
Scalability of Dynamic Storage Allocation Algorithms

Arun Iyengar

IBM Research Division

T. J. Watson Research Center

P. O. Box 704

Yorktown Heights, NY 10598

aruni@watson.ibm.com

Abstract

Dynamic storage allocation has a signi�cant impact
on computer performance. A dynamic storage alloca-
tor manages space for objects whose lifetimes are not
known by the system at the time of their creation. A
good dynamic storage allocator should utilize storage
e�ciently and satisfy requests in as few instructions
as possible. A dynamic storage allocator on a mul-
tiprocessor should have the ability to satisfy multiple
requests concurrently. This paper examines parallel
dynamic storage allocation algorithms and how per-
formance scales with increasing numbers of processors.
The highest throughputs and lowest instruction counts
are achieved with multiple free list �t I. The best mem-
ory utilization is achieved using a best �t system.

1 Introduction

Many programming languages allocate storage from
the heap. The dynamic storage allocator, also known
as the heap manager, allocates and deallocates heap
objects. Heap objects have inde�nite lifetimes. Space
occupied by a heap object is not reclaimed until the
programmer or garbage collector explicitly instructs
the heap manager to deallocate the object. This con-
trasts with frames allocated for a procedure invoca-
tion, where the space for all objects in the frame is
reclaimed after the procedure terminates.

The e�ciency of the dynamic storage allocator con-
stitutes a crucial component of system performance.
A good heap manager should utilize storage e�ciently
and satisfy requests in as few instructions as possible.
A heap manager on a parallel machine should have the
ability to process several requests concurrently.

This paper examines algorithms for e�ciently man-
aging heap storage on multiprocessors. Multiple free
list �t I (MFLF I) [12, 11] achieves the highest
throughputs and lowest total instruction counts. A
best �t algorithm achieves the best memory utiliza-
tion. However, the best �t algorithm has high instruc-
tion counts and low throughputs. The memory per-
formance of multiple free list �t I is not signi�cantly
worse than best �t. When the percentage of requests
for large blocks is small, the memory requirements of
the two algorithms are comparable.

A number of studies on parallel dynamic storage al-
location have been published. Iyengar [11, 12] studied
several dynamic storage allocation algorithms and de-
veloped three new ones including MFLF I. Stone [25]
presented a parallel �rst �t algorithm which uses the
FETCH-AND-ADD instruction for concurrency con-
trol. Gottlieb andWilson developed concurrent buddy
systems which also utilize the FETCH-AND-ADD in-
struction [9, 10, 30]. Johnson and Davis [14] developed
a parallel buddy system which coordinates allocate,
deallocate, and split operations in order to minimize
block fragmentation. Bigler, Allan, and Oldehoeft [2]
studied three di�erent storage allocation algorithms
on a Denelcor HEP. They obtained the best perfor-
mance using a parallel version of Knuth's modi�ed
�rst �t algorithm [15]. Ford [8] studied concurrent al-
gorithms for real-time memory management. His al-
gorithms use �rst �t. Ellis and Olson [6] studied four
di�erent �rst �t algorithms on a 64-node BBN Butter-
y Plus. Johnson [13] has developed concurrent ver-
sions of Stephenson's fast �ts algorithm for Cartesian
trees [23].

2 Dynamic storage allocation algo-
rithms

A considerable number of dynamic storage alloca-
tion algorithms have been developed [31]. Most algo-
rithms link all free blocks together using one or more
free lists. The simplest approach is to use one free
list for all unallocated blocks. However, algorithms
utilizing multiple free lists often result in better per-
formance.

A mechanism is needed for coalescing adjacent free
blocks in memory. In immediate coalescing, a block b
is coalesced with any neighboring free blocks as soon
as b is deallocated. In deferred coalescing, adjacent
free blocks in memory are not coalesced during deal-
location. The memory system operates without co-
alescing until a memory request cannot be satis�ed.
At this point, all adjacent free blocks in memory are
coalesced.

Heap managers on multiprocessors should have the
ability to satisfy several requests concurrently. This
is typically achieved by using locking protocols which

allow a process to obtain exclusive access to free
list pointers and header words of blocks. Multiple
processes may search a single free list using lock-
coupling. In lock-coupling, a process searching a list
does not give up its lock on a component of a list until
the process has obtained a lock on the next compo-
nent. The throughput which can be obtained by a
heap manager using a single free list is limited, how-
ever. More parallelism is obtained by utilizing several
free lists and searching multiple free lists concurrently.

