Software Exploitation of a Fault-Tolerant Computer with a Large
Memory

Frank Eskesen, Michel Hack, Arun Iyengar, Richard P. King, and Nagui Halim
IBM Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

Abstract

The DM/6000 hardware (a prototype, fault-
tolerant RS/6000 built at the TJ Waison Research
Center) provides fault tolerance and a large, non-
volatile main memory. Running a commercial,
general-purpose operating system on it, of itself, does
nothing to increase software availability. In fact, the
time to rebuild the contents of a large memory may
decrease availability.

We describe our techniques for hiding most of the
main memory, which requires the operating system to
access it only by way of services separate from the
operating system. This can allow the memory and
those access services to achieve much higher availabil-
1ty, which, in turn, increases the availability of the sys-
tem as a whole. We also performed simulation studies
to determine those conditions where this system orga-
nization can lead to improved performance for recov-
erable database applications.

1 Introduction

The DM/6000 [1] is a prototype, fault-tolerant 4-
way multiprocessor RS/6000 with a large main mem-
ory built at the TJ Watson Research Center. When
provided with sufficient backup-battery power, this
memory is as reliable as mirrored disks. The inten-
tion is to run a commercial operating system with
whatever applications a customer might choose to use.
Being fault-tolerant, the DM/6000 would offer very
high hardware availability, but only moderately higher
overall system availability than typical RS/6000 sys-
tems, since hardware failures are not the majority of
system failures.

Although the memory is non-volatile, it cannot
survive the ravages of an application run amok. Thus,
when a large amount of memory is installed in a
DM/6000, the time to recover from a failure may
be dominated by the time to rebuild the contents of
memory. For example, the performance of a database
system is dependant on the state of its buffer pool.
Following a crash, performance is reduced until that
buffer pool has been repopulated, which, for a large
buffer pool, may take quite a while.

Various workers in the field have explored ways to
exploit a non-volatile memory, for example eNVy [19],
Sprite [3], and Rio [7, 16]. Their approach is to place
the file system cache in non-volatile memory and to

modify the operating system and file system to pre-
serve this memory across reboots. Although the level
of protection that can be provided to such a cache may
be adequate for most purposes [19], this approach does
not allow the memory to be completely isolated from
failures in the operating system kernel, especially in
the paging subsystem, or from failures in add-on ex-
tensions to the kernel. At the same time, the memory
is completely bound to that one file system running
in that one operating system. One possible use of the
DM/6000 involves having different operating systems
running on its processors at the same time, and the
sharing of data in the non-volatile memory seemed a
worthy goal.

We therefore decided to hide most of the memory
in the DM/6000 from the operating system and the
applications running on it. Instead of allowing an op-
erating system to have access to that memory directly,
a small server program is loaded in part of that hidden
memory, and only that server program accesses any of
the hidden memory. The operating system communi-
cates with the server through an intercommunication
queue (ICQ) using, for example, a device driver that
the rest of the operating system regards as giving ac-
cess to something like a disk, and the server operates
on the hidden memory on behalf of the operating sys-
tem’s users.

Since the server is small and offers a limited set of
operations, it can be made much more reliable than a
general-purpose operating system. A general-purpose
operating system must run run arbitrary kernel ex-
tensions (e.g. device drivers), applications, and user
programs. With only the server accessing the hidden
memory, a failure of the operating system leaves the
data in the hidden memory intact. Thus, overall sys-
tem availability is higher, since less of the state of the
system is lost due to software failures.

As noted by Copeland, et al [8], the use of non-
volatile main memory is particularly well-suited to ap-
plications such as recoverable databases. They typi-
cally maintain state in stable storage, allowing a con-
sistent database state to be recovered in the event of
a system failure. In order to reduce recovery time af-
ter a failure, information is periodically checkpointed
to stable storage. Checkpointing to non-volatile main
memory is considerably faster than to disk. In addi-
tion, a system can reach a steady state after a fail-

ure more quickly if some of the hot pages are check-
pointed to non-volatile main memory than if all pages
are checkpointed to disk. Although non-volatile main
memory can also hurt database paging performance,
the advantages often outweigh the disadvantages.
The remainder of this paper is organized as fol-
lows. Section 2 is where the general concepts and
overall structure of the system are explored. In section
3, an exploitation of this system structure, specifically
VDISK, will be introduced to motivate things. In sec-
tion 4, we present the details of the structure and the
implementation of ICQ and the server. In section 5,
some performance measures taken of our prototype
are given. Section 6 analyzes the effect of non-volatile
main memory on recoverable databases. A discussion
of work related to ours comes in section 7, which is
followed by our concluding remarks, in section 8.

