include common equality and ordering relations (=, <, >, etc) for numeric types;
and substring, prefix, suffix operators for strings.

An attribute o = (name,, typeq, value,) satisfies a constraint ¢ = (name,,
operatory, valuey,) if and only if name, = namey, valueg is of type,, and
operator(valuey, valuey) is true. When an attribute « satisfies a constraint ¢, we
say that a matches ¢. Equivalently, when a matches ¢, we say that ¢ covers a. For
example, an attribute aw = (price, 120) matches the constraint ¢ = (price, >, 100).

ACM Journal Name, Vol. V, No. N, Month 20YY.

An event e matches a subscription filter f if for all constraints ¢ in f, there exists
some attribute « in e that matches ¢. When a filter is used in an advertisement, it
defines the set of all possible notifications that can be generated by the publisher.
An event e matches an advertisement filter f if for all attributes « in e, there exists
some constraint ¢ in f that covers a. The notion of covers can be extended in a
straightforward manner to two subscription filters, or two advertisement filters or
a subscription filter and an advertisement filter.

Unsubscriptions and unadvertisements serve to cancel previous subscriptions and
advertisements respectively. Given an unsubscription unsubscribe(X, f), where X
is the identity of the subscriber and f is a filter, the pub-sub system cancels all
subscriptions subscribe(X, ¢g) submitted by the subscriber X with subscription filter
g covered by f. Similarly, an unadvertisement message unadvertise(Y, f) cancels
all advertisements advertise(Y', g) submitted by the publisher Y with advertisement
filter g covered by f.

As illustrated in Figure 1, in a wide-area pub-sub system, publishers and sub-
scribers are usually outside the pub-sub network (though not required). Typically,
we have a relatively small set of known and trusted publishers and a much larger
set of unknown subscribers. A natural choice for the topology of a pub-sub net-
work is a hierarchical topology (see Figure 1). Other plausible topologies include
peer-to-peer and mixed topologies like super-peer topologies [Carzaniga et al. 2001].
For the sake of simplicity, in this paper we assume a hierarchical topology for the
pub-sub network. When a node n receives a subscription request subscribe(m, f)
from node m, it registers filter f with identity m. If filter f is not covered by any
previously subscribed filters at node n then node n forwards subscribe(n, f) to its
parent node. Note that node m could be a subscriber or simply another node in
the pub-sub overlay network that forwarded a subscription request to node n.

Effectively, for every publisher, a pub-sub dissemination tree is constructed with
the publisher as the root, the subscribers as the leaves and the pub-sub routing
nodes as the intermediate nodes of the tree. The publications flow from the root
(publisher) to the leaves (subscribers) of the tree. Similarly, advertisements, un-
subscriptions and unadvertisements are propagated from the root to the leaves of
the tree. Note that a node n in the pub-sub network may belong to one or more
pub-sub dissemination trees (or so called pub-sub network channels), and each cor-
responds to a publisher and a topic of events that the publisher publishes through
this channel. When a node n receives a publication notification publish(Y,e) from
Y to publish the event e, it uses the pub-sub dissemination tree to which it belongs
to identify all active subscriptions whose filters {f1, fa, ---, fp} are matched by
the event e. Then, node n identifies and forwards event e to those of its children
nodes {Xi, X, ---, X} that have subscriptions with subscription filters covered
(matched) by a subset of filter f; (1 <1 < p).

2.2 Threat Model

The pub-sub overlay service model is comprised of three entities: publishers, sub-
scribers and routing nodes. In this section, we present our threat model for all
these entities.

Publishers. EventGuard assumes that authorized publishers are honest. All pub-

ACM Journal Name, Vol. V, No. N, Month 20YY.

lications by authorized publishers are assumed to be valid and correct. However,
one could build a feedback mechanism wherein the subscribers rate the publish-
ers periodically [Srivatsa et al. 2005][Xiong and Liu 2004]. Over a period of time,
subscribers would subscribe only to high quality publishers, and the low quality
publishers would eventually run out of business. However, unauthorized publishers
may masquerade as authorized publishers and flood the network and consequently
the subscribers, with incorrect or duplicate publications, advertisements or unad-
vertisements.

EventGuard assumes that event attributes can be partitioned into routable at-
tributes (that are used for in-network routing) and secret attributes (whose con-
fidentiality needs to be preserved from unauthorized entities). This partition is
publisher specific and applies to all subscribers subscribing to that publisher. On
one hand, this restriction allows EventGuard to be highly scalable while retain-
ing attractive security properties. On the other hand, this restriction limits the
class of events that can be protected by EventGuard. For example, in location-
based events (e.g., (name, building, room, time)) the choice of secret attributes
is application-specific. In such scenarios, one may use a common minimum set of
routable attributes; however, we note that reducing the number of routable at-
tributes reduces the overall performance of a pub-sub system.

Subscribers. EventGuard assumes that authorized subscribers may be partially
dishonest. Concretely, we assume that an authorized subscriber does not reveal
publications to other unauthorized subscribers (otherwise, this would be equivalent
to solving the digital copyrights problem). However, unauthorized subscribers may
be curious to obtain information about publications to which they have not sub-
scribed. Also, subscribers may attempt to spam or flood the pub-sub network with
duplicate or fake subscriptions and unsubscriptions.

Routing nodes. EventGuard assumes that some of the nodes on the pub-sub net-
work may exhibit dishonest behavior. However, we also assume that a significant
fraction of the pub-sub nodes are non-malicious so as to ensure that the network is
alive. A pub-sub network is alive if it can route messages and maintain its connec-
tivity despite the presence of malicious nodes. Malicious nodes may eavesdrop or
corrupt pub-sub messages routed through them. Malicious nodes may also attempt
to selectively (say based on topic = stockQuote) or randomly drop pub-sub mes-
sages. Further, malicious nodes may attempt to flood other nodes and subscribers.

2.3 EventGuard Overview

EventGuard is designed to be completely modular and operates entirely above a
content-based pub-sub core. EventGuard requires minimal coupling with the pub-
sub core and hence can be easily ported from one pub-sub core to another. Figure
2 shows EventGuard’s architecture. EventGuard is comprised of three components.
The first component is a suite of security guards that guard the pub-sub system
from various security threats discussed in Section 2.2. The second component is
a light-weight key management service to provide identification and authorization
control for advertisements and subscriptions in the pub-sub system. The third com-
ponent is a resilient pub-sub network that is capable of handling node failures and
selective and random dropping-based DoS attacks.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Security Guards. EventGuard comprises of six guards, securing six critical pub-
sub operations: subscribe guard, advertise guard, publish guard, unsubscribe guard,
unadvertise guard and routing guard. These guards are built on top of content-
based routing primitive available in a pub-sub network with the goal of protecting
these operations from various attacks discussed in Section 2.2.

Key Management Service. EventGuard relies on a thin trusted meta-service
(MS) to create keys (that are used for confidentiality and access control in the
pub-sub network) and signatures (that are used to ensure the authenticity of con-
trol activities such as subscribe, unsubscribe, advertise and unadvertise). The M S
also supports a periodic rekeying operation to efficiently handle unsubscriptions in
a large pub-sub system. The M S may also include an access control engine that
determines the set of filters that a subscriber is authorized to subscribe for and the
set of filters that a publisher is authorized to publish under. As described later in
this paper, access control is implicitly enforced by issuing the right set of encryp-
tion and decryption keys to the authorized publishers and authorized subscribers
respectively.

Resilient pub-sub network. EventGuard achieves resilience to node failures and
message dropping based attacks by constructing a network topology that is richer
than the popular tree-based event dissemination topology. Although a strict tree-
based topology minimizes the communication cost in the pub-sub content routing
network, it is not robust for handling node failures and message dropping attacks
[Srivatsa et al. 2006]. We improve the resilience of the pub-sub network by modify-
ing the tree structure to incorporate multiple independent paths [Srivatsa and Liu
2004] from the publisher to subscribers.

3. EVENTGUARD: BASIC SECURITY GUARDS

In this section we present a high level functional overview of EventGuard. We
first introduce the three building blocks used by EventGuard: tokens, keys and
signatures. Then we describe how EventGuard uses these primitives to develop six
safeguards for securing the six important pub-sub operations: subscribe, advertise,
publish, unsubscribe, unadvertise and routing. In this section, we first describe
EventGuard mechanisms in the context of a topic-based pub-sub system. Then, we
present EventGuard mechanisms to handle more complex subscriptions.
Signatures play a fundamental role in achieving message authentication and pro-
tecting the pub-sub services from flooding-based DoS attacks. EventGuard uses
a probabilistic signature algorithm for achieving authenticity. A signature scheme
is probabilistic if there are many possible valid signatures for each message and
the verification algorithm accepts any of the valid signatures as authentic. In the
first prototype of EventGuard, we use ElGamal [ElGamal 1985] as the probabilistic
signature algorithm. A signature on any message M using ElGamal yields a tuple
(r,s). The r-component of the signature is guaranteed to be unique (with high
probability). Further, if the same message M is signed twice by the same entity z,
we get two different, but valid ElGamal signatures of M. All messages originating
at entity x are signed using its private key rk(x); and all its signatures are verified
using its corresponding public key pk(z). EventGuard uses the trusted meta-service
MS to create signatures for advertisements and subscriptions. Subscriptions and

ACM Journal Name, Vol. V, No. N, Month 20YY.

advertisements are authenticated using signatures, ensuring that malicious nodes
cannot flood the pub-sub network with bogus publications or phony subscriptions.
EventGuard requires the ability to generate public/private keys and certificates for
the MS and the publishers in the pub-sub network (using OpenSSL [OpenSSL]).
EventGuard uses in-built mechanisms for distributing certificates and public keys.
As described later in this paper, publishers and subscribers receive MS’s public key
(with certificate) when they send their first advertisement or a subscription request
to the MS. Subscribers also receive a publisher’s public key (with certificate) from
advertisements disseminated through the pub-sub network by the publishers.

We have introduced tokens, keys and signatures as fundamental building blocks
of EventGuard. The next challenge is to design and construct the six concrete
safeguards for the following six essential operations: subscribe, advertise, publish,
unsubscribe, unadvertise and routing.

3.1 Subscribe Guard

Subscribe guard is designed for achieving subscription authentication, subscription
confidentiality and subscription integrity, and preventing DoS attacks based on spu-
rious subscriptions. Suppose that a subscriber S wishes to subscribe for a topic w.
In EventGuard, subscriber S sends the topic w to the EventGuard trusted meta
service M S indicating that it wishes to subscribe for topic w. At this point, the
M S may act as the authority for implementing a cost model for the pub-sub sys-
tem. For example, the M S may collect a subscription fee for every subscription;
the subscription fee may be dependent on the topic w. Let ¢'(w) be the original
subscription filter for topic w sent to M S by the subscriber S, sb(w) denote the sub-
scription permit issued by M .S upon receiving a subscription ¢’(w) from subscriber
S, and ¢(w) denote the legal subscription transformed from ¢'(w) by M.S in two
steps: (1) replacing topic w with token T'(w) and (2) signing the subscription with
the subscription signature provided by M S. Both are included in the subscription
permit sb(w) generated by M.S. They are defined as follows:

¢'(w) = (topic, EQ,w)
sb(w) = (K(w), T(w), sigyrs(T(w)), UST® (w))
¢(w) = (topic, EQ,T(w)), (sig, ANY, sigyrs (T (w)))

The MS verifies access rights for a subscriber (if such access control rules are
mandated by the publisher) and sends a subscription permit sb(w) to the subscriber
S. The key K(w) for topic w is derived as K(w) = KH,,s)(w), where rk(MS)
denotes the M S’s private key and K H - (w) denotes a keyed hash of string w using a
keyed-hash function K H (say HMAC-SHA1 [Krawczyk et al.]) and a secret key K.
EventGuard supports periodic (epoch based) rekeying to ensure that subscribers
cannot read events past their subscription epoch. The token T'(w) for topic w is
derived as T'(w) = H(K(w)), where H(x) denotes a hash of string = using a one-
way hash function H (say, MD5 [Rivest 1992] or SHA1 [Eastlake and Jones 2001]).
UST?® (w) is a special token given to the subscriber to enable safe unsubscription
(discussed later under unsubscribe guard). Observe that if any two subscribers
subscribe for topic w, they get the same encryption key K(w) and the same token
T(w).

ACM Journal Name, Vol. V, No. N, Month 20YY.

The signature sigy,s(7T(w)) is an ElGamal signature by the MS on the token
T'(w) in the subscription permit sb(w) provided to subscriber S. The signature has
two parts sigyrs (T'(w)) = (r, s). Note that the r-component of the signature is
always unique. Therefore, we use r-component of the signature as the subscrip-
tion identifier. This signature serves us three purposes. First, it enables nodes in
the pub-sub network to check the validity of a subscription. Second, we use the
subscription identifier (the r-component of the signature) to detect and curb DoS
attacks based on subscription flooding. Note that even if two subscribers S and
S’ subscribe for the same topic w, sigs;¢(T(w)) # sigs;s(T(w)) (discussed later
under routing guard). Third, it is used to construct the special token UST(w)
= K H,p(us)(r) where r denotes the r-component of the M S’s signature. We use
UST®(w) to prevent DoS attacks based on fake unsubscription (discussed later
under unsubscribe guard).

Upon receiving a subscription permit sb(w) from the M.S, subscriber S trans-
forms its original subscription filter ¢'(w) to a legal subscription filter ¢(w). The
subscriber S could then submit and deploy the signed subscription ¢(w) on the pub-
sub network. Consequently, any publication that includes the token T'(w) is routed
to S. Routing nodes on the pub-sub network are not able to perform unautho-
rized reads or writes on the content of any subscription message, thus guaranteeing
subscription confidentiality and integrity. Further, nodes compromised due to DoS
attacks, even though malicious, are not able to attack the pub-sub network by
flooding fake subscriptions.