Several search strategies have been employed for
systems utilizing single free lists. In �rst �t, the �rst
block encountered which is large enough to satisfy the
memory request is located. In most implementations,
the search begins at the head of the free list. However,
search strategies which begin at di�erent parts of the
list have also been proposed [15]. In best �t, the small-
est block which is large enough to satisfy the memory
request is located. In worst �t, the largest free block
is located. In random �t, a request for a block of size
n is satis�ed by picking a free block of size � n at
random.

First �t and best �t systems should utilize imme-
diate coalescing. Deferred coalescing results in many
small blocks which slow down allocation requests for
large blocks. Immediate coalescing can be achieved
by using address-ordered free lists. Free blocks are or-
dered by memory address in an address-ordered free
list. The disadvantage of address-ordered free lists
is that deallocation can require a fair amount of list
searching. If the free list contains n items, then deal-
location requires O(n) instructions.

An alternative approach is to use boundary tags
[15]. Typically, the �rst word of a block is reserved
for its size. Positive sizes may indicate free blocks,
while negative sizes indicate allocated blocks. In the
boundary tag approach, an additional tag in the last
word of each block indicates whether or not the block
is allocated. If the block is free, the size must also be
stored at the end of the block. The free list is dou-
bly linked to allow the deletion of items in constant
time. Whenever a block is deallocated, the heap man-
ager uses boundary tags to determine if any coalescing
should take place.

Boundary tags allow blocks to be deallocated in
constant time. However, extra space is required for
boundary tags. The boundary tag approach requires
fewer instructions but more space than the address-
ordered approach.

Other approaches to allocating storage utilize mul-
tiple free lists and segregate free blocks by size. The bi-
nary buddy system requires all block sizes to be powers
of two. Separate free lists are maintained for blocks of
di�erent sizes. Since all block sizes must be powers of
two, the binary buddy system utilizes storage poorly.
Other buddy systems have been proposed which use a
wider variety of block sizes [11]. Buddy systems may
use either immediate or deferred coalescing.

Stephenson implemented an algorithm known as
fast �ts [24, 23] which uses Cartesian trees [27] for
storing free blocks. The structure of a Cartesian tree
is determined by both a primary and a secondary key.
The nodes of the tree are totally ordered with respect

to the primary key and partially ordered with respect
to the secondary key. An inorder traversal of the tree
yields the nodes ordered by the primary key. Each
node has a secondary key at least as big as any sec-
ondary key belonging to a descendant of the node.
In fast �ts, block addresses are used as primary keys
while block sizes are used as secondary keys. One of
the disadvantages of Cartesian trees is that they can
become unbalanced. In the worst case, search times
will be O(n) instead of O(log(n)) where n is the num-
ber of free blocks.

Quick �t [28, 29] uses quick lists for the most fre-
quently requested sizes. Allocation from a quick list
requires few instructions. A quick list exists for each
block size s de�ned over the interval

minQL � s � maxQL:

We will assume that minQL is the minimum legal
block size. The optimal value for maxQL depends on
the request distribution. A small block is a block of size
� maxQL: A large block is a block of size > maxQL:
A single miscellaneous list, or misc list, exists for large
free blocks. Quick �t utilizes deferred coalescing. Fig-
ure 1 shows how quick �t and MFLF I organize free
storage for small blocks.

2 2

3 3

4 4

Working Storage Tail

Beginning
of Memory

End of
Memory

Figure 1: Quick �t and MFLF I both use multiple
free lists known as quick lists to segregate free blocks
according to their sizes. In this �gure, the number
in each block represents its size. Contiguous storage
at one end of memory which has not been allocated
since memory was last coalesced is known as the tail.
Allocation from quick lists and the tail requires few
instructions.

Memory is divided into the tail and working storage.
The tail is a contiguous block of free words at one

end of memory which has not been allocated since
memory was last coalesced. Working storage consists
of memory which is not part of the tail (Figure 1).
Initially, the tail constitutes the entire heap memory,
and each free list is empty. Blocks are added to free
lists during deallocations.

Quick �t has a number of desirable characteristics.
Allocation from quick lists is fast; the vast majority of
requests can usually be satis�ed from quick lists. Deal-
location is always fast; newly freed blocks are simply
placed at the beginning of the appropriate free list.
Quick �t has a high degree of parallelism because dif-
ferent free lists may be examined concurrently.

A signi�cant number of instructions may be re-
quired to allocate a large block. However, most re-
quests on real memory systems are for small blocks.
Therefore, the average number of instructions required
to satisfy heap requests is usually low. The instruction
count tends to increase with the fraction of requests
for large blocks.