2 General Concepts

The main requirements for the server are that it
be reliable and fast. It also has to be maintainable,
with the ability to install new versions of the server
without affecting the operating system.

The reason for requiring reliability is simply to
justify giving the server sole control over a large por-
tion of memory. If the server were no more reliable
than, for example, AIX, there would be no reason to
take the memory away from AIX. This doesn’t just
mean that the server should be well written and, there-
fore, reliable; the server also needs to be sufficiently
isolated from AIX that any misbehavior of AIX cannot
cause the server to fail or malfunction.

Speed is also an essential part of justifying tak-
ing away from the operating system a resource that
would otherwise be used to improve its performance.
Hidden memory, with only some kind of client/server
interface for getting to it, is bound to be slower than
regular memory. This was observed by Li and Pe-
tersen [12]. They found that segregating a large, slow
portion of memory and using the small, fast mem-
ory as a cache gave poorer performance than using
the slower memory directly. Since we are segregating
memory of equal performance, we expect an outright
performance loss on many applications. On the other
hand, regular memory is not durable. Programs such
as recoverable databases that must record data in sta-
ble storage therefore benefit from having part of main
memory be durable, but only if the server provides
access to it fast enough, compared to other forms of
durable memory (e.g. duplexed disks), to pay for the
loss of the direct use of that memory. As we shall see
in Section 6, non-volatile main memory can improve
recoverable database performance in certain circum-
stances.

The overall structure of the system we imple-
mented is illustrated in Figure 1. The only means
of communication with the server is by placing re-
quests on a queue, which we will call the Intercom
Queue (ICQ). By placing this queue in the part of
memory visible to all of AIX, we avoid the sugges-
tion that any part of hidden memory is accessible to
code running outside of the server. Processing starts
when some program running under AIX, e.g. a device

driver, puts a request on the queue. The server de-
termines the particular service for which the request
is intended and hands it off. That particular service,
using whatever information it maintains in the sta-
ble memory, processes the request and formulates its
response.

There is no specific mechanism for the returning
of responses; this is left up to the individual services,
whose requirements for interaction with their clients
may vary considerably. As an example, however, sup-
pose that some bit in the request data area is desig-
nated by a particular service as the processing com-
plete bit. Before sending a request, a client would set
this to zero. Another word in the request is the lo-
cation of a response area. The service can build its
response, placing it in the response area, and then
set the processing complete bit to one. The client,
meanwhile, can poll the state of this bit, or go off and
do other work. A software-interrupt driven scenario
would be similar, with the addition of an agreed upon
interrupt level.

3 Examples of Possible Services

Most commercial applications tend to use only one
kind of stable storage, namely magnetic disks. There-
fore, rather than try to modify an application to best
exploit a new form of stable storage, we have instead
provided applications with very fast versions of sta-
ble storage whose interfaces they are already famil-
iar with. We call these services VDISK, which is a
stable-storage RAM disk, and PCACHE, which pro-
vides stable-storage caching for a disk.

The VDISK service is like a RAM disk, except
that it is more isolated from the applications that use
it. There is a VDISK device driver installed on AIX
that, instead of allocating memory in, say, the kernel
space, enqueues a request asking the VDISK service
to allocate stable memory. Similarly, read and write
requests, instead of resulting in the copying of data by
the device driver, result in the construction of corre-
sponding requests to the VDISK service.