A subscriber S may restrict the number of publications it would like to receive.
For example, a subscriber may use sb(wq) and sb(ws) to construct a subscription
filter that is a conjunction of filters f(w;) and f(ws). In general a subscription
filter f = (¢p(w1), ¢(wa), -+, d(wy,)), where ¢(w) described above.

3.2 Publish Guard

Publish guard is designed to safeguard publication confidentiality, publication au-
thenticity, and DoS attacks based on bogus publications and spam. Suppose a
publisher P wishes to publish a publication pbl under topics wq, wa, - -+, wy,. The
topics are used to categorize the content pbl. The content pbl could be any arbi-
trary sequence of bytes including text, multimedia, and so on. For each topic w;,
the publisher fetches the topic’s token T'(w;) and its encryption key K(w;) from
the MS. A publication event e is constructed as follows. Let ¢’ denote the original
publication message and e denote a legal event publication transformed from e’
using tokens and content encryption of publication messages. We formally define
them as follows:

¢/ = ({(publisher, P), (content, pbl), (topic,w1), - , {topic,wy,))

e = (({publisher, P), (content, Ex (pbl)), (topic, T (w1)), (T (w1), Ex(w,)(Kr)), -
<topic, T(wm)>7 <T(wm)> EK(wm)(KT)>>

The key K, is a random encryption key generated each time a publisher needs to
publish an event. P sends the event e along with its signature, namely, sigp(e); we
note that the certificate for a publisher’s public key is distributed to the subscribers
using the advertisement message described in the following section. Observe that

ACM Journal Name, Vol. V, No. N, Month 20YY.

10

any subscriber for topic w; possesses the key K (w;). An authorized subscriber uses
the key K(w;) to decrypt the random key K,, and uses the random key K, to
decrypt the publication pbl.

The publisher uses an ElGamal signature to sign its publications. The first
component of the signature is used as the publication identifier. The signature
serves two purposes. First, it enables nodes in the pub-sub network to check the
validity of a publication (a publisher’s public key is distributed to pub-sub network
nodes and subscribers via advertisements as discussed later under advertise guard).
Second, we use the publication identifier (the r-component of the signature) to
detect and curb a DoS attack based on publication flooding (discussed later under
routing guard).

When multiple publishers publish on a common topic, it might be essential to
ensure that the publications from a publisher P are not readable by another pub-
lisher P’. EventGuard handles this problem using a small modification to the
authorization key K (w) for topic w. Instead of having a topic key shared across all
users the MS can generate a per publisher authorization key for topic w as K (w)
= KH,(ms)(P | w). The MS distributes K”(w) to a publisher. The MS uses
KT (w) to derive authorization keys for subscribers that subscribe to a topic w from
publisher P. This incurs almost no additional key generation cost. On the other
hand, the subscriber group approach has to maintain separate groups for every
publisher P.

3.3 Advertise Guard

Advertise guard is designed for achieving advertisement authentication, advertise-
ment confidentiality and integrity, and preventing DoS attacks based on bogus
advertisements. Suppose a publisher P wishes to publish events under topic w.
Publisher P sends w and its public-key pk(P) to the MS. At this point the M S
may charge a publication fee to the publisher that is some arbitrary function of w.
@' (w) is the original advertisement filter for topic w.

¢'(w) = (publisher, EQ, P), (topic, EQ,w)
ad(w) = (K(w),T(w), sighrs(T(w) || P || pk(P)), UAT" (w))
$(w) = (publisher, EQ, P), (topic, EQ,T(w)), (sig, ANY, sigh;s(T(w) || P || pk(P)))

The M S sends an advertisement permit ad(w) to the publisher P. The key K (w),
the token T'(w) and the signature sigl,o(T(w) || P || pk(P)) are computed in the
same manner as that for subscriptions. The special token UATT (w) is used for
unadvertisements (discussed in unadvertise). The publisher then constructs the
advertisement filter ¢ and propagates it to the pub-sub network. Note that the
public-key pk(P) is essential for the pub-sub nodes and the subscribers to verify
the authenticity of publications.

3.4 Unsubscribe Guard

Unsubscribe guard is designed to prevent unauthorized unsubscribe messages, flood-
ing of unsubscribe messages, and spam. When a subscriber S wishes to unsubscribe
from a topic w, S sends (T'(w), sigy;s(T(w)), UST® (w)) to the MS. The MS
checks if sigy;q(T(w)) is a valid signature on 7T'(w). The M S uses the special token

ACM Journal Name, Vol. V, No. N, Month 20YY.

11

UST*® (w) to ensure protection from DoS attacks based on fake unsubscription. The
MS checks if UST?®(w) is indeed equal to K H, (v (sbld), where sbld denotes
the subscription identifier, namely, the r-component of the signature sigy,¢(7T(w)).
Note that the signature sigy,(7(w)) and the token 7T'(w) are sent to the pub-sub
network nodes when the subscriber S subscribes for the topic w. However, the
subscriber S is never required to reveal the special token UST®(w) to the pub-sub
network. Hence, no malicious node in the pub-sub network would be able to fake an
unsubscribe request. Moreover, the use of UST®(w) prevents some subscriber S’
(# S) who has subscribed for topic w (and thus possesses signature sig$; (T (w)),
token T'(w) and key K (w)) from unsubscribing subscriber S from topic w. We use
¢'(w) to denote the original unsubscription message for topic w.

S
g
[

(topic, EQ,w)
(signrs (T (w) || sbId))
¢(w) = (topic, EQ,T(w)), (sig, ANY, signrs(T(w) || sbId))

<
V)
=
g
~
I

The M S sends an unsubscription permit usb(w) to the subscriber S. Note that the
signature includes the token T'(w) and the original subscription’s identifier sbld.
Subscriber S would unsubscribe from topic w by sending ¢(w) to the pub-sub net-
work. Nodes in the network use the M S’s signature to check the validity of an
unsubscription and use the unsubscription identifier usbld (the r component of
signature sigars(T(w) || sbId)) to detect and curb DoS attacks based on unsub-
scription flooding.

In EventGuard, an authorization key K(f) act like a capability issued to au-
thorize subscribers to read all events e that match the filter f. As described in
our subscription model (see Section 2.1), all subscriptions are accompanied by a
payment and are valid for one time epoch. We use a rekeying algorithm that is
similar to the lazy revocation (epoch based periodic rekeying) algorithms used in
several group key management protocols [Yang et al. 2001]. At the beginning of a
new epoch, if the subscribers need to refresh their subscriptions, then they must
obtain new authorization keys from the MS. To avoid flash crowds attempting to
subscribe at the beginning of a new epoch, we evenly space out the epoch intervals
on a per-topic basis. We also adaptively vary the length of the epoch on a per-topic
basis using the subscription history. Detailed discussion on choosing the per-topic
epoch length is outside the scope of this paper.

3.5 Unadvertise Guard

Unadvertise guard is designed to prevent the pub-sub network from unadvertise-
ment flooding. When a publisher P wishes to unadvertise for a topic w, P sends
(T(w), sigh,s(T(w) || P | adld), UATT (w)) to the MS. Similar to those illus-
trated in unsubscribe guard, the special token UATY (w) is computed as follows:
UATY (w) = K H, () (adld), where adld denotes the advertisement identifier,
namely, the r-component of the signature sigl;q(T(w)). Note that the use of
UATF (w) ensures DoS attacks based on phony unadvertisements. Let ¢/(w) de-

ACM Journal Name, Vol. V, No. N, Month 20YY.

12

Fig. 3. Handling Flooding based DoS attacks in EventGuard

note the original unadvertisement message for topic w.

¢'(w) = (publisher, EQ, P), (topic, EQ,w)
uad(w) = (signs(T(w) || P || adld))
¢(w) = (publisher, EQ, P), (topic, EQ,T(w)), (sig, ANY, sigrrs(T(w) || P || adId))

Upon receiving an unadvertise request from publisher P, the MS generates an
unadvertisement permit uad(w) and send it back to the publisher P. The publisher
P uses the advertisement signature sigt, o(T(w) || P || adld) included in the permit
to create a legal unadvertise request and submit it to the pub-sub overlay network.
This signature (similar to unsubscription) is used by the routing nodes to check its
authenticity and detect DoS attacks based on unadvertisement flooding.

3.6 Routing Guard

The pub-sub network nodes route messages based on tokens — the pseudonym for
topics. Besides performing the functionality of a regular pub-sub node, we require
the nodes to perform additional checks to ensure safety from DoS attacks. Now,
we discuss the checks implemented by nodes to protect the pub-sub network from
flooding-based DoS attacks.

EventGuard requires nodes on the pub-sub network to perform two security
checks. The first check is based on signatures for maintaining sender authentic-
ity and the second check is based on detecting duplicate messages. Subscriptions,
unsubscriptions, advertisements and unadvertisements are verified for the M.S’s
signature. The publications are verified for its publisher’s signature. Duplicates
are checked using the r-component of the signature. Recall that we designate the
r-component of the ElGamal signature as the message’s identifier. When a node
receives two subscriptions with the same identifier, it blocks the later one. With
the guarantee of sender authenticity and the prevention of duplicate messages, no
flooding attack could propagate beyond one good pub-sub node. Figure 3 illus-
trates this point. In Figure 3, a malicious (bad) node B1 attempts a flooding based
DoS attack to all its neighbor nodes. Observe that no invalid message (incorrect
signatures) and no duplicate message from node B1 would propagate beyond the
non-malicious (good) nodes G1, G2, G3 and G4. More importantly, none of the
nodes marked X would be hit by this DoS attack. Thus, by deploying routing
guards in the pub-sub network, EventGuard can effectively isolate the effect of
flooding attacks.

We implement the routing guard (i.e., the two security checks on each routing

ACM Journal Name, Vol. V, No. N, Month 20YY.

13

node) in three steps. First, we require a node to maintain the history of identifiers
previously seen by it. Second, we augment each EventGuard message with a times-
tamp that is signed by the M S (for advertisement, subscription, unadvertisement
and unsubscription) or signed by the publisher (for a publication). Third, a non-
malicious node blocks any message if the condition |ct — ts| > max_delay is met,
where ct is the current time, ts is the timestamp on a message, and max_delay is a
system defined parameter. Nodes only need to maintain a history of identifiers for
a time duration of max_delay. Note that max_delay must account for time skew
between nodes and routing and communication delays on the pub-sub network.

4. EVENTGUARD: KEY MANAGEMENT

We have so far described EventGuard mechanisms for a simple topic-based sub-
scription models. In this section, we extend EventGuard mechanisms to handle
more sophisticated content-based matching operators (see Section 2.1 for the defi-
nition of topic-based and content-based matching operators). In section 3 we used a
per-topic key to enforce event confidentiality from routing nodes and unauthorized
subscribers. However, content-based pub-sub networks may use more sophisticated
matching operators, such as numeric attribute based matching operators (>, <). In
this section, we present secure and scalable key management algorithms to enforce
event confidentiality for content-based matching operators.

4.1 Overview

Secure event dissemination with content-based matching operators refers to preserv-
ing the confidentiality of secret attributes in an event from unauthorized subscribers
and the routing nodes in the pub-sub network. Most existing key management so-
lutions for pub-sub networks use group key management protocols to manage sub-
scribers grouped together based on their subscriptions. However, given a flexible
subscription filter based authorization model, every event can potentially go to a
different subset of subscribers. In the worst case, for NS subscribers, there are 2V
subgroups, thereby making it infeasible to set up static groups for every possible
subgroup. Although some optimizations have been proposed for dynamic groups
such as key caching [Opyrchal and Prakash 2001], the worst case key management
cost remains at O(2V%) due to its inherent design.

EventGuard improves past solutions to the key management problem using a
completely different design philosophy. Our key management algorithms disasso-
ciate keys from subscriber groups and ensure that the key management cost is
independent of the total number of the subscribers (N.S) in the pub-sub system.
This is achieved by associating a subscription key K (f) with a filter f and an en-
cryption key K (e) with an event e such that it is computationally feasible to derive
K(e) from K(f) (using routable event attributes) if and only if e matches f. While
this offers complete confidentiality to secret attributes in an event, the routable
attributes may be vulnerable to some inference attacks by the pub-sub network
nodes. EventGuard uses a resilient network (see Section 5) to support probabilistic
multi-path event routing to allow scalable content-based routing, while minimizing
the amount of information (about the routable attributes) that can be inferred by
the routing nodes. The primary idea here is to route events from a publisher to
its subscribers probabilistically using multiple independent paths such that the fre-

ACM Journal Name, Vol. V, No. N, Month 20YY.

14

quency of all tokens (routing labels on an event) appears (nearly) indistinguishable
for all the routing nodes in the pub-sub network.

4.2 Key Management Algorithms

In EventGuard, event confidentiality is implemented using authorization keys and
encryption keys. These keys serve complementary purposes. An encryption key
is used to encrypt an event so as to maintain its confidentiality from the routing
nodes and the subscribers who have not subscribed to that event. An authoriza-
tion key is used as an authorization permit for subscribers to decrypt an event. We
embed encryption and authorization keys into a common key space using hierar-
chical key derivation algorithms [Wong et al. 2000] such that a subscriber can use
its authorization keys to efficiently derive the encryption keys only for those events
that match their subscriptions. In this section we describe our key management
algorithm and present a detailed quantitative analysis that highlights the benefits
of our approach against the group key management approach.