2.1 Multiple free list �t I

Multiple free list �t I uses the same approach as
quick �t for allocating small blocks and one or more
misc lists for large blocks. By contrast, quick �t al-
ways uses a single misc list for storing large free blocks.
Good performance is achieved by using about �ve misc
lists. Each large free block is placed on a misc list ac-
cording to its size. The allocation algorithm for small
blocks is similar to the algorithm used by quick �t.
We say that a quick �t and MFLF I allocator are con-
gruent if they both use identical sets of sizes for quick
lists.

Misc lists are arranged by block size. Suppose the
system has n misc lists designated by l1 through ln:
Let max be the size of the largest block which can
ever exist in the system, lowi the size of the smallest
block which can be stored on li; and highi the size of
the largest block which can be stored on li: We refer
to the pair (lowi; highi) as a misc list range. Misc lists
cover disjoint size ranges. If

1 � i < n;

then
highi + 1 = lowi+1:

The boundary conditions are

low1 = maxQL + 1

and
highn = max:

Whenever a process accesses one or more misc lists
in order to obtain a block of size s;MFLF I attempts to
satisfy the request without performing a �rst �t search
of a misc list. First �t searches can be time consuming.
By contrast, if a nonempty misc list li exists such that
lowi � s; the �rst free block contained on li can be
used to satisfy the request.

2.1.1 Allocating small blocks

The following strategy is used to allocate a block of
size s where s � maxQL :

1. If the quick list for blocks of size s is nonempty,
allocate the �rst block from the list.

2. If the previous step fails, try to satisfy the request
from the tail.

3. If the previous step fails, examine lists containing
larger blocks until a free block is found. This
search is conducted in ascending block size order
beginning with the list storing blocks of size s+1:

4. If the previous step fails, coalesce all adjacent free
blocks in memory and go to Step 1.

2.1.2 Allocating large blocks

The following strategy is used for allocating a block of
size s where lown � s > maxQL :

1. Locate misc list li; where li is the list with the
smallest value of lowi such that lowi � s:

2. Examine lists li through ln in ascending block size
order until a free block is found. As soon as a
nonempty list is located, the �rst block contained
on the list is used to satisfy the request.

3. If the previous step fails and lowi > s, then ex-
amine list i � 1 using �rst �t. If lowi = s; go to
the next step.

4. If the previous step fails, try to satisfy the request
from the tail.

5. If the previous step fails, coalesce all adjacent free
blocks in memory and go to Step 1.

The following strategy is used for allocating a block of
size s where s > lown :

1. Search list ln using �rst �t.

2. If the previous step fails, try to satisfy the request
from the tail.

3. If the previous step fails, coalesce all adjacent free
blocks in memory and go to Step 1.

An example of allocation using MFLF I is shown in
Figure 2.

2.1.3 Deallocating blocks

In order to deallocate a block of size s � maxQL; the
block is placed at the head of the appropriate quick
list. In order to deallocate a block of size s > maxQL;
the block is placed at the head of misc list i, where

lowi � s � highi:

Since deferred coalescing is used, adjacent free blocks
are not coalesced during a deallocation.

70−88

89−105

Nil

70 85

90 99

6

l1

l2

Alloc 84

70−88

89−105

6 Nil6

70 85

99

l1

l2

Figure 2: Satisfying a request for a large block using
multiple free list �t I. List l2 is examined before l1.
Since the smallest block on l2 must contain at least 89
words, the �rst block on l2 will always be large enough
to satisfy a request of size 84. By contrast, satisfying
the request from l1 would have required searching the
list.

2.1.4 Discussion

Di�erent misc lists may be searched concurrently.
Multiple processes may search the same misc list via
lock-coupling, just as in quick �t. However, MFLF I
often obtains signi�cantly more parallelism than quick
�t because of multiple misc lists. If a single misc list
is used, a small number of processes can lock parts
of the list and slow down other allocating processes.
Elements at the front of the list tend to become bottle-
necks. Contention for these list elements can substan-
tially increase the time required for allocating large
blocks.

Multiple misc lists in an MFLF I system reduce the
contention on elements at the beginning of lists. Misc
list ranges are selected in order to distribute requests
as evenly as possible across di�erent misc lists. We
have encountered many situations where an MFLF I
system with multiple misc lists has substantially more
parallelism than a congruent quick �t system.

In order to manage large blocks, a data structure d
associating each misc list range with a free list pointer
is searched. One optimization which can reduce this
searching is to store free list pointers in an array in-
dexed by block sizes. Some searching of d may still
be required to prevent the array from becoming too
large.