PCACHE is used when the data doesn’t fit in
durable memory. Any disk device can be provided
with a main-memory cache. For example, a pseudo-
device driver can be installed on AIX that can be con-
figured to read and write to a cache and, when there
is a cache miss, pass the request on to the real de-
vice driver. There are two differences for PCACHE.
First, the cache is only accessible via ICQ requests to
the PCACHE service. This may degrade performance,
but leads to the other difference: on recovery from a
failure, PCACHE service still knows what is in the
cache, which benefits performance after a crash.

One particularly interesting application is fast-
reboot of the operating system. It is possible to struc-
ture the operating system’s initialization sequence so
that the complete system state is in real memory at
the point where most R/W file systems are mounted,
using a VDISK for the boot file system. This state
(including the boot R/W file system) can then be de-
scribed to a FASTBOOT service, which takes a con-
sistent snapshot of the relevant main memory and
VDISK, and saves it in the durable memory. Once

Visible Memory Hidden Memory
AlX
Stable Memory
1CQ
Device IC
Driver Servg
VDI SK
Servi ce
Dat a
Handl es

Figure 1: Overall Structure of DM/6000 Software.

this FASTBOOT snapshot exists, the operating sys-
tem can be rebooted in about 1 second from the time
the FASTBOOT server has received a reboot request.
Since our device drivers are all virtual, in the sense
that they communicate with the server and not di-
rectly with a physical I/O device, this allows a com-
plete reboot in under 3 seconds.

4 1ICQ and the Server

The main problems we faced in providing services
outside of AIX were: sharing physical memory; shar-
ing the processor(s); communication between AIX and
the server; server installation and restart; and service
installation and restart. The last two problem areas
arise from the recognition that our intention to make
the ICQ server and services free of bugs will not neces-
sarily be fulfilled. Further, even if it is, there will, un-
doubtedly, be additional services invented after some
systems are already in operation. We therefore want
to be able to replace the server, and/or services, on
a running system without performing a shutdown of

ATX.
4.1 Sharing Physical Memory

We want some of the main memory of the
DM/6000 prototype to be accessible only to the ICQ
server, but the prototype does not support hardware
fencing of memory. Thus, there is in principle noth-
ing to prevent the operating system from trespassing
onto the ICQ server’s storage. In practice, operating
systems avoid accessing non-existent real memory, be-
cause this could lead to unrecoverable machine-check
interruptions: they expect the ROS boot code that
loads the operating system to provide a map of avail-
able real memory.

Since we are providing the equivalent of the ROS
boot code ourselves, we are free to have that code build
a map of memory indicating that the vast majority of
the installed memory simply does not exist. This is
not an ideal solution, but is adequate, given that AIX
operates in real mode only until the real addresses of
the good memory pages have been loaded into the ap-
propriate tables, when virtual address translation is
turned on once and for all (except for a very brief
initial sequence in first-level interruption handlers).
Since no real addresses are ever generated, there 1s
little danger of an erroneous access to hidden mem-
ory.

4.2 Sharing Processors

We could dedicate some of the DM/6000’s proces-
sors to the ICQ server, leaving the rest to AIX, but
possible workload changes make this inefficient. Fur-
ther, an entire processor is a rather crude granule.
And, finally, we wanted to be able to test our system
modifications using standard, uniprocessor RS/6000s.
Therefore, we needed a way to switch a single proces-
sor between running AIX and our server.

This requires a hole in the wall between visible
and hidden memory, a call stub in the kernel that
transfers control to code in hidden memory. A hard-
ware call gate could be used; it would be unspoofable,
though slow. In practice, sufficient protection derives
from running the server without address translation,
in unmapped storage. The call stub is located in an
area of memory that is mapped virtual=real so that
translation mode switching makes sense. The real ad-
dress of the server code is supplied in the operating
system’s boot data.

When a request is put on the ICQ, the processor
making that request is free to spin, waiting for some

other processor to run the server code. Alternatively,
it can switch to running the server code itself. That
processor may find its own request still on the queue,
or some other processor’s, or none at all. This provides
completely automatic and instantaneous balancing of
processing resources between AIX and the server.