We use authorization keys and encryption keys to support access control on pub-
sub systems. These keys serve complementary purposes. An encryption key is used
to maintain the confidentiality of an event from subscribers who have not subscribed
to that event. An authorization key is designed to encode content-based matching
semantics into a key derivation algorithm such that an authorized subscriber can
efficiently derive the encryption keys for those events that match their subscriptions.
In this paper, we demonstrate our approach using four different types of publication-
subscription matching: topic or keyword based matching, numeric attribute based
matching, category based matching, and string based suffix/prefix matching.

For topic or keyword based matching, an authorization key K (f) associated with
a filter f = (topic, EQ, cancerTrail) must be capable of decrypting the message
msg in event e = ((topic, cancerTrail), (message, msg)). On the other hand,
a key K(f') associated with filter f' = (topic, E(Q, humanGenome) should not be
able to decrypt msg in event e. For numeric attribute based matching, a key K (f1)
used for the filter fi = ((topic, EQ, cancerTrail), (age, >, 20)) and a key K(f7)
used for the filter f{ = ((topic, FQ, cancerTrail), (age, >, 30)) must be capable
of decrypting the message msg in event e; = ((topic, cancerTrail), (age, 35),
(message, msg)). On the other hand, key K(f;) should be capable of decrypting
the message msg in event) = ((topic, cancerTrail), (age, 25), (message, msg)),
but not the key K(f]). For category based matching, a key K (f2) used for filter fo =
((topic, EQ, cancerTrail), (news, 3, unclassifiedNews)), a key K (f}) used for
14 = ((topic, EQ, cancerTrail), (news, 3, classifiedNews)), and a key K (f)
used for fY = ({(topic, EQ, cancerTrail), (news, 3, secretNews)) must be capable
of decrypting the event e = ((topic, cancerTrail), (news, unclassifiedNews),
(message, msg)). On the other hand, only K (f) should be capable of decrypting
the message msg in e, = ((topic, cancerTrail), (news, secretNews), (message,
msg)), but not the keys K(f2) and K(f4). For string based prefix/suffix matching, a
key K (f3) used for filter f3 = ({topic, EQ, cancerTrial), (name, PF, a)) and a key
K(f}) used for the filter f; = ((topic, EQ, cancerTrial), (name, PF, an)) should
be capable of decrypting the message msg in event e3 = ((topic, cancerTrial),
(name, andy), (message, msg)). On the other hand, only K(f3) must be capable
of decrypting the message msg in e¢5 = ((topic, cancerTrial), (name, alex),

ACM Journal Name, Vol. V, No. N, Month 20YY.

15

unclassified
news

Kg¥

K

secret ‘ secret ‘ ‘ secret ‘ secret ‘ ‘ secret ‘
newsl news2 news3 newsd newsSs

W W W w w
Ky Ky Ky K, Ky

Fig. 4. Key Tree: Category Hierarchy

(message, msg)), but not the key K(f5).

In the following sections, we first describe our techniques to handle simple sub-
scriptions that consists of a topic and at most one constraint, say, f = ({topic,
EQ), cancerTrail), (age, >, 15)). A complex subscription could consist of con-
straints combined using the A and V Boolean operators. We have described algo-
rithms to handle numeric attribute based in-network matching in [Srivatsa and Liu
2007]. In this paper, we describe our key management algorithms for category based
matching (Section 4.3), string based prefix/suffix matching (Section 4.4) followed
by techniques to handle complex subscriptions in Section 4.5.

4.3 Category Based Matching

In this section, we present techniques for access control on named categories that
are typically arranged as a category tree. In a category tree the children of a
node represent more detailed information about the same topic than its parent and
thus may be considered more confidential. An example category hierarchy that is
applicable in a military scenario is shown in Figure 4. A subscriber who subscribes
for secretNews1 is implicitly entitled to receive all publications published under
categories classifiedNewsl and unclassifiedNews; however, the converse is not
true. Additionally, a subscriber who subscribes for secretNews1 is not permitted
to read events categorized under classifiedNews2. In general, we use a category
matching operation 3 such that an event e = (name,, value,) matches a filter f
= (namey, 3, valuey) if and only if valuey, is an ancestor of value, in a category
tree named name.

Our key derivation algorithm supports category based subscriptions. Given a
category, say news, we can construct a subscription filter f = (news, 3, cat). The
filter f matches any event e = (news, v) if and only if v is an ancestor of cat on
the category tree. We associate an authorization key K (f) with every subscription
filter f and an encryption key K (e) with every event e. The authorization keys and
the encryption keys satisfy the following properties:

—Given K(f) it should be computationally easy to derive a key K(e), if v €
ancestor(cat).

—Given K(f) it should be computationally infeasible to derive a key K (e), if v ¢
ancestor (cat).

We construct keys that satisfy the above mentioned properties as follows. We map

ACM Journal Name, Vol. V, No. N, Month 20YY.

16

the authorization keys and encryptions into a common key space constructed using
a category attribute key tree (CAKT for short). Given a subscription filter (news,
3, cat), we use the CAKT to derive an authorization key K (f) that corresponds
to the category cat, denoted by K2, where ont denotes the name of the ontology
(in this example, ont = news). The CAKT enables one to easily (computationally)
derive a key K2, from K2 if and only if cat’ € ancestor(cat) in the category
tree corresponding to the ontology ont. For any event e = (news, v), we encrypt
the message with the encryption key K(e) = K. By the construction of the
category key tree it follows that K (e) is easily derivable from K (f) if and only if v

€ ancestor(cat).

Preliminaries. Given a category ontology, we map each category to a key tree
identifier ktid. The root of the tree is assigned ktid = (). We label the i*" child of
a specialization with ktid = £ as £ || i. For the sake of simplicity we assume that
CAKT is a binary category key tree such that each specialization has exactly two
or zero children. However, the techniques discussed in this paper can be extended
in a straightforward fashion to handle a case where different specializations in the
category tree have different numbers of children. In our experimental section, we
use an ontology tree wherein the number of children per tree node was randomly
chosen between 2 to 4. Now we describe a technique to construct a CAKT, and

then present algorithms for constructing subscriptions and publications using the
CAKT.

Category Key Tree (CAKT). We derive a parent element ¢’s key from its

children elements (¢ || 0) and (£ || 1) as follows: K¢™ = mix(blind(Kgﬁg), Kgﬂblt))

= mixz(blind(K gﬁ’f), K gﬁ%)) There are several options for functions miz and blind.
The function blind is chosen such that given blind(x) it is very hard to guess x.
The function miz is chosen such that miz(blind(z),y) = miz(blind(y),).

The functions blind and mix are defined based on Diffie-Hellman logical key
hierarchy (DH-LKH) [Rafaeli and Hutchison 2003] as follows: blind(z) = g"(®)
mod p and mix(gH(I) mod p, y) = g"@HW) mod p. The parameter p is a large
prime such that discrete log problem in the field Z, is computationally intractable.
The parameter g is a generator in field Z,. Prime p and generator g are assumed to
be system wide known parameters. Observe that miz(g"7®) mod p, z) = g"H@H (@)

ont

mod p = miz(g"®) mod p, y). Hence, K™ is derived as K¢ = gH(KgﬁL‘;)H(Kéllf
mod p for some £ € (04 1)*. We use the least significant 128 bits of the result as
the actual key. For example, K3 = g!f (K50 H(K51™) mod p.

Analogous to the category key tree, the pub-sub system also generates a blinded
key tree. The MS'is responsible for generating a blinded key tree BKZ" = blind(Kg""),
for all key tree identifiers ¢ in the CAKT. The blinded keys are required for a
subscriber to generate the authorization keys for all the specializations that it is
authorized for. Also, by the hardness of the discrete log problem in the field Z, it
is computationally infeasible to derive a key K g"t using only its blinded key BK, g"t
or from its children blind keys BK gﬁ‘g and BK gﬁ‘f

For every leaf element with key tree identifier equal to ktid, the MS generates key
Kpt = KHy(y) (ont || ktid), where K(w) = KH, sy (w) is the authorization
key for the topic w, and rk(M.S) denotes the meta-service secret key. For example,

ACM Journal Name, Vol. V, No. N, Month 20YY.

17

the key for leaf element secretNews1 (with ktid = 00) under ontology ont = news
and topic w = cancerTrail is derived as K§§" = K H g (cancertrai1)(news || 00),
where K(cancerTrail) = K H,(ys)(cancerTrail). For any non-leaf element on
the key tree, the MS derives its key using the publicly available blinded key tree
for the topic w and ontology ont. Note that the MS does not have to store any
extra confidential information to handle subscriptions; the key that corresponds to
a given ktid under a topic w can be efficiently computed on the fly. The MS spends
only a one-time effort to generate a blinded key tree for every topic w and ontology

ont.
Publication. The encryption keys for an event are constructed as follows:

e = ((topic,w), (ont, cat), (nessage, msg))
K(e) - Kgg'fi(cat)

For example, a publication e = ((topic, cancerTrail), (news, classifiedNews1),
(message, msg)) is encrypted as follows. P identifies that the element unclassifiedNews1
in the key tree has an identifier 0 (see Figure 4). P generates the encryption key

K(e) = Kg§os.

Subscription. The authorization keys for a subscription filter are constructed as
follows:

f = ((topic, EQ,w), (ont, >, cat))
K(f) = Klgl?ifi(cat)

Given a publication with msg with ktid = ktid,,, a subscriber who has subscribed
for ktid = ktid; does the following. The subscriber checks if ktid, is a prefix
of ktidg. The subscriber uses this information to extract the suffix bobi-- - byp—1
and derives the key K7y, from the key K7jY; . Observe that any subscriber who
possesses the key that corresponds to some element of the key tree can efficiently
derive the keys for all its ancestors recursively as K gnt = (BK gﬁlbt)H(Ksoﬁ)
for some £ € (0+1)*, b =0 or 1 and b denotes the bit complement of b. However,
it is computationally infeasible for a subscriber to derive the keys corresponding to
its children or siblings.

For example, given a publication with message msg encrypted with the key K§e"®
a subscriber S who possesses the key K§§"® does the following. The subscriber
extracts the publication’s key tree identifier ktidy = 0 and its subscription’s key
tree identifier ktid, = 00. Then, S identifies that element 0 is an ancestor of
element 00. Then, S derives K2 = (BK3")H(KG") mod p = ¢H (Koo™) H(KG™)
mod p (since, BKE" = ¢g"50™) mod p). Recall that the blinded key tree BK2e¥S
is made publicly available by the pub-sub system. Now, S can use K§®*® to decrypt
the message msg in the publication.

mod p

4.4 String Based Suffix and Prefix Matching

In this section, we present our key derivation algorithm for string based suffix/prefix
matching. Given a string attribute, say name, we can construct a subscription filter
f = (name, PF, u). The filter f matches any event e = (name, v) if and only
if string w is a prefix of string v. We associate an authorization key K (f) with

ACM Journal Name, Vol. V, No. N, Month 20YY.

18

every subscription filter f and an encryption key K(e) with every event e. The
authorization keys and the encryption keys satisfy the following properties:

—Given K(f) it should be computationally easy to derive a key K(e) if u PF v,
that is, u is a prefix of v.

—Given K(f) it should be computationally hard to derive a key K (e) if u is not a
prefix of v.

We construct keys that satisfy the above mentioned properties as follows. We map
the authorization keys and encryption keys to the common key space using a string
attribute key tree (SAKT for short). Given a subscription filter (str, PF, u), we use
the SAKT to derive an authorization key that corresponds to the string u, denoted
by K:'", where str denotes the name of the string attribute. The SAKT enables
one to easily (computationally) derive a key K3 from K$'" if and only if u PF
v. For any event e = (str, v), we encrypt the message with K(e) = K3'". By the
construction of the string attribute key tree it follows that K (e) is easily derivable
from K(f) if and only if w PF v. Our construction for string suffix matching is
very similar to string prefix matching and will not be discussed separately.

String Attribute Key Tree (SAKT). We first present a technique to construct
the SAKT. Given a string value v = wugui---ug_1, where u; denotes a charac-
ter in the string u, we construct a key K3 recurblvely as follows: Kzgzl =

KHicger 1(u;), where K H denotes a keyed hash function. Let the symbol @

s
denote the null string. We derive the authorization key for the null string corre-
sponding to the key tree as K" = KH) (str), where K(w) = KH,jms)(w)
is the authorization key for the topic w, and rk(MS) denotes the MS’s secret key.
An example topic would be w = cancerTrail and string attribute str = name.
For example, K3'" is derived as K" = K Hczir(a) and K" is derived as K" =
KHK:M‘ (b)
Publication. A publisher P constructs the encryption key for a string attribute
event e as follows:
e = ((publisher, P), (topic,w), (str,v), (nessage, msg))
K(e) = K"
For example, given a publication e = ((publisher, P), (topic, cancerTrail),
(name, andy), (message, msg)) we construct K (e) = K337
Subscription. We construct an authorization key for a subscription as follows.
f = ((topic, EQ,w), (str, PF,u))
K(f) = K"

Given a publication with string v, a subscriber who has subscribed for a string u
does the following. The subscriber checks if u is a prefix of v. If so, the subscriber
derives the encryption key K3 from the authorization key K:". Note that the
generation of children keys from parent keys is computationally efficient because
such computations use a fast one-way hash function. However, it is computationally
infeasible for a subscriber to derive the keys corresponding to its ancestors or its

ACM Journal Name, Vol. V, No. N, Month 20YY.