It is common for a program to repeatedly allocate

and deallocate several blocks of the same size, s: If
deferred coalescing is used, free blocks of size s will
frequently exist in the system. Let r be a request for
a block of size s: A dynamic storage allocator satis�es
request r with an exact �t if the block satisfying the
request contains exactly s words without being split.
Exact �ts are desirable because they result in good
memory utilization.

Multiple free list �t I always tries to satisfy requests
for small blocks with exact �ts. However, MFLF I of-
ten does a poor job of �nding exact �ts for large blocks.
The probability of �nding exact �ts is increased by
choosing appropriate misc list ranges. If large blocks
of size s are frequently allocated and deallocated, then
misc list ranges should be chosen so that

s = lowi

for some misc list li: A search for a block of size s will
then examine li before examining any other list.

An alternative strategy which does not rely on misc
list range values is to modify the search strategy for
large blocks. The �rst list examined during a search
for a block of size s is list li; where

lowi � s � highi:

The drawback to this approach is that if s > lowi;
then a �rst �t search of li takes place. Allocation is
thus slightly slower on average.

We have experimented with versions of MFLF I
which dynamically adjust themselves to request distri-
butions. Misc list ranges are periodically recalculated
in order to match request distributions [11]. This ap-
proach was not successful. The overhead for main-
taining information about request distributions and
recalculating misc list ranges more than compensated
for other performance gains.

3 Performance comparisons

3.1 Methodology

The criteria we use for comparing dynamic storage
algorithms are total instructions executed, through-
put, and memory utilization. The throughput of a
dynamic storage allocator is the average number of
requests which can be satis�ed in 1000 cycles.

Memory is wasted due to internal fragmentation
and external fragmentation. Internal fragmentation is
memory wasted by satisfying a request with a larger
block than is needed. We de�ne internal fragmenta-
tion at any time t as:

fi = a=b; (1)

where a is the total number of words allocated at time
t and b is the number of words which would have been
allocated in a system with no internal fragmentation.
The aggregate internal fragmentation calculated from
l measurements is given by the formula:

fi =

Pl

j=1 aj
Pl

j=1 bj
; (2)

where aj is the number of allocated words at the time
of measurement j and bj is the number of words which
would have been allocated in a system with no internal
fragmentation.

The dynamic storage allocators presented in this
paper require one extra word per block for storing the
block size. This extra word per block is not considered
to be storage wasted by internal fragmentation. How-
ever, the �rst �t system utilizing boundary tags uses
two extra words per block. One of the extra words is
considered to result from internal fragmentation.

We attempt to split blocks during allocation to min-
imize internal fragmentation in every allocator except
for the buddy system. Let min block size be the min-
imum block size allowed by a dynamic storage alloca-
tor. Whenever a block of size s is used to satisfy a
request for r words and s � r + min block size; the
block is split and a fragment of size s � r is returned
to free storage in every allocator except for the buddy
system.

External fragmentation occurs when free blocks are
interleaved with allocated blocks. If m is the max-
imum number of consecutive free words of memory,
then a request for a block of size > m cannot be
satis�ed, even if the total number of free words is
substantially larger than m: External fragmentation
is determined by running the heap manager until an
allocation request cannot be satis�ed. External frag-
mentation is given by the formula:

fe =M=a; (3)

where M is the number of words in memory and a
is the number of allocated words when memory over-
ows. The aggregate external fragmentation calcu-
lated from n experiments is given by the formula:

fe =

Pn

j=1
Mj

Pn

j=1 aj
; (4)

where Mj is the memory size and aj is the number of
allocated words when memory overows in experiment
j:

Total fragmentation is memory lost to either inter-
nal or external fragmentation. We de�ne total frag-
mentation quantitatively as the product of internal
and external fragmentation:

ft = fi � fe: (5)

Aggregate total fragmentation calculated from several
experiments is given by the formula:

ft = fi � fe: (6)

A dynamic storage allocator which doesn't waste any
memory would have a total fragmentation value of
1. A dynamic storage allocator which requires 10%
more storage than an allocator which doesn't waste
any storage would have a total fragmentation value of
1.1.

Our performance results were obtained using the Id
World programming environment [18]. Id World sim-
ulates a shared memory parallel machine where the

number of processors can be varied from one to in�n-
ity. The simulated machine has the following charac-
teristics:

� Each operator takes unit time to execute.

� Results of an instruction are available to its suc-
cessors instantaneously. No communication delay
exists.

� All enabled instructions are executed immedi-
ately.

Each processor is sequential. Thus, the throughput
achieved by one processor is a measure of the instruc-
tion count one would expect to see on a purely sequen-
tial machine.

Experiments consisted of several loop iterations.
During each iteration, 50 blocks were allocated con-
currently. Block lifetimes were distributed exponen-
tially with a mean of 3 loop iterations.

One way to increase the throughput of a storage
allocator is to divide the heap into several di�erent
areas and distribute requests to the di�erent areas.
For example, the throughput of a �rst �t system can
be increased by using several free lists instead of a
single one. This multiplicity introduces complexity,
however. A method is needed to distribute requests
to di�erent free lists.

For machines with many processors, dividing the
heap into di�erent regions becomes a necessity. Al-
gorithms sustaining higher throughputs will require
fewer subdivisions of the heap for good performance.
For example, MFLF I, quick �t, and a �rst �t sys-
tem using boundary tags have been implemented on
the Monsoon multiprocessor [20, 26] to support the
execution of parallel programs. Each processor allo-
cates storage from a di�erent area of the heap. Con-
sequently, the throughput of the heap allocator scales
with the number of processors. Since processors are
pipelined, a single processor may have several pend-
ing memory requests at the same time. Multiple free
list �t I and quick �t generally satisfy requests with-
out bottlenecking the system. By contrast, the �rst
�t system using boundary tags often bottlenecks the
system because only one process is allowed to access
a free list at a time.

3.2 Results

The six algorithms described in Table 1 were com-
pared using three di�erent request distributions. Dis-
tribution I consisted of blocks whose sizes conformed
to an exponential distribution truncated at 30. The
mean of the distribution was 10. Of the blocks in
Distribution II, 50% conformed to Distribution I. The
remaining 50% were uniformly distributed over the
closed interval between 31 and 230. Of the blocks
in Distribution III, 50% conformed to Distribution I.
The remaining 50% were uniformly distributed over
the sizes 40, 50, 65, 85, 100, 120, 150, 200, 250, and
300. For MFLF I and quick �t, quick lists were used
for all blocks containing up to 30 words.

Most programs only request a small percentage of
large blocks. Distribution I is a reasonably good ap-
proximation of the average case. Most published re-
quest distributions are similar to Distribution I. Distri-
bution III is probably more representative of a single
program requesting a high percentage of large blocks
than Distribution II because large blocks requested
by single programs tend to be distributed over a small
number of block sizes.

The average number of instructions required by the
algorithms for satisfying a request is shown in Fig-
ure 3. The throughputs of the six algorithms are
shown in Figures 4, 5, 6, and 7. Memory utilization is
shown in Figures 8, 9, and 10.

MFLF I Quick fit First fit I First fit II Best Fit Buddy

Algorithm

0

500

1000

1500

In
st

ru
ct

io
n

C
ou

nt

Average Instructions Per Request

Dist. I
Dist. II
Dist. III

Figure 3: The average number of instructions for sat-
isfying a request. The buddy system actually requires
an average of 2594 instructions for satisfying a request
on Distribution II.

3.3 Discussion

MFLF I generally results in the highest through-
puts. On Distribution I, quick �t and MLFL I give
the same performance because the two algorithms use
the same approach for allocating small blocks. MFLF
I achieves considerable higher throughputs than quick
�t on Distributions II and III where the percentage of
requests for large blocks is signi�cant.

MFLF I and quick �t have considerably lower in-
struction counts than the other algorithms for Distrib-
ution I. For Distributions II and III, MFLF I and the
�rst �t system using boundary tags have the lowest
instruction counts. Unfortunately, the �rst �t system
using boundary tags doesn't scale well. In a parallel
environment, the comparative performance advantage
of MFLF I over the �rst �t system increases signi�-
cantly.

However, the �rst �t system using boundary tags
(Algorithm4) has a couple of advantages over MFLF I.
One advantage is that Algorithm 4 is slightly easier to

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t

Processors

Throughput on Distribution I

Quick fit, MFLF I
Buddy

First fit I
First fit II

Best fit

Figure 4: The throughputs of the six algorithms on
Distribution I.

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t

Processors

Throughput on Distribution II

MFLF I
Quick fit
First fit I

First fit II
Buddy
Best fit

Figure 5: The throughputs of the six algorithms on
Distribution II.

Algorithm Coalescing Free Multiple Lock- Minimum
Strategy List Free Coupling? Block

Structure Lists? Size
1 (MFLF I) Deferred Singly Linked Yes Yes 2

2 (Quick Fit) Deferred Singly Linked Yes Yes 2

3 (First Fit I) Immediate Address-ordered, No Yes 2
Singly Linked

4 (First Fit II) Immediate Unordered, No No 4
(boundary tags) Doubly Linked
5 (Best Fit) Immediate Address-ordered, No No 2

Singly Linked
6 (Buddy) Immediate Doubly Linked Yes No 4

Table 1: This table summarizes the characteristics of the algorithms which we tested. Algorithms with multiple
free lists allow di�erent lists to be examined concurrently. If a free list does not support lock-coupling, only one
process may examine the list at a time.