19

0-31

K™
0-15 16-31
K,” K"

0-7 8-15 16-23 24-31
KOOW KOIW KIOW K]lw
‘0-3 ‘ 47 ‘ 8-11‘ 12-15 [16-19| p0-23| p4-27 38-31‘
I<:OOOW I<001W I<010W KOHW I<1OOW KIOIW KHOW KHIW

Fig. 5. Key Tree: Numeric Attributes — Range Queries

siblings. For example, given a publication with v = andy, a subscriber who has
subscribed for u = a decrypts the message msg in a publication as follows. Given
v = andy and u = a, the subscriber first extracts the suffix ndy. Then, S derives
K" = KHgsr(n), K3l = KHpsr(d), and K3l = KHpgstr ().

and — andy
4.5 Complex Subscriptions

We have so far presented EventGuard techniques to handle category based sub-
scriptions and string based prefix/suffix matching. We note that numeric attribute
based matching can be achieved in a way that is analogous to string based pre-
fix/suffix matching as shown in a preliminary version of our paper [Srivatsa and
Liu 2007] (see Figure 5). However, we have so far dealt with subscriptions that con-
sist of a topic and at most one constraint, say, f = ((topic, FQ, cancerTrail),
(age, €, (0, 15))). A complex subscription could consist of constraints combined
using the A and V Boolean operators. In general a complex filter is represented as
a complex subscription f = ((topic, EQ, w), B(sf1, sfa, -+, $f1)) where each sf;
is a simple filter (only one constraint) and B is a monotone Boolean expression. An
example of a complex filter could be f=((topic, EQ, cancerTrail), ({age, €, (0,
15)) A (gender, EQ, F) A ((news, 5, secretNewsl) V (news, 3, secretNews5))).
A matching event for the example subscription shown above could be e = ({topic,
cancerTrail), (age, 9), (gender, F), (news, classifiedNews1), (message, msg)).

Preliminaries. Given a complex subscription f = ({topic, FQ, w), B(sf1, sfa,

-+, 8f1)), we express B in disjunctive normal form (DNF) [Mathpages | as B =
\/?zd1 D;, where D; = /\;Li’i sf;j. We then divide f into nd complex filters {f1, fa,

-+, fnd}, where f; = ((topic, EQ, w), D;(sf1, sfa, -+, sf1)). The subscriber now
subscribes independently for each of these nd subscription filters. Note that this
is equivalent to the original subscription on the filter f since, B = \/;“:i1 D;. For
example, we divide a complex filter f = ((topic, FQ, cancerTrail), ((age, €, (0,
15)) A (gender, EQ, F) A ((news, >, secretNewsl) V (news, 3, secretNews5)))
into two filters f; = ((topic, EQ, cancerTrail), ((age, €, (0, 15)) A (gender, EQ,

ACM Journal Name, Vol. V, No. N, Month 20YY.

20

F) A (news, 3, secretNewsl))) and f, = ((topic, EQ, cancerTrail), ((age, €,
(0, 15)) A (gender, EQ, F) A (news, 3, secretNews5))). Note that the subscriber
can subscribe for the filters f; and fy independently and receive all events e that
match the filter f = f1 V fa. In the following portions of this section we describe
techniques to derive keys for complex filters whose constraints include only the A
operator. The concrete technique for constructing subscriptions and publications
using these derived keys is very similar to that discussed in numeric attribute based
matching and category based matching and will be omitted in this section.

Publication. The encryption key for a complex event e¢; = ((topic, w), (namey,
valuey), - - -, (namey, value;)) is constructed as follows: K(e;) = H(@;:l K (sej)),
where se; = ((topic, w), (name;, value;)). For example, given an event e =
({(topic, cancerTrail), (age, 9), (gender, F), (news, classifiedNews1), (message,
msg)), the key K(e) is computed as follows. We break up e; into three simple events
se; = ((topic, cancerTrail), (age, 9)), sez = ((topic, cancerTrail), (gender,
F)) and se3 = ((topic, cancerTrail), (news, classifiedNews1)). Then, we com-
pute the encryption keys for the simple events using the techniques described in
carlier sections: K (se1) = K& (since ktid(9) = 010), K (sep) = K& and K (se3)
= Kg°¥* (since ktid(classifiedNews1) = 0). Finally, we derive K (e) = H (K%, &
K%ender @ ngws).

Subscription. Now we describe how an authorization key is constructed for a filter
fi = ((topic, EQ, w), Di(sf1, sfa, -+, sf1)). We divide the subscription filter f;
into [simple subscriptions of the form: f;; = ((topic, EQ, w), sf;). The set of au-
thorization keys associated with f; is {K(sf1), K(sf2), ---, K(sf;)}, where K(sf;)
is the authorization key for a subscription filter f;; using the techniques described
in earlier sections. For example, given a subscription filter f1 = ((topic, EQ,
cancerTrail), ((age, €, (0, 15)) A (gender, EQ, F) A (news, 3, secretNewsl))),
we split into three simple filters: f11 = ((topic, EQ, cancerTrail), (age, €, (0,
15))), fi2 = (({topic, EQ, cancerTrail), (gender, EQ, F)) and f13 = ((topic,
EQ, cancerTrail), (news, 3, secretNewsl)). We then associate the following
authorization keys with filter f: K(f11) = K& (since ktid(0,15) = 0), K(f12) =
K& and K(fi13) = Kjg* (since ktid(secretNews1) = 00). Given an event
e = ((topic, cancerTrail), (age, 9), (gender, F), (news, classifiedNewsl),
(message, Ek(c)(msg))), a subscriber derives key K (e) as follows. The subscriber
computes K%, (since ktid(9) = 010) from Kj® (since ktid(0,15) = 0) using the
numeric attribute key tree for age, K§°"® (since ktid(classifiedNews1) = 0) from
K§s™ (since ktid(secretNewsl) = 00) using the category attribute key tree for
news. The subscriber uses the authorization key K& with the derived keys
K% and K5°*° to compute K(e) = H(KJ% @ K& @ K3**). One can show
that a subscriber can derive K(e) from K(f) if and only if the complex event
e matches the complex filter f by our composing arguments presented in earlier
sections.

4.6 Performance Enhancements

In this section we present two key caching mechanisms to enhance the performance
of our key derivation algorithms: temporal key cache and semantic key cache. In a
temporal cache, a key is cached with a hope that it is reused in the near future. A

ACM Journal Name, Vol. V, No. N, Month 20YY.

21

Fig. 6. Constructing Resilient Networks: Thick lines represent links in the binary tree network
and the dashed lines represent additional links added to binary tree network to make its ind = 2

semantic key cache extends the temporal key cache by exploiting the functioning
of our key derivation algorithms to enhance the system’s performance.

Temporal Key Cache. A temporal key cache exploits the temporal locality in
the events received by a subscriber. Caching the encryption key K (e) saves the cost
of computing K (e) from K(f). We use a simple least recently used (LRU) based
cache replacement policy to maintain the temporal key cache.

Semantic Key Cache. The key idea behind the semantic key cache is to extend a
temporal key cache using specific properties of our key derivation algorithm. Given
an event e, the semantic key cache selects a cached authorization key K (fop:) such
that it is most efficient to derive K(e) from K(f,p:). The optimal authorization
key K (fopt) for deriving the encryption key K (e) is determined as follows. Given a
filter f and an event e we define a distance between them as dist(f,e). If the event
e does not match the filter f, then dist(f,e) = co. If the event e matches the filter
f, then we define dist(f,e) as the computational cost incurred in deriving K(e)
from K(f). We compute the optimal filter f,p; as fopr = argminscc dist(f,e),
where C' denotes the temporal key cache and f € C denotes a subscription filter f
whose key K(f) is cached in the temporal key cache C'.

For example, for some numeric attribute num, let us suppose that the cache C
consists of three keys K7™, Ki"™ and K7"™. Now we choose K(foy) to derive
K(e) = K™ as follows. First we observe that K™ can be derived only from keys
Kg*™ and Ky*™. Computing Kgg™ from KG*™ requires three hash computations,
while that from KJ"™ requires two hash computations. Hence, we choose K (fopt)
= KY.

5. EVENTGUARD: RESILIENT NETWORK GUARD

The six security guards discussed so far can achieve message authenticity, confiden-
tiality, integrity, and protect the pub-sub network from flooding-based DoS attacks.
In addition, per topic token helps to alleviate selective message dropping attacks.
However, they are incapable of handling random message dropping based attacks
and frequency based inference attacks on per topic tokens. In this section, we
present techniques to restructure the pub-sub network in way that can effectively
handle these attacks using multi-path event routing.

ACM Journal Name, Vol. V, No. N, Month 20YY.

22

There are three important design goals in constructing a resilient pub-sub net-
work: (i) the pub-sub network must be resilient to message dropping attacks, (ii)
the pub-sub network must be resilient to inference attacks on routing tokens, and
(iii) the communication cost should be minimal. We first discuss two network
topologies that represent extremities of the spectrum and then describe the Event-
Guard solution. The first network topology is an a—ary tree topology. The second
network topology mirrors the propagation scheme used in Byzantine fault tolerant
information dissemination [Malkhi et al. 2001]. The a—ary tree topology incurs
minimum communication cost but is not strongly resilient to message dropping at-
tacks. The BFT propagation algorithm incurs very high communication cost and
is highly resilient to message dropping attacks.

In this section, we proceed in three steps. First, we compare the communica-
tion cost between these two pub-sub network architectures. Second, we study the
resilience of a—ary trees towards message dropping attacks. Third, we propose
EventGuard network architectures that strike a trade-off between resilience to mes-
sage dropping attacks and the communication cost.

5.1 Overview: Pub-Sub Network Architectures

Let NS denote the number of subscribers in the system and N(w) denote the
number of subscribers who have subscribed to topic w. In an a—ary tree network,
we assume that each publisher corresponds to one a—ary tree and a publisher is the
root of the tree, the subscribers who have matching subscriptions are the leaves of
the tree and the pub-sub nodes are intermediate elements of the tree. The height h
of the tree is given by [log, N'ST. For simplicity we compute h by h = log, N.S and
assume that h is rounded up to an integer. Let M*"¢¢(w) denote the communication
cost (in terms of the number of messages) of propagating a publication on topic w
from the publisher to the subscribers. Since the cost of sending the publication to
any individual subscriber is lesser than or equal to h, the total cost M'¢(w) <
hN(w). Also, the publication message is never required to traverse any link of the
tree more than once. Hence, M*¢(w) < ¥ a4’ = -%- (NS —1). Combining the
two constraints, we have M**¢(w) < min(hN(w), —25(NS —1)). Observe that
the maximum communication cost for an a—ary tree occurs when N(w) = NS
and M[7¢¢(w) = 45 (NS —1). M[7¢¢(w) is minimized when a = NS, that is, the
publisher is directly connected to all the subscribers. In general, as the parameter a
increases the expected communication cost decreases. However, the communication
load on the publisher and pub-sub nodes increases with a since the publisher and
the pub-sub nodes may have to forward an event to a children nodes.

The BFT propagation algorithm assumes that the number of malicious nodes
(m) is known. A non-malicious node accepts an event e as an authentic event if
and only if it receives m + 1 identical copies of e from distinct m + 1 nodes. The
key idea is that in any set of m + 1 nodes there is at least one non-malicious node,
and thus if m + 1 distinct nodes report an event e then e has to be authentic. In
a BFT propagation scheme, each subscriber has to minimally receive m + 1 iden-
tical publication messages, irrespective of the network topology (grid, tree) used
for propagation. Hence the communication cost, denoted by M®/*(w), satisfies the
following condition: M®/*(w) > (m + 1)N(w). Assuming that N'S = 1000, about

ACM Journal Name, Vol. V, No. N, Month 20YY.

23

10% of the nodes are malicious, and m = 100, we have M"*¢(w) < min(5N (w),
1332) (assuming a 4—ary tree: a = 4 and h = log, 1000 ~ 5 and %5 NS = 1332)
and M®*(w) > 101N (w). This implies that the communication cost in any BFT
N
based algorithm. However, one should note that the BFT dissemination is com-
pletely resilient to message dropping attacks and is unconditionally secure (requires
no digital signatures). In a wide-area network with node-to-node latency on the
order of 70ms [Zegura et al. 1996], it might be advisable to limit the communication
cost while incurring additional signature verification cost (1-2ms per verification).

dissemination algorithm would be at least 20 times (=) the a—ary tree

5.1.1 Resilience to Message Dropping Attacks. We have discussed the BFT
propagation scheme and its complete resilience to message dropping attacks. In
comparison, a simple a—ary tree-based network is vulnerable to a message drop-
ping attack. A publication from the publisher successfully reaches a subscriber
only if all the nodes on the routing path from the publisher to the subscriber are
non-malicious. Let p denote the fraction of nodes that are malicious. Assuming
that malicious nodes are randomly distributed on the network, the probability that
a publication reaches a subscriber is Pr(succ) = (1 — p)*. Even when p = 10%,
with h = 5 we find that the probability of a successful delivery of a publication
is only 0.59. This implies that 10% malicious nodes are able to harm about 41%
of the subscribers. One way to increase Pr(succ) is to increase a (consequently
decrease h). However, as we have pointed out earlier, as a increases the load on
the publisher and the nodes on the pub-sub network increases, thereby harming the
scalability of the system.

The key problem with the tree-based topology is that there is only one indepen-
dent path from a publisher to a subscriber [Srivatsa and Liu 2004]. Informally, two
paths @1 and @2 are independent if they share no node other than their source
and their destination node. If we have ind independent paths between a publisher
P and a subscriber S, then ind malicious nodes (one per independent path) could
completely block any communication between P and S. The BFT propagation
scheme uses m + 1 independent paths to propagate the publication thereby ensur-
ing that at least one independent path is devoid of malicious nodes. Note that
using an arbitrary peer-to-peer topology for the pub-sub network does not directly
entail the existence of multiple independent paths [Srivatsa and Liu 2004].