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t

Processors

Throughput on Distribution III

MFLF I
Buddy

Quick fit
First fit I

First fit II
Best fit

Figure 6: The throughputs of the six algorithms on
Distribution III.

implement than MFLF I. Another advantage is that
the performance of Algorithm 4 varies less than the
performance of any of the other algorithms. Algo-
rithm 4 would be a good algorithm to use when one
wants a dynamic storage allocator with little variation
in response times.

Since quick �t and MFLF I use deferred coalescing,
an allocation request can take a long time to satisfy
if the request triggers the coalescer. This can be bad
for a real-time system requiring predictable response
times. When memory is su�ciently large, however,
coalescing rarely happens and the average number of
instructions to satisfy a request is not substantially af-
fected by the coalescer. When memory is almost full,

MFLF I Quick fit First fit I First fit II Best Fit Buddy

Algorithm

0

50

100

150
T

hr
ou

gh
pu

t
Maximum Possible Throughput

Dist. I
Dist. II
Dist. III

Figure 7: The maximum possible throughputs of the
algorithms. This was obtained by simulating a ma-
chine with an unbounded number of processors.

coalescing happens more frequently and the overhead
can be signi�cant. We didn't encounter high coalesc-
ing frequencies until memory was near the overow
point.

The binary buddy system can sustain moderately
high throughputs due to the presence of multiple free
lists. The major drawback is that memory is used
ine�ciently. About 40% of memory is wasted be-
cause block sizes have to be rounded up to the nearest
power of two. The binary buddy system is generally
the fastest buddy system. Other buddy systems have
been proposed which use a wider variety of block sizes
in order to reduce internal fragmentation [11]. How-
ever, there is a tradeo� between internal and exter-
nal fragmentation [21, 22, 4]. Buddy systems which

MFLF I Quick fit First fit I First fit II Best Fit Buddy

Algorithm

0.0

0.5

1.0

1.5

In
te

rn
al

 F
ra

gm
en

ta
ti

on

Internal Fragmentation
Dist. I
Dist. II
Dist. III

Figure 8: Storage wasted due to internal fragmenta-
tion. The buddy system wastes the most storage be-
cause all block sizes have to be rounded up to the
nearest power of two.

MFLF I Quick fit First fit I First fit II Best Fit Buddy

Algorithm

0.0

0.5

1.0

E
xt

er
na

l F
ra

gm
en

ta
ti

on

External Fragmentation

I
II
III

Figure 9: Storage wasted due to external fragmenta-
tion.

MFLF I Quick fit First fit I First fit II Best Fit Buddy

Algorithm

0.0

0.5

1.0

1.5

T
ot

al
 F

ra
gm

en
ta

ti
on

Total Fragmentation
I
II
III

Figure 10: Total storage overhead. A memory system
which wastes no storage would have a value of 1.0. A
memory system which requires 10%more storage than
a system which wastes no storage would have a value
of 1.1. Best �t achieves the best memory utilization
followed by �rst �t I.

produce less internal fragmentation than the binary
buddy system tend to produce more external fragmen-
tation. The weighted ss buddy system [22] and the
dual buddy system [19] have been touted as displaying
less total fragmentation than the binary buddy sys-
tem for certain distributions. However, the weighted
ss buddy system is signi�cantly slower than the binary
buddy system. Furthermore, both the weighted ss and
dual buddy systems still display a substantial amount
of fragmentation. If memory utilization is critical, a
storage allocator other than the buddy system should
be used.

The best �t system using address-ordered free lists
(Algorithm 5) achieves the best memory utilization.
This algorithm is slow and sequential, however. Our
results agree with others which found that best �t
wastes less memory than �rst �t [5, 7, 28, 17, 16, 1,
23, 3]. Knuth is one of the few who concluded that
�rst �t results in better memory utilization than best
�t [15].

The �rst �t system using address-ordered free lists
(Algorithm 3) results in the second best memory uti-
lization. Its memory utilization is similar to that of
MFLF I and quick �t on Distribution I and superior to
the other two algorithms on Distributions II and III.
The �rst �t system using boundary tags (Algorithm 4)
wastes more memory than Algorithm 3 because an ex-
tra word is required for each block and minimumblock
sizes are four words instead of two. This overhead is
accounted for as internal fragmentation and decreases
with increasing block size. When a high percentage
of very small blocks are requested, the space overhead
from Algorithm 4 may be signi�cant.

MFLF I and quick �t achieve good space utiliza-

tion when the percentage of requests for large blocks
is small as is usually the case. Memory utilization de-
grades as the percentage of requests for large blocks
increases. We have obtained high throughputs and
good memory utilization using an algorithm known as
Multiple Free List Fit II (MFLF II) [12, 11]. MFLF
II approximates best �t and has throughputs compa-
rable to MFLF I. MFLF II is identical to MFLF I and
quick �t when all requests are for small blocks as in
Distribution I. On Distributions II and III, MFLF II
wastes more memory than Algorithms 5 and 3 but less
memory than any of the other algorithms compared in
this study. MFLF II is harder to implement than any
of the other algorithms.

The variability in speed is signi�cantly higher than
the variability in memory utilization. The only al-
gorithms which waste signi�cant amounts of storage
are the buddy system and the �rst �t system using
boundary tags when request distributions are skewed
to smaller block sizes than Distribution I. If memory
overheads of around 15% are tolerable, then Algo-
rithms 1, 2, 3, and 5 are adequate. Since MFLF I
is the fastest algorithm, it is our �rst choice.

Request distributions can have a signi�cant a�ect
on the performance of dynamic storage allocators.
The ultimate test is how the allocators perform on
real request distributions. A number of request dis-
tributions from real systems have been published [11].
For most of these distributions, the vast majority of
requests are for blocks smaller than 30. Many of these
distributions can be approximated by an exponen-
tial distribution similar to Distribution I. The prob-
lem with published distributions is that they tend to
be averaged over a large number of programs. Indi-
vidual programs show huge variations in request pat-
terns. We have simulated dynamic storage allocators
on published distributions and the results tend to be
similar to the results produced by Distribution I. In
practice, however, some programs request a high per-
centage of large blocks and storage allocators need to
handle these cases e�ciently.

We have implemented MFLF I, quick �t, and a �rst
�t system using boundary tags (Algorithm 4) on the
Monsoon multiprocessor [20, 26]. For most applica-
tions, the performance of MFLF I and quick �t are
similar. Algorithm 4 generally requires about twice
as many instructions as the other two and has signi�-
cantly less parallelism. On programs requesting a sig-
ni�cant percentage of large blocks, MFLF I generally
has higher throughputs and lower instruction counts
than the other two algorithms. In some cases, quick �t
requires over ten times as many instructions as MFLF
I.

4 Summary and conclusion

This paper has compared several dynamic storage
allocation algorithms. We evaluated the algorithms in
terms of instruction counts, throughput, and memory
utilization. Multiple free list �t I (MFLF I) generally
results in the highest throughputs and lowest instruc-
tion counts. When the percentage of requests for large

blocks is small as is usually the case, quick �t and
MFLF I result in the lowest instruction counts and
highest throughputs. The performance of quick �t de-
grades considerably as the percentage of requests for
large blocks increases. When the percentage of large
blocks is high, MFLF I achieves signi�cantly higher
throughputs than the other algorithms. MFLF I and
a �rst �t system using boundary tags achieve the low-
est instruction counts under this scenario.

Memory utilization is maximized by a best �t sys-
tem using address-ordered free lists. This algorithm is
slow and sequential, however. A �rst �t using address-
ordered free lists makes the second best use of mem-
ory. The variability in memory utilization is signi�-
cantly less than the variability in instruction counts
and throughputs. MFLF I generally wastes less than
20% of memory. We thus recommend MFLF I as the
overall best algorithm in terms of total instructions,
throughput, and memory utilization.

References

[1] L. L. Beck. A Dynamic Storage Allocation Tech-
nique Based on Memory Residence Time. Com-
munications of the ACM, 25(10):714{724, Octo-
ber 1982.

[2] B. M. Bigler, S. J. Allan, and R. R. Oldehoeft.
Parallel Dynamic Storage Allocation. In Proceed-
ings of the 1985 International Conference on Par-
allel Processing, pages 272{275, 1985.

[3] G. Bozman et al. Analysis of Free-Storage Al-
gorithms - Revisited. IBM Systems Journal,
23(1):44{64, 1984.

[4] A. G. Bromley. Memory Fragmentation in Buddy
Methods for Dynamic Storage Allocation. Acta
Informatica, 14:107{117, 1980.

[5] G. O. Collins. Experience in Automatic Stor-
age Allocation. Communications of the ACM,
4(10):436{440, October 1961.

[6] C. S. Ellis and T. J. Olson. Algorithms for Paral-
lel Memory Allocation. International Journal of
Parallel Programming, 17(4):303{345, 1988.