5.2 Low Cost Resilient Pub-Sub Network

In pub-sub systems one may not require absolute guarantee of message delivery
at all time. This permits us to tradeoff resilience with communication cost. We
modify an a—ary tree such that it has ind independent paths while increasing the
communication cost by not more than a factor of ind (ind < a). For simplicity, we
illustrate our technique by modifying a binary tree network to yield a network with
ind = 2.

Figure 6 shows the key idea behind constructing a resilient event dissemination
networks G?. Note that d refers to the depth of a node, with root (publisher) at
depth 0 and the leaves (subscribers) at depth h. For any node n, let parent(n)
denote the parent of node n and sibling(n) denote an immediate left or right sib-
ling of node n. EventGuard’s resilient network adds one additional edge to every

ACM Journal Name, Vol. V, No. N, Month 20YY.

24

subscriber and every node in the system. Concretely, for every node n we add
an additional edge from n to sibling(parent(n)). We now claim that the resilient
network G? has the following property.

CLAIM 5.1. The resilient network G? has ind = 2 independent paths from the
publisher P to every subscriber in the system.

We prove Claim 5.1 using Theorem 5.2 which explicitly constructs two independent
paths from the publisher (root) to any subscriber (leaf) on the resilient network.

THEOREM 5.2. Let Q = (P, ny, na, -+, ng, S) denote a path from the publisher
P to some subscriber S in the original tree based network. Then, Q1 = Q and Q2 =
(P, sibling(ny), sibling(ns), -+, sibling(ng), S) are two independent paths from
P to S in the resilient network.

PROOF. First, we show that the path Q3 exists (path @1 = Q exists trivially). We
show that for any 1 <4 < d, there exists an edge from sibling(n;) to sibling(n;i1).
From path @7 we know that n; is the parent of node n; ;. Hence, n; is the parent
of node sibling(n;+1). By the construction of our resilient network, we add an
edge from any node n to sibling(parent(n)). Hence, sibling(n;4+1) is connected to
sibling(n;) (since, n; = parent(sibling(n;i1))).

Second, we show that {ny, na, - -+, ng} N {sibling(ny), sibling(nz), - - -, sibling(nq)}
= (). First, for any 1 < < d, n; # sibling(n;). Second, for any two nodes n; and
n; 1 <i,j < d such that i # j, n; # n; since the node n; is at depth 4 from the
root, while n; is at depth j from the root (i # j). Hence, the paths @1 and @2 are
independent. []

One can easily extend this network construction scheme for any ind < a. Construct
a resilient nework G*™¢ by connecting any node n to parent(n) and ind — 1 distinct
siblings of parent(n) (these siblings indeed exist since ind < a).

CLAIM 5.3. The resilient network G'™¢ has ind independent paths from the pub-
lisher P to every subscriber in the system.

PROOF. The proof for Claim 5.3 follows the same lines as that for Claim 5.1. [

CLAIM 5.4. The resilient network G® incurs ind times the communication cost

of G1.

PROOF. The proof follows from the construction of independent paths in Theo-
rem 5.2. [

As we increase ind, the communication cost increases by a factor ind. However, we
believe that ind = 2 would suffice for most practical pub-sub networks. Assuming
that the malicious nodes are randomly distributed on the network, the probability
that publication reaches a subscriber is Pr(succ) = 1 — (1 — (1 — p)*)™?. With
p = 0.1 and ind = 2 we would require h < 3.66 for Pr(succ) > 0.9. For a pub-
sub network with each publisher having 1000 subscribers as the upper bound, this
would translate to a = 7 (7-ary tree). On the other hand, achieving the same level
of resilience with ind = 1 would require h < 1 and thus a = NS. Recall that as
a increases, the load on the publisher and the nodes on the pub-sub routing path
increases and affects the system’s scalability. We demonstrate in the experiments

ACM Journal Name, Vol. V, No. N, Month 20YY.

25

sections that our technique can be employed to construct a y-resilient network with
Pr(succ) = v by carefully choosing ind and a.

5.3 Secure Routing

In this section, we describe techniques for secure content-based routing using the
multi-path routing infrastructure. We achieve secure content-based routing in two
steps: tokenization and probabilistic multi-path event routing.

5.3.1 Tokenization. We first describe our techniques for tokenizing the routable
topic attribute in an event so as to support content-based routing. We use the
solution proposed by Song et al. [Song et al. 2000] for searches on encrypted data
to construct our algorithm. Let us consider a topic w. The MS generates a token
T'(w) for the topic w using a keyed hash function KH as T'(w) = K H, s (w),
where rk(MS) is the MS’s master key. The subscriber subscribes for a topic w
using an authorization filter S = (topic, EQ, T(w)). When a publisher wishes to
publish an event under topic w, it constructs a routable attribute for the event
as: (r, KHrpg,(r)), where 7 is a randomly chosen nonce. A mnode matches an
event e with a routable attribute (r, match) against a subscription filter f with a
tokenized constraint (topic, EQ, tok) by checking if K Hy,,(r) = match. A proof
of correctness is contained in [Song et al. 2000].

While tokenization allows content-based event routing, curious routing nodes may
attempt to break the confidentiality of routable attributes in a pub-sub message
using a frequency inference attack. For example, a routing node may observe the
frequency of the events that match a given subscription filter. Using a priori knowl-
edge about the frequency distributions of different events, a curious routing node
can guess the topic embedded in an event. One should note that this attack applies
only to the routable attributes and not the secret attributes in an event (since the
secret attributes are encrypted). In the following section, we present probabilistic
multi-path event routing as an effective technique to support secure content-based
routing while minimizing the amount of information that can be inferred by the
routing nodes.

5.3.2 Probabilistic Multi-Path Routing. One way to thwart the frequency infer-
ence attack is to route events from a publisher to its subscribers probabilistically
using multiple independent paths such that the frequency of all tokens appear
(nearly) indistinguishable for all the routing nodes in the pub-sub network. Two
paths from a publisher P to a subscriber S are independent if they share no common
node other than their end points (namely, P and 5).

Let A\; denote the actual frequency of a token t. We assume that the routing
nodes can deduce \; for all tokens ¢ using the underlying domain knowledge. We
set the number of independent paths ind; for routing an event with token ¢ to be
proportional to A, say, ind; = 7 for some constant 7. Now, given an event with
token ¢, the publisher P uniformly and randomly chooses one path amongst the set
of ind; independent paths. Every node in the routing path observes the apparent

frequency of the token t N\, = i;‘fit = % Clearly, the apparent frequency of all

tokens in the pub-sub system as observed by the routing nodes is a constant %
However, colluding routing nodes may be able to infer more information, especially

ACM Journal Name, Vol. V, No. N, Month 20YY.

26

if the colluding nodes are on two or more independent paths from a publisher P to
a subscriber S. In particular, if all the routing nodes collude with one another then
A, = M. However, if the fraction of colluding nodes is smaller than one, then the
apparent frequency as observed by the routing nodes may be sufficiently skewed to
drastically constrain a large scale inference attack.

Consistent with other research works in this area, we use entropy as the metric
for measuring the amount of leaked information [Perng et al. 2006]. The actual
entropy of the system is measured as S, = — Ztepx\tlog()\t), where the frequencies
of tokens are normalized such that), . A = 1. The entropy of the system as
observed by the routing nodes is Su,, = — >, cpAlog();), where Aj is the apparent
frequency of tokens as observed by curious routing nodes normalized such that
Y iccammat = 1. Ideally, if \j = c for all ¢t € T, then S,p, attains a maximum
value Sy = log(|T]), where |T'| denotes the size of the set I'. Hence, the lower
the entropy Segpp is, the less is its randomness and the higher the accuracy of an
inference attack. Note that the entropy measure is independent of the exact nature
of the inference algorithm used by the routing nodes.

6. EVENTGUARD EVALUATION

We have implemented EventGuard on top of an unmodified Siena pub-sub core
[Carzaniga et al. 2001]. Siena is a content-based pub-sub system whose working
is very similar to our reference model in Section 2.1. A unique feature of our
design is that the nodes in the pub-sub network can route messages as if they were
original Siena messages. Hence, no changes were required to the Siena pub-sub core
(e.g., the content-based routing and event matching algorithms). This is because
EventGuard uses the same in-network matching operators as those supported by
the Siena pub-sub core. We have implemented the meta-service MS as a stand-
alone entity. The MS computes the authorization keys on the fly since the key
derivation cost is fairly low. For a MS with limited computing power, one could
cache the derived keys to tradeoff computing power with main memory utilization.
Our prototype implementation uses the following cryptographic algorithms. We
use SHAT1 for the hash function H, HMAC-SHAT1 for the keyed hash function K H,
and AES-128-CBC for the encryption algorithm E. For modular exponentiations in
field Z,,, we use the standard exponentiation by squaring algorithm that computes
the result in O(log, p) time.

We evaluate our EventGuard prototype implemented on the Siena pub-sub core
in two steps. We first present some micro-benchmarks to quantify the overhead of
EventGuard mechanisms and measure the performance and storage overheads at
the M S, a publisher, a subscriber and a node. Then we present macro-benchmarks
to quantify the overhead of the entire system including key management costs, MS
load and scalability. We also present implementation based measurements on end-
to-end throughput and latency of the pub-sub network as an effect of EventGuard
mechanisms. We also quantify the effect of EventGuard’s resilience to DoS attacks.

In this section, we present performance numbers from simulation based experi-
ments on EventGuard. First, we experimentally measure the computation and com-
munication cost of EventGuard’s basic guards. Then, we present the improvements
on message confidentiality and integrity through EventGuard. We also demonstrate

ACM Journal Name, Vol. V, No. N, Month 20YY.

27

the resilience of EventGuard against flooding-based DoS attacks. We also quantify
the average load on the M .S, the publisher, the subscriber and the nodes as we vary
the subscription and publication rate.

Simulation Setup. We used GT-ITM [Zegura et al. 1996] topology generator to
generate an Internet topology consisting of 4K nodes. We linked these nodes us-
ing open TCP connections to form a binary tree based hierarchical topology. The
latencies for links were obtained from the underlying Internet topology generated
by GT-ITM. The round trip times on these links varied from 24ms to 184ms with
mean 74ms and standard deviation 50ms. We simulated 32 publishers and N.S=8K
subscribers. The publishers and subscribers were randomly connected to one leaf
node in the pub-sub network. We used discrete event simulation [FIPS | to simu-
late the function of the pub-sub network. All experimental results presented in this
section were averaged over 5 independent simulation runs.

We simulated 128 topics, with the popularity of each topic varying according to
a Zipf-like distribution [Qin Lv and Shenker 2002]. Each subscriber subscribed for
32 topics chosen from the set of 128 topics using the Zipf distribution. Amongst
128 topics, 32 were numeric attributes, 32 were category attributes, 32 were string
attributes and the remaining 32 were simple topics. Numeric attributes had a range
of size 256 units and a least count of 4 units; the subscription range was chosen
using a Gaussian distribution with mean 128 and a standard deviation 32. Hence,
the number of elements in the numeric attribute tree was 127 and the height of the
numeric attribute tree was 6. Category trees were for height 4, and the number of
children for each non-leaf element was chosen uniformly and randomly between 2
to 4. The average number of elements in a category tree was 82. The length of the
string attributes were Zipf distributed between 1 and 8. Each publication message
was assumed to be 256 Bytes long.

6.1 Micro-Benchmarks

In this section, we estimate the amount of computational and storage overhead
due to EventGuard on the pub-sub system. All our measurements were made on a
900MHz Intel Pentium IIT running RedHat Linux 9.0 using Sun Java 1.5.0. Table I
shows the amount of time it takes for executing different cryptographic primitives
used by EventGuard. These times have been measured using the new nanoTime
method introduced in J2SE 1.5.0. All reported values have been averaged over
1000 measurements. Note that the computation time for hash computation (SHA1
and HMAC-SHA1) depends on the block size. The larger the block size is, the
faster is its hash computation rate. For instance, SHA1 hashes can be computed
at 2 MB/s when the block size is small (16 Bytes) and about 57 MB/s for large
block size (1024 Bytes). Similarly, AES-128-CBC can encrypt data at 10 MB/s,
and the ElGamal algorithm can sign 714 16-Byte blocks per second and verify 588
signatures per second.

We experimentally measured the computational time for subscriptions, publica-
tions and unsubscriptions. The cost for an advertisement is very similar to that of
subscriptions and the cost for unadvertisement is equivalent to that of an unsub-
scription. We analyzed the cost of these operations at all four entities: a publisher,
a subscriber, the M S and a pub-sub node. We also analyzed the messaging and

ACM Journal Name, Vol. V, No. N, Month 20YY.

28

" SHAT 2 MB/s57 MB/s
KH HMAC-SHAT 1.6 MB/s-51 MB/s
E AES-128-CBC 10 MB/s
sig ElGamal-512-sign 911 Sign/s
sig ElGamal-512-verify 668 Verify /s

Table I. Computation Times for Cryptographic Primitives used by EventGuard

MS (ms) publisher (ms) subscriber (ms) node (ms)
subscribe 1.4 4+ 0.0012 * |w| - 1.7 1.7
unsubscribe 3.2 - 1.7 1.7
publish - 1.4 + (pbl] 1.7 + (pbl] 1.7
+16m) * 1.17 %10~ % | +16) * 1.17 % 10~
advertise 1.4 4+ 0.0012 * |w)| 1.7 - 1.7
unadvertise 3.2 1.7 - 1.7

Table II. Computation Overheads for EventGuard Operations: w is some topic, pbl
is a publication, and m denotes the number of topics marked on message pbl

subscription | unsubscription | publication advertisement unadvertisement
(Bytes) (Bytes) (Bytes) (Bytes) (Bytes)
128 128 128 4 16m 128 128

Table ITI. Message Size Overhead due to EventGuard including only those messages
sent on the pub-sub network: m denotes the number of topics marked on the
publication

storage cost at these four entities. Tables II, ITI, IV and V summarize the results
obtained in this section.