[7] J. S. Fenton and D. W. Payne. Dynamic Stor-
age Allocation of Arbitrary Sized Segments. In
Proceedings of IFIPS, pages 344{348, 1974.

[8] R. Ford. Concurrent Algorithms for Real-Time
Memory Management. IEEE Software, pages 10{
23, September 1988.

[9] A. Gottlieb and J. Wilson. Using the Buddy Sys-
tem for Concurrent Memory Allocation. Techni-
cal Report Ultracomputer System Software Note
6, Courant Institute, New York University, 1981.

[10] A. Gottlieb and J. Wilson. Parallelizing the Usual
Buddy Algorithm. Technical Report Ultracom-
puter System Software Note 37, Courant Insti-
tute, New York University, 1982.

[11] A. K. Iyengar. Dynamic Storage Allocation on a
Multiprocessor. Technical Report MIT/LCS/TR-
560, MIT Laboratory for Computer Science,
Cambridge, MA, December 1992. PhD Thesis.

[12] A. K. Iyengar. Parallel Dynamic Storage Alloca-
tion Algorithms. In Proceedings of the Fifth IEEE
Symposium on Parallel and Distributed Process-
ing, pages 82{91, December 1993.

[13] T. Johnson. A Concurrent Fast-Fits Memory
Manager. Technical Report TR91-009, University
of Florida Department of CIS, September 1991.

[14] T. Johnson and T. Davis. Parallel Buddy Mem-
ory Management. Parallel Processing Letters,
2(4):391{398, 1992.

[15] D. E. Knuth. The Art of Computer Programming,
volume 1: Fundamental Algorithms. Addison-
Wesley, Reading, MA, second edition, 1973.

[16] C. H. C. Leung. An Improved Optimal-Fit Proce-
dure for Dynamic Storage Allocation. The Com-
puter Journal, 25(2):199{206, 1982.

[17] N. R. Nielsen. Dynamic Memory Allocation in
Computer Simulation. Communications of the
ACM, 20(11):864{873, November 1977.

[18] R. S. Nikhil et al. Id World Reference Manual.
Technical report, MIT Laboratory for Computer
Science, Cambridge, MA, November 1989.

[19] I. P. Page and J. Hagins. Improving the Perfor-
mance of Buddy Systems. IEEE Transactions on
Computers, C-35(5):441{447, May 1986.

[20] Gregory M. Papadopoulos. Implementation of a
General Purpose Dataow Multiprocessor. Tech-
nical Report MIT/LCS/TR-432, MIT Labora-
tory for Computer Science, Cambridge, MA,
1988. PhD Thesis.

[21] J. L. Peterson and T. A. Norman. Buddy Sys-
tems. Communications of the ACM, 20(6):421{
431, June 1977.

[22] N. M. Pitman, F. W. Burton, and E. W. Had-
don. Buddy Systems with Selective Splitting. The
Computer Journal, 29(2):127{134, 1986.

[23] C. J. Stephenson. Fast Fits: New Methods for
Dynamic Storage Allocation. Technical report,
IBM Thomas J. Watson Research Center, York-
town Heights, NY, 1983.

[24] C. J. Stephenson. Fast Fits: New Methods for
Dynamic Storage Allocation. In Proceedings of
the 9th ACM Symposium on Operating Systems
Principles, pages 30{ 32, 1983.

[25] H. S. Stone. Parallel Memory Allocation using the
FETCH-AND-ADD Instruction. Technical Re-
port RC 9674, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, November 1982.

[26] K. R. Traub, G.M. Papadopoulos, M. J. Beckerle,
J. E. Hicks, and J. Young. Overview of the Mon-
soon Project. In Proceedings of the 1991 IEEE In-
ternational Conference on Computer Design, Oc-
tober 1991.

[27] J. Vuillemin. A Unifying Look at Data Struc-
tures. Communications of the ACM, 23(4):229{
239, April 1980.

[28] C. B. Weinstock. Dynamic Storage Allocation
Techniques. PhD thesis, Carnegie-Mellon Univer-
sity, 1976.

[29] C. B. Weinstock and W. A. Wulf. Quick Fit: An
E�cient Algorithm for Heap Storage Allocation.
SIGPLAN Notices, 23(10):141{148, 1988.

[30] J. Wilson. Operating System Data Structures
for Shared-Memory MIMD Machines with Fetch-
and-Add. PhD thesis, New York University, 1988.

[31] P. R. Wilson, M. S. Johnstone, M. Neely, and
D. Boles. Dynamic Storage Allocation: A Survey
and Critical Review. In Proceedings of the Mem-
ory Management International Workshop IWMM
95, pages 1{126, September 1995.