Subscription. The cost of a subscription at the M.S includes the computation
of key K(w), token T'(w), special token UST(w), an ElGamal signature on T'(w)
and the current timestamp ts. Since, the topic w is typically a short string, the cost
of computing the key K(w) (using HMAC-SHAT1) is 0.67 |w|us. The cost of com-
puting token T'(w) from K (w) (using SHA1) is 0.5 * |w|us. The cost of computing
special token UST (w) (using HMAC-SHA1) is 0.67 * |sig, |us = 42.9us, where sig,
denotes the r-component of the MS’s ElGamal signature (note that |sig,| = 512
bits = 64 Bytes). The cost of computing an ElGamal signature is 1.4ms. Hence, the
total cost per subscription topic (dominated by the signature computation time) is
about 1.4ms + 1.2 % |w|us.

The cost of a subscription at the subscriber includes only the signature verifica-
tion time. The cost of verifying an ElGamal signature is about 1.7ms. The cost
of a subscription at a node in the pub-sub network is the cost required to process
this subscription, which equals the sum of the cost of verifying the M .S’s signature
and the cost of detecting duplicate identifiers to protect the pub-sub network from
subscription-flooding based DoS attacks. Our experiments show that the cost of
verifying duplicates is negligible (< 10us) when compared to the signature verifica-
tion time (1.7ms). Furthermore, our experiments show that the cost of processing
a subscription at a node in EventGuard is only marginally higher than basic Siena
(< 50us). Note that a publisher incurs no direct cost for a subscription.

Unsubscription. The cost of an unsubscription at the M.S includes the verifi-
cation of special token UST(w), the verification of M S’s signature on the corre-

ACM Journal Name, Vol. V, No. N, Month 20YY.

29

[MS (Bytes) | publisher (Bytes) [subscriber (Bytes) [node (Bytes) |
64 [180 per adv + HTs;ze [180 per sub + HTs; e [HTgize]

Table IV. Storage Overhead: HTy;,. denotes the total size of the hashtable main-
tained for detecting flooding based DoS attacks. Our experiments use a hashtable
of size 1 MB; a node can handle 1000 messages per second and store message iden-
tifiers over the last one minute using a storage space of 1000*60*4 bytes = 240KB

[topic [numeric [string [category]
[key derivation cost [1.03pus [5.51us [2.28 s [0.56ms]

Table V. Average key derivation overhead for various filters: topic (equality), nu-
meric (range), string (prefix/suffix) and category (hierarchical sets)

sponding subscription token and the generation of an unsubscription permit. The
cost of verifying the special token requires the computation of one keyed hash on
the r-component of the M S’s signature. As shown in the case of subscription, this
costs 42.9us. The cost of verifying an M S’s signature adds 1.7ms, and the cost
of generating an unsubscription permit adds 1.4ms. Hence, the total cost of an
unsubscription at the M S is 3.2ms.

The cost of an unsubscription at a subscriber includes only the signature ver-
ification time, which costs 1.7ms. The cost of a unsubscription at a node in the
pub-sub network is the cost required to process an unsubscription, which can be
computed by the sum of the cost of verifying the M S’s signature and the cost of
detecting duplicate identifiers to protect the network from DoS attacks based on
unsubscription-flooding. Our experiments show that the cost of verifying duplicates
is negligible when compared to the signature verification time.

Publication. The cost of a publication at its publisher includes the cost of gen-
erating a random symmetric key K,, the cost of encrypting the publication pbl
with some random key K, and the cost of encrypting K, with K(w;) for every
topic w; (1 < i < m) marked on the publication. The total encryption time is
(Ipbl] + m | K,.|) % 0.1us = (|pbl] + 16m) x 0.117us (note that |K,.| = 16 Bytes).
Computing the publisher’s signature adds an additional 1.4ms.

The cost of a publication at a subscriber includes the cost of checking the pub-
lisher’s signature, the cost of decrypting the random key K, and the cost of decrypt-
ing the message using key K,.. The total decryption time is (|pbl| + |K,|) * 0.117us
= (|pbl| + 16) * 0.117us (note that |K,| = 16 Bytes). Verifying the publisher’s
signature adds an additional 1.7ms.

The cost of a publication at a node includes only the signature verification time.
Similar to subscription, our experiments show that the cost of processing a publi-
cation at a node in EventGuard is only slightly higher than the cost of using basic
Siena. Note that the M .S is not involved directly in the publication process. This
largely reduces the aggregate load on the M.S as publications are considered by
many applications as the most common operation on a pub-sub network.

Messaging Overhead. We now study the overhead added in terms of the length of
a message due to EventGuard. For subscriptions and advertisements, the primary
overhead is due to the M S’s signature which is about 128 Bytes.

For publications, EventGuard adds the following overheads. First, the publisher’s

ACM Journal Name, Vol. V, No. N, Month 20YY.

30

Y g— T T T T Send
‘N=4K’' —x— = 'EventGuard-sparse’ —>—
2 sl '‘N=8K' —8— | =] 08 | ‘EventGuard-cluster-1' —5— |
;.; 3 ‘EventGuard’ —e— _g) 'EventGuard-cluster-10° —6—
£ g
T 06 = 06
c 2
E 2
£ o4y S o4t
o
2 5
E E=3
8 0.2 1 § 0.2 b
|
0 ! s = 0 & " " : |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05
Fraction of Bad Nodes Fraction of Bad Nodes

Fig. 7. Confidentiality and Integrity Fig. 8. Flooding-based DoS Attack

signature costs 128 Bytes. Second, the encrypted random key costs 16 Bytes. Third,
the random key is encrypted by the topic’s encryption key. This adds 16 Bytes for
every topic included in the publication. The aggregate publication overhead may
turn out to be quite significant if the published message is itself very small. On
the other hand even if the published message is of the order of a few KBytes, the
relative overhead added due to EventGuard turns out to be extremely small.

Storage Overhead. EventGuard requires publishers, subscribers and the M .S to
store additional information such as keys and tokens. The M S has the least storage
overhead as it is required to store only the secret key rk(MS) (about 64 Bytes).

A subscriber has to store the key K(w) (16 Bytes), the token T(w) (16 Bytes),
the special token UST(w) (16 Bytes), subscription time stamp ¢s (4 Bytes) and
the MS’s signature (128 Bytes) for each subscription token w. Thus, the total
per topic storage overhead is 180 Bytes. Furthermore, the subscriber maintains a
hashtable to store the publication identifiers (the r-component of the publisher’s
signature) in the near past (max_delay) to detect flooding based DoS attacks. The
size of this hashtable obviously depends on the number of publications received by
the subscriber in the last max_delay time units. Our experiments show that this
hashtable is typically small, with its size ranging from 100 Bytes to a few KBs.

The storage overhead at a publisher is very similar to the storage overhead at
a subscriber. However, the subscription identifier based hashtable maintained at
the publisher is typically much smaller (< 1 KB) than the publication identifier
based hashtable at the subscribers, since the number of subscriptions < number
of publications. A node in the pub-sub network maintains two hash tables, one
for subscriptions and one for publications for detecting flooding based DoS attacks.
Our experiments show that the size of the subscription identifier based hashtable
is usually very small (< 1 KB), and the size of the publication identifier based
hashtable is at most a few hundred KBs.

In summary, the performance overhead added by EventGuard is mostly dom-
inated by digital signatures (2ms). However, in a wide-area network where the
network latencies are on the order of 70ms [Zegura et al. 1996], the percentile
overhead added by EventGuard is significantly smaller.

ACM Journal Name, Vol. V, No. N, Month 20YY.

31

4096

MS —+— " EventGuard ——
‘publisher’ —x— 'SubscriberGroup’ —<—
'subscriber’ —8— p 1024
8r ‘node’ —6— | o
3 256 |
6 L =3
3 P
S I3 64 -
4r g
g 16t
g
2L
| z 4l
0 " 4 n T 1
0 0.5 1 15 2 25 3 35 4 0 5 10 15 20 25 30 35
Ratio of sub to pub rate NS
Fig. 9. Load Fig. 10. Num Keys per Subscriber

6.2 EventGuard: Basic Guards

Confidentiality and Integrity. Figure 7 shows the fraction of messages that
violate their confidentiality and integrity when in transit between a publisher and
its subscribers with different fractions of malicious nodes (p) and different values of
NS (number of subscribers). We assume that a message looses its confidentiality
and integrity as soon as it transits one bad node in the pub-sub network. Observe
that when p is small, even a small increase in p results in a heavy loss of message
confidentiality and integrity. Note that as N.S increases, the height of the binary
tree network increases and so does the probability that at least one bad node
appears on a path from a publisher to its subscribers. On the contrary, EventGuard
is capable of preserving the confidentiality and integrity of all messages irrespective
of the number of malicious nodes in the system.

Flooding-based DoS Attack. Figure 8 shows the fraction of network bandwidth
expended on flooded messages as the fraction of malicious nodes (p) varies with
N S=8K subscribers. We assume that every malicious node performs a publication
flooding-based DoS attack at the rate of 100 messages per unit time. We assume
that each publisher publishes at the rate of 25 publications per unit time. We
consider two cases: Case one wherein the malicious nodes are uniformly distributed
throughout the pub-sub network (EventGuard-sparse in Figure 8); and Case two
wherein malicious nodes form % clusters in the pub-sub network (EventGuard-
cluster-k in Figure 8). When malicious nodes are clustered together on the pub-
sub network, we found that the loss in throughput for EventGuard is much smaller.
This is because EventGuard ensures that no flooding attack propagates beyond one
non-malicious pub-sub node. Hence, if the malicious nodes are bunched together,
they cannot significantly affect other non-malicious nodes in the system. Recall
from Figure 3 that no flooding by either of the two malicious nodes Bl or B2
propagates beyond non-malicious nodes G1, G2, G3 and G4. Observe that if B2
were attached to some other part of the pub-sub network, then it could perform a
flooding based DoS attack on a different set of non-malicious neighbor nodes that
does not overlap with that of B1.

Load. Table VI shows the number of subscription/advertisement requests that
can be handled by our implementation of MS. Table VI also shows the ability
of EventGuard to scale linearly with the number of MS. We note that in this

ACM Journal Name, Vol. V, No. N, Month 20YY.

32

Number of M S 1 2 4 8 16 32 64
Subscriptions per second 914 | 1828 | 3678 | 7320 14821 | 29305 | 43872
Aggregate network traffic (Mbps) 1 1.98 4 8.03 16.11 33.51 45.20

Table VI. MS Scalability

16384 35

’EventGuard-compute’ ——
"SubscriberGroup-compute’ —<—
'EventGuard-network’ —=—
'SubscriberGroup-network’ —=—,

"EventGuard ——
'SubscriberGroup’ ——

4096 - 30

1024 25 |
256 | 20

64 15

MS Load

16 10 -

35 0 5 10 15 20 25 30 35
NS

Num Keys per Publisher

Fig. 11. Num Keys per Publisher Fig. 12. Key Management Load

experiment all replicas of the MS shared a common 100Mbps wired network. We
recall from table IIT that the size of a subscription/advertisement message is 128
Bytes (excluding network headers). Hence, about 1k subscriptions/advertisements
per second would consume 128KBps &~ 1Mbps. Hence, even with 16 replicas of
MS, the network traffic does not become the bottleneck. In practice we required
38 replicas of MS before noticing a drop in performance.

Figure 9 shows the relative computational load on the MS, the publisher, the
subscriber and a pub-sub node as we vary the rate of subscriptions, unsubscriptions
and publications keeping the aggregate rate a constant (we do not consider adver-
tisement and unadvertisement costs in this experiment). We set the subscription
rate to be equal to the unsubscription rate so as to ensure that the average number
of active subscriptions in the system is almost a constant. Note that only the con-
trol operations on subscriptions and unsubscriptions involves the M S. Hence, if a
pub-sub network is largely dominated by publications (which is true in most cases)
then the relative load on the M.S would be very small. If the load on a MS is
not acceptable, EventGuard mechanisms easily permit one to add additional meta-
servers. The fact that the meta-servers do not have to interact with one another
makes it possible for one to build an efficient load balancing system to handle the
M S load and vary the number of active meta-servers on-demand.

Observe that the load on a node remains almost a constant as it depends only on
the aggregate rate of subscriptions, unsubscriptions and publications. On the other
hand the relative load on a publisher decreases as the publication rate decreases;
this is because a publisher is not involved in subscribe and unsubscribe operations.
Subscriber load is typically much smaller than the average node load because the
number of publications delivered to a subscriber is very small when compared to the
total number of publications sent on the pub-sub network. Recall that only those
publications that match a subscriber’s subscriptions are delivered to the subscriber.

ACM Journal Name, Vol. V, No. N, Month 20YY.

33

6.3 EventGuard: Key Management

This section compares our key management algorithms with the subscriber group
based approach in terms of the number of keys, communication and computation
cost.

Number of Keys. Figure 10 shows the average number of keys maintained per
subscriber as the number of subscribers NS varies. Recall that the SubscriberGroup
approach uses group key management techniques on subscriber groups [Opyrchal
and Prakash 2001] that require 2V keys in the worst case. EventGuard requires a
small and constant number of keys per subscriber that is independent of N'S. Even
for 32 subscribers, the number of keys per subscriber using the SubscriberGroup
approach is about 40 times larger than the EventGuard approach. EventGuard
achieves significant reduction in the number of keys, while incurring a computa-
tional overhead for running the key derivation algorithms on the publisher and the
subscribers. In our later experiments we show that the cost of key derivation is very
small compared to wide-area network latencies thereby making it easily affordable.
Figure 11 shows the average number of keys maintained per publisher as N.S, and
the number of subscribers varies. The trends shown in Figure 11 are very similar
to that in 10.

Key Management Load. Figure 12 shows the computing and network cost on the
key server using the SubscriberGroup based approach and EventGuard. Computing
cost (measured in milliseconds) shows the average cost of group key management in
SubscriberGroup and the cost of key derivation in EventGuard when a new subscriber
joins the system. The cost incurred by the SubscriberGroup increases dramatically
with NS, while that incurred by the EventGuard approach is a small constant that is
independent of N'S. Networking cost (measured in KBytes) shows the average cost
of communicating the updated group key in SubscriberGroup and the cost of deliv-
ering the authorization keys in EventGuard. Similar to computing cost, EventGuard
incurs a small and constant networking cost, while that of SubscriberGroup explodes
with VS.

Key Cache. From our experiments on throughput and latency, we measured the
overhead due to encryption/decryption and key derivation. We observed that the
overhead due to encryption/decryption and key derivation for topics and numeric
attributes was very low. One could additionally reduce this overhead using key
caching on the authorization service MS, the publishers and the subscribers. Fig-
ure 13 shows the throughput and latency in a pub-sub network with one publisher,
30 nodes and 32 subscribers for different values of cache size. Observe that when
all authorization keys are cached, the encryption/decryption cost becomes the pri-
mary overhead for EventGuard. Using the key caching mechanism, the throughput
of EventGuard was about 2.2% (as against 10.8% without caching) lower than
Siena, and the latency of EventGuard was about 1.5% (as against 5.7% without
caching) higher than Siena (using a 64 KB cache).

6.4 EventGuard: Resilient Network

This section presents experimental results on EventGuard’s resilient pub-sub net-
work. First, we measure the cost of constructing and routing on EventGuard’s
resilient network. Second, we measure the efficacy of probabilistic multi-path event

ACM Journal Name, Vol. V, No. N, Month 20YY.

45—
800 ; ‘ ‘ ‘ ‘ ‘ nwcost —+— |
- 4+ 4
700 %] 2
> o
) 35 b
5] 600 g & & 5] S .§
1 o
= 500 |] 2 37 1
2 B
S 400 L . , c S
5 PR § 25¢ |
g X
-§, 300 q g 2L 1
S 200} . l g
S 'siena-thruput’” —+— Z 15}]
‘cache-thruput’ —=—
100 ‘siena-lat’ —8— . ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
‘cache-latt —e—
0 . - - . cache-lat’ - 1 2 3 4 5 6 7 8 9 10
0 10 20 30 40 50 60 70 Max Ind Paths
Cache Size (KB)
. . Fig. 14. Cost of Constructing a Multi-
Fig. 13. Key Caching .
Path Event Routing Network
18000 [8 g — :
16000 | '4-ary’ —x— 1 75 'Sapp’ —*—]
'N-ary’ —8— 'Sact’ —&—
& 14000 1 7 ‘ ‘ ‘
3 | | |
o L , —
: 12000 T 65|]
S 10000 | 1 <
S & 6 1
S 8000 f 1 S
E 6000 | — & 557 1
o
© 4000 | | 5 |
iz o o o £l
2000 B 45 | i
0 | 4
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 15 2 25 3 35 4 4.5 5
N(w): Number of Recepients Max Ind Paths

Fig. 15. Communication Cost Vs Num- Fig. 16. Secure Content-Based routing
ber of Recepients N (w) under a Non-Collusive Setting

0.9 ‘b-ary —»—
0.8 ’ ' b
0.7 b
0.6 b
05 b
04t 1
03} 1
02}t 1
‘ ‘ ‘ ‘ 01
0 0.2 0.4 0.6 0.8 1 0 .

Fraction of Colluding Malicious Nodes 0 0.05 01 015 02 025 03
p: Fraction of Malicious Nodes

Entropy (bits)

Resilience

Fig. 17. Secure Content-Based routing Fi

under a Collusive Setting g. 18. Resilience Vs a with ind =1

routing in defending against frequency inference attacks. Third, we measure the
resilience of multi-path event routing in defending against random and selective
dropping attacks.

Multi-Path Network Construction Cost. Figure 14 shows the cost of con-

ACM Journal Name, Vol. V, No. N, Month 20YY.

35

structing a pub-sub network for different values of maximum number of indepen-
dent paths (ind,,q.;). The values shown in Figure 14 have been normalized against
the construction cost for ind,,., = 1. Observe that the construction cost saturates
with the maximum number of independent paths. This is because only frequently
occurring tokens are routed through a large number of independent paths. Hence,
even when ind,,q., is 10, most of the tokens are routed through a smaller number
of independent paths; only the most popular 12 tokens (out of 128 tokens) use all
10 independent paths, while 48 tokens (out of 128 tokens) used fewer than two in-
dependent paths. Observe from Figure 14 that the cost of constructing a pub-sub
network with ind,,., = 5 is about three times the cost of constructing a pub-sub
network with ind,,.. = 1. Note that while probabilistic multi-path event routing
incurs higher construction cost, it incurs no additional overhead for actually routing
events on the pub-sub network.

Multi-Path Network Routing Cost. Figure 15 shows the communication cost
for publishing an event under topic w versus N(w) for different values of a with
ind = 1, where N(w) denotes the number of subscribers for topic w. Note that
a resilient network constructed by modifying an a—ary tree increases the commu-
nication cost by a factor ind (for some 1 < ind < a). Hence, the communication
cost for an a—ary ind independent path network can be obtained by simply multi-
plying the corresponding cost for an a—ary tree network by ind. Observe that the
communication cost decreases as a increases. Also note that ¢ = NS minimizes
the communication cost but imposes heavy load on the publisher and the pub-sub
nodes (load is proportional to a).

Non-Collusive Routing Nodes. We measured the efficacy of probabilistic multi-
path event routing in maintaining the confidentiality of routable attributes in an
event. Under a non-collusive setting, no two nodes share any inferred information
amongst each other. The x-axis in Figure 16 shows the maximum number of in-
dependent paths permitted by the pub-sub network topology. Ideally, we want the
maximum number of independent paths to be equal to ind,,., = %;i: Assum-
ing a Zipf distribution over 128 tokens this max-min ratio could be 128. However,
the cost of constructing the network topology increases with the number of inde-
pendent paths. From a more pragmatic standpoint, we limit the maximum number
of independent paths between a publisher and its subscribers to five. Increasing the
number of independent paths allows us to smooth out the apparent frequency of
tokens observed by the routing nodes. The Figure also shows the maximum entropy
(Smax) and the actual entropy of tokens (Sact). Even when ind = 1, then the en-
tropy of the apparent frequencies as observed by the routing nodes (Sapp) is higher
than the actual entropy (Sact). By the distributed nature of the pub-sub network,
a node on the network may not be able to observe the frequency of all the tokens
routed on the network. Hence, even without multiple independent paths, Sq,,, is
higher than S,.;. Further, as ind increases, the entropy of information available
to routing nodes increases (and thus, the effectiveness of their inference decreases).
With ind,,.,; = 5 independent paths, the apparent entropy Sgp, is within 10% of
the maximum entropy Syaz-

Collusive Routing Nodes. Figure 17 shows the efficacy of probabilistic multi-
path event routing against collusive routing nodes. As the fraction of collusive

ACM Journal Name, Vol. V, No. N, Month 20YY.

36

1 T 450
1-ind” —+—
09 + 2-ind” —%— L
3-ind —5— o 400 .
08 7}
@ 350
0.7 o
Q 2
S 06 g 300
= 3
2 05 = 250 f
x 2
0.4 f { £
2 200 'siena’
0.3 r <] i ‘topic’ —>—
E 150 ‘numeric’. —8— |
02 1 ‘category’ —e—
'string’ —e—
0.1 100 . . . :
0.05 0.1 0.15 0.2 0.25 0.3 0 5 10 15 20 25 30
p: Fraction of Malicious Nodes Number of Nodes
Fig. 19. Resilience Vs ind with a =6 Fig. 20. Throughput

nodes increases, it is more likely that two or more colluding nodes are on two or
more independent paths between the publisher and the subscriber. Observe that
the entropy decreases as the fraction of collusive nodes increases. In fact, when
all the routing nodes collude with one another, the entropy of their observation
is equal to the actual entropy of the system (Sact). In a more realistic scenario
wherein the fraction of colluding nodes is small (10-20%), the apparent entropy
(Sapp) is significantly higher than the actual entropy (Sact), thereby significantly
limiting the effectiveness of an inference attack.

Selective and Random Dropping Attack. We now report the experimental
results on the effectiveness of using the r-resilient pub-sub networks against message
dropping attacks. Our first experiment measures communication cost versus a (for
an a—ary tree network). The second and third experiments measure the network
resilience as a function of p (the fraction of malicious nodes in the network).

Figures 18 and 19 show the resilience of the pub-sub network versus p (fraction
of malicious nodes) for different values of a and ind respectively. Resilience is mea-
sured in terms of the ratio of the number of susbcribers that receive an event on
topic w to N(w), averaged over all topics. Observe from Figure 18 that one can
improve resilience by increasing a at the cost of publisher load. This is equivalent to
decreasing the network’s height h, thereby making the network shallow and broad.
Figure 19 shows that one can improve resilience by increasing ind at the cost of the
overall communication cost. A careful selection of parameters ind and a is required
to strike a balance between resilience, communication cost and publisher load.

Comparison with Random Walk and Broadcast based Event Dissemi-
nation Schemes. Table VII compares our event dissemination protocol with the
random walk and broadcast based event dissemination protocol. Random walk
based protocols are ill-suited for event dissemination primarily because the average
number of hops required to reach a subscriber from a publisher is O(N log N), where
N is the number of routing nodes in the network. Also, with longer paths, the odds
that at least one node in the path is malicious (and thus drops the message) is very
high. Table VII shows that one can improve the random walk protocol by using
multiple random walkers that simultaneously start from a publisher. On the other
end of the spectrum is the broadcast protocol which achieves the lowest latency
and maximum resilience to message dropping costs. However, the broadcast based

ACM Journal Name, Vol. V, No. N, Month 20YY.

37

Event Dissemination Latency | Resilience | Communication Cost
EventGuard (ind = 1) 532ms 0.6 750
EventGuard (ind = 2) 534ms 0.82 1208
EventGuard (ind = 3) 540ms 0.97 1732
RandomWalk (walkers = 1) 74s 3.7%10 % 6415
RandomWalk (walkers = 2) 67s 7.3¥10 % 12012
RandomWalk (walkers = 3) 59s 1.1%10°° 17091
Broadcast 522ms 0.98 12987

Table VII. Comparison of Event Dissemination Protocols: 10% of routing nodes
perform message dropping attacks

scheme floods the entire pub-sub network, thereby incurring significantly higher
costs than EventGuard. EventGuard can be very close to the broadcast based
scheme in terms of latency and resilience, while reducing the communication cost
by a factor of at least seven.

6.5 Implementation based Experiments

In this section, we present end-to-end performance measurements from our pro-
totype implementation of EventGuard on Siena pub-sub core. First, we present
measurements on the loss in throughput and the increase in latency in publications
due to EventGuard. Second, we measure the throughput of EventGuard mecha-
nisms under flooding based DoS attacks.

Experimental Setup. Our implementation of EventGuard is built on top of Siena
pub-sub core. We ran this implementation of EventGuard on eight machines each
with eight processors (550 MHz Intel Pentium IIT Xeon processors running RedHat
Linux 9.0) connected via a high speed LAN. We simulate the wide-area network
delays obtained from the GT-ITM topology generator. We ignored the LAN delays
as they measured only a few tenths of a millisecond.

We used GT-ITM [Zegura et al. 1996] topology generator to generate an Internet
topology consisting of 63 nodes. The latencies for links were obtained from the
underlying Internet topology generated by GT-ITM. The round trip times on these
links varied from 24ms to 184ms with mean 74ms and standard deviation 50ms.
The tree’s root node acts as the publisher, and its leaf nodes act as subscribers for
this pub-sub network (32 subscribers and one publisher). We constructed complete
binary tree topologies using different numbers of nodes (0, 2, 6, 14, 30) and linked
these nodes using open TCP connections to form the pub-sub network. The sub-
scribers were uniformly distributed among all the leaf nodes.

Throughput. We measured the throughput in terms of the maximum number
of publications per second that can be handled by the pub-sub system with and
without EventGuard (EventGuard-nosig). We measured the maximum throughput
as follows. We engineered the publisher to generate publications at the rate of ¢
publications per unit time. In each run of this experiment, the rate ¢ was fixed.
We monitored the number of outstanding publications required to be processed at
every node. If at any node the number of outstanding publications monotonically
increased for five consecutive observations, then we concluded that the node was
saturated and the experiment was aborted. We iteratively varied ¢ across different
experimental runs to identify the minimum value of ¢,sn, = throughput such that
some node in the pub-sub network was saturated.

ACM Journal Name, Vol. V, No. N, Month 20YY.

38

1800 'Siena —+—

'siena’ —+— 350 1 ‘EventGuard’ —<— |
9 ‘topic’ —>—
1600 ‘numeric’ —8— 300
T ‘category’ —6—
1400 'string’ —e— 4

1200

Throughput
n
o
o

1000 [

Latency (ms)

800

600

400 ‘ ‘ ‘ ‘ ‘ 0 200 400 600 800 1000
0 5 10 15 20 25 30 Flooding Rate

Number of Nodes

. Fig. 22. Resilience to Flooding-based
Fig. 21. Latency DoS Attacks

Figure 20 shows the maximum throughput versus the number of nodes in the pub-
sub network for EventGuard and basic Siena for simple subscriptions. The increase
in throughput with the number of nodes shows the scalability of EventGuard. Note
that as the number of nodes increases, the number of subscribers connected to one
leaf node decreases, thereby increasing the effective throughput. However, as the
number of nodes becomes increasingly larger than the number of subscribers, the
throughput does not increase any further, since this simply results in underutilized
nodes. The main overhead in EventGuard arises due to the verification of ElGamal
signatures (1.7ms). We also measured the overhead in the absence of this signature
verification at every node in the pub-sub network (EventGuard-nosig in Figure
reftab-thruput). We found that the overhead was lesser than 5%. We are currently
exploring faster signature algorithms to replace ElGamal.

Latency. We measured latency in terms of the amount of time it takes from the
time instant a publication is published till the time it is available to the subscriber
(in plain-text). The latency was measured keeping the throughput at its highest
(see Figure 20). Figure 21 shows latency versus number of nodes for EventGuard
and basic Siena.

Observe that the latency first decreases and then increases. Initially, as the
number of nodes increases, the number of subscribers assigned to each leaf node
decreases. This consequently decreases the load on a node and thus decreases the
latency. However, as the number of nodes increases, so does the height of the dis-
semination tree. An increase in height by one incurs an additional latency of 70ms
(network latency), thereby increasing the overall latency. While the throughput
always increases (until it saturates) with the number of nodes, the latency will be-
gin to increase. This requires a careful choice of the number of pub-sub nodes in
order to achieve high throughput with acceptable latencies. Observe from Figure
21 that the increase in latency due to EventGuard is very small. This is because
the wide-area network latencies are of the order of 70ms while the overhead added
at every node by EventGuard is about 2ms. Nevertheless, the maximum increase
in latency due to EventGuard is less than 4%.

Flooding-based DoS Attacks. We measured the effect of flooding-based DoS
attacks on the throughput of the pub-sub network. We picked one of the leaf nodes

ACM Journal Name, Vol. V, No. N, Month 20YY.

39

to flood the pub-sub network. We vary fI, the rate that which the malicious node
floods messages on the pub-sub network. Figure 22 shows the throughput as fI
increases both in the presence and absence of EventGuard mechanisms to guard
the system from flooding-based DoS attacks.

Observe from Figure 22 that in the absence of our guards, the pub-sub system
deteriorates drastically with the injection of flooding-based DoS attack. In com-
parison EventGuard shows a more graceful drop in throughput as the flooding rate
fl increases. Note that although our guard against flooding-based DoS attacks
involves an expensive ElGamal signature check (1.7ms), it restricts the attack into
a small neighborhood surrounding the malicious node (see Figure 3). This ensures
that the effect of a flooding-based DoS attack is localized and that the rest of the
pub-sub network is not affected by it.

7. RELATED WORK

Several pub-sub systems [Carzaniga et al. 2001][Banavar et al. 1999][Datta et al.
2003] have been developed to provide highly scalable and flexible messaging support
for distributed systems. Siena [Carzaniga et al. 2001] and Gryphon [Banavar et al.
1999] are large pub-sub system capable of content-aware routing. Scribe [Datta
et al. 2003] is an anonymous P2P pub-sub system. Most work on pub-sub systems
has focused on performance, scalability and availability. Unfortunately, very little
effort has been expended on studying the security aspects of these systems.

A significant amount of work has been done in the field of secure group communi-
cation on multicast networks (survey [Rafaeli and Hutchison 2003]). Such systems
can leverage secure group-based multicast techniques and group key management
techniques to provide forward and backward security, scalability and performance.
The key problem in such systems arises due to the fact that IP multicast does not
provide any mechanisms for preventing non-group members to have access to group
communication. A significant restriction with secure group communication is that
the group membership has to be predefined. In contrast, EventGuard permits flex-
ible membership at the granularity of subscriptions. Second, EventGuard uses an
overlay network and does not rely on IP multicast technology primarily because
there have not been Internet scale deployments of the IP multicast protocol.

Wang et al. [Wang et al. 2002] analyze the security issues and requirements in a
content-based pub-sub system. This paper identifies that the general security needs
of a pub-sub application include confidentiality, integrity and availability. More
specifically they identify authentication of publications, integrity of publications,
subscription integrity and service integrity as the key issues. The paper presents
a detailed description of these problems in the context of a content-based pub-sub
system, but fails to offer any concrete solutions.

Raiciu et. al. [Raiciu and Rosenblum 2006] define security models and develop
provable security algorithms for event confidentiality in content-based publish-
subscribe networks. The paper describes theoretical limits and tradeoffs between
confidentiality and generality of subscriptions and presents constructive schemes
for (in)equality and range subscriptions.

Opyrchal and Prakash [Opyrchal and Prakash 2001] analyze secure distribution
of events in a content-based pub-sub network from a group key management stand-

ACM Journal Name, Vol. V, No. N, Month 20YY.

40

point. They show that previous techniques for dynamic group key management
fail in a pub-sub scenario since every event can potentially have a different set of
interested subscribers. They use a key caching based technique that relies on sub-
scription popularity to reduce the number of encryptions and to increase message
throughput. However, their approach requires that the pub-sub network nodes
(brokers) are completely trustworthy. EventGuard aims to provide security to the
subscribers while maintaining confidentiality even from the pub-sub network nodes.

Perng et al. [Perng et al. 2006] have proposed a mix network based technique to
provide publisher /subscriber anonymity against curious routing nodes that have a
priori knowledge on event popularity. Note that event popularity is defined as the
number of subscribers that are interested in an event. Our secure event routing
algorithm complements their proposal by defending against curious routing nodes
that have a priori knowledge on the frequency distribution of events. In addition,
they do not focus on access control and authorization on the published events.

Several authors have used hierarchical key derivation algorithms [Wong et al.
2000] to develop key management algorithms primarily in the domain of file systems
[Atallah et al. 2005][Atallah et al. 2007b][Atallah et al. 2007a]. To the best of our
knowledge this is the first paper that applies hierarchical key derivation algorithms
to enforce access control in pub-sub systems. However, our solutions do not apply
to all pub-sub matching operators, although they cover most of the popular ones
[Carzaniga et al. 2001]. One solution is to use computation and communication
intensive secure multi-party communication protocols. Nonetheless, scalable access
control for arbitrary matching operators remains an open problem. We have used
an epoch based subscription model that does not permit revocations within one
time epoch. However, this model is very realistic in several payment based pub-sub
services that charge some subscription fee per epoch.

8. CONCLUSION

We have presented FventGuard, a dependable system architecture for protecting
pub-sub services from various attacks. EventGuard offers security features that are
critical to pub-sub overlay services, such as authenticity, confidentiality, integrity,
and resilience to flooding based DoS attacks. We have described the two key com-
ponents of EventGuard. The first component is a suite of security guards that
secure the basic publish and subscribe operations from DoS attacks and unautho-
rized reads and writes. These guards can be plugged-into a wide-area content-based
pub-sub system in a seamless manner. The second component is a resilient pub-sub
network design that is capable of providing secure and yet scalable message routing,
countering message dropping-based DoS attacks. A unique feature of EventGuard
is its unified security framework that meets both security goals for safeguarding the
pub-sub overlay services from various vulnerabilities and threats and performance
goals for maintaining the simplicity and scalability of the overall system while pro-
viding security guarantees. We have reported a series of experimental evaluations,
showing that EventGuard can secure a pub-sub overlay service with minimal per-
formance penalty. Our prototype implementation on top of Siena also demonstrates
that EventGuard is easily stackable on any content-based pub-sub core.

ACM Journal Name, Vol. V, No. N, Month 20YY.

41

Acknowledgements

Research was sponsored by the Army Research Laboratory and was accomplished
under Cooperative Agreement Number W911NF-09-2-0053. The views and conclu-
sions contained in this document are those of the authors and should not be inter-
preted as representing the official policies, either expressed or implied, of the Army
Research Laboratory or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation here on.

REFERENCES

AGUILERA, K. AND STROM, R. 2000. Efficient atomic broadcast using deterministic merge. In
Proceedings of the 19th ACM PODC.

AGUILERA, M., STROM, R., STURMAN, D., ASTLEY, M., AND CHANDRA, T. 1999. Matching events
in a content-based subscription system. In Proceedings of the 18th ACM PODC.

ATALLAH, M., FRIKKEN, K., AND BLANTON, M. 2005. Dynamic and efficient key management for
access hierarchies. In Proceedings of ACM CCS.

ATALLAH, M. J., BLANTON, M., AND FRIKKEN, K. B. 2007a. Efficient techniques for realizing
geo-spatial access control. In Asia CCS.

ATALLAH, M. J., BLANTON, M., AND FRIKKEN, K. B. 2007b. Incorporating temporal capabilities
in existing key management schemes. In ESORICS.

BANAVAR, G., CHANDRA, T., MUKHERJEE, B., AND NAGARAJARAO, J. 1999. An efficient multicast
protocol for content-based publish subscribe systems. In Proceedings of the 19th ICDCS.

CARZANIGA, A., ROSENBLUM, D. S.; AND WOLF, A. L. 2001. Design and evaluation of a wide-area
event notification service. In ACM Transactions on Computer System, 19(3):332-383.

DatTa, A. K., GRADINARIU, M., RAYNAL, M., AND SIMON, G. 2003. Anonymous publish/subscribe
in P2P networks. In Proceedings of IPDPS.

EAsTLAKE, D. AND JoNES, P. 2001. US secure hash algorithm 1.
http://www.ietf.org/rfc/rfc3174.txt.

ELGamMAL, T. 1985. A public key cryptosystem and a signature scheme based on discrete loga-
rithm. In IEEE transactions on information theory, 31(4): 469-472.

FIPS. Data encryption standard (DES). http://www.itl.nist.gov/fipspubs/fip46-2.htm.

KrawczyK, H., BELLARE, M., AND CANETTI, R. HMAC: Keyed-hashing for message authentica-
tion. http://www.fags.org/rfcs/rfc2104.html.

MALKHI, D., RODEH, O., AND REITER, M. 2001. Efficient update diffusion in byzantine environ-
ments. In Proceedings of 20th IEEE SRDS.

MATHPAGES. Generating monotone boolean functions. http://www.mathpages.com/home/kmath094.htm.

OPENSSL. Openssl. http://www.openssl.org/.

OPYRCHAL, L. AND PRAKASH, A. 2001. Secure distribution of events in content-based publish
subscribe system. In Proceedings of the 10th USENIX Security Symposium.

PERNG, G., REITER, M. K., AND WANG, C. 2006. M2: Multicasting mixes for efficient and anony-
mous communication. In Proceedings of IEEE ICDCS.

QIN Lv, S. R. AND SHENKER, S. 2002. Can heterogeneity make gnutella scalable? In Proceedings
of the first International Workshop on Peer-to-Peer Systems.

RAFAELL, S. AND HuTcHISON, D. 2003. A survey of key management for secure group communi-
cation. In Journal of the ACM Computing Surveys, Vol 35, Issue 3.

Rarciu, C. AND RosenBLUM, D. S. 2006. Enabling confidentiality in content-based pub-
lish/subscribe infrastructures. In Proceedings of IEEE SecureComm.

RIVEST, R. 1992. The MD5 message-digest algorithm. http://www.ietf.org/rfc/rfc1321.txt.

SoNG, D., WAGNER, D., AND PERRIG, A. 2000. Practical techniques for searches over encrypted
data. In IEEE S € P Symposium.

ACM Journal Name, Vol. V, No. N, Month 20YY.

42

SRIVATSA, M., GEDIK, B., AND Liu, L. 2006. Scaling unstructured peer-to-peer networks with
multi-tier capability aware topologies. In Proceedings of IEEE Transactions on Parallel and
Distributed Systems (TPDS), Vol. 17, No. 10.

SRIVATSA, M. AND Liu, L. 2004. Vulnerabilities and security issues in structured overlay net-
works: A quantitative analysis. In Proceedings of the Annual Computer Security Applications
Conference (ACSAC).

SRIVATSA, M. AND Liu, L. 2005. Secure event notification architecture for publish-subscribe
networks. In ACM CCS.

SRIVATSA, M. AND Liu, L. 2007. Secure event dissemination in content-based publish-subscribe
networks. In IEEE ICDCS.

SRIVATSA, M., XIONG, L., AND Liu, L. 2005. Trustguard: Countering vulnerabilities in reputa-
tion management for decentralized overlay networks. In Proceedings of the World Wide Web
Conference (WWW).

WAaANG, C., CARZANIGA, A., EvaNns, D., AND WOLF, A. L. 2002. Security issues and requirements
for internet-scale publish-subscribe systems. In Proceedings of the 35th Hawaii International
Conference on System Sciences.

Wong, C. K., Goupa, M. G., AND LAM, S. S. 2000. Secure group communications using key
graphs. In IEEE/ACM Transactions on Networking: 8, 1(Feb), 16-30.

XIONG, L. AND Livu, L. 2004. Peertrust: Supporting reputation-based trust for peer-to-peer elec-
tronic communities. In Proceedings of IEEE TKDE, Vol. 16, No. 7.

Yang, Y. R., L1, X. S., ZHANG, X. B., AND LAM, S. S. 2001. Reliable group rekeying: A perfor-
mance analysis. In Proceedings of ACM SIGCOMM.

ZEGURA, E. W., CALVERT, K., AND BHATTACHARJEE, S. 1996. How to model an internetwork. In
Proceedings of IEEE Infocom.

ACM Journal Name, Vol. V, No. N, Month 20YY.