We could treat requests as asynchronous. How-
ever, a transfer of 4KB using the DMA hardware
requires about one thousand cycles, and this is the
largest component of processing the request. The cost
of a task switch is around a thousand cycles, even ig-
noring the cost of preparing for an I/O operation to
go asynchronous and the performance effects of re-
loading the cache after the switch, which can be tens
of thousands of cycles. Like Tucker [18], therefore, we
concluded that it is faster to treat most requests as
synchronous.

4.3 Communication Between AIX and
the Server

The ICQ provides the communication path be-
tween AIX applications and the server. It is composed
of a header record and a set of fixed-sized queue entries
(request slots). The header record has offsets, relative
to the beginning of the page, to the FIFO queue and
the free list. (By using offsets, the queue makes sense
to both AIX, in virtual mode, and the server, in real
mode.) The page holds a fixed number of request slots,
initially all on the free list. Allocation and dealloca-
tion of queue entries result in moving a slot from or to
the free list, using lock-free pointer updates. Indeed,
all accesses to the ICQ are made using lock-free pro-
tocols. All of this makes it possible for AIX and the
server to share the ICQ as efficiently as possible.

Since AIX has access to the ICQ, AIX must be
responsible for allocating and maintaining it. An ob-
ject in virtual memory that spans a page boundary
will, quite likely, occupy noncontiguous real pages. To
avoid this inconvenience to the server, which operates
in real mode, the ICQ must fit within a single page.
After the virtual page to contain the ICQ has been
initialized and pinned into real memory, the word in
visible memory that indicates the location of the ICQ
is set to the real address of the ICQ.

4.4 Enqueue and Dequeue

We want operations on the ICQ to be very fast,
very simple, but also to be completely thread safe and
multiprocessing safe. So we use lock-free protocols
built on the load-and-reserve and store-conditionally
instructions of the PowerPC processors [15]. (For an
example of a shared-queue algorithm instead using
compare-and-swap, see [17].) These allow multiple
threads, whether they run on the same processor or
not, to access the queue without interference with each
other.

To enqueue a queue entry, first load-and-reserve
the word in the queue header that contains the offset
of the first entry in the queue (the head offset). Then
set the new entry’s nezt offset to that value. Finally,
store the offset of the new entry in the head offset, on
the condition that one’s reservation on that word is
still present. If it isn’t present, start over.

This, of course, gives a queue organized in LIFO
fashion. Giving the queue a FIFO flavor is done in
the dequeueing process. To dequeue an entry, start
by loading-and-reserving the head offset in the queue
header. Then steal the whole queue, by storing, con-
ditionally, an End-of-Queue indicator (zero) in place
of that value. (As before, if the reservation isn’t held
anymore, start over.) With the entire queue in hand,
the server is free to traverse the queue (if necessary)
and to take the oldest request off of the queue. If the
queue is not empty, put back what is left.

This putting back requires some care. If some-
thing else has been put on the official queue in the
meantime, those entries must be merged with the set
of entries stolen by this dequeuer. To do that, load-
and-reserve the head offset word. If it is zero, there
are no new entries, so just store, conditionally, in the
head offset the offset to the first entry of the list being
returned. Otherwise, store, conditionally, a zero and
use the value loaded as the start of a new queue to
be merged with the old one, then try again. Either
way, a failure to store means try again from the start
of this section.

An optimization is performed to avoid running to
the end of the LIFO chain every time the oldest entry
on the chain is wanted: as a side-effect of traversing
the LIFO queue to find the oldest entry, the queue
pointers are reversed, so that the queue is in FIFO
order by the time the server is ready to re-anchor it.
FIFO elements are distinguished from LIFO elements
by having a non-null ¢a#l pointer. The tail of the FIFO
queue is the head of the original LIFO queue, i.e. the
original anchor value, so the entire operation can be
performed in a single pass. The tail pointer (offset,
really) allows the tail to be located quickly for inser-
tions at the end. An example of this can be seen in
Figure 2. While new entries are being enqueued, there
will be some LIFO entries followed by some FIFO en-
tries. The next time a server performs a dequeue oper-
ation, it need only scan the new LIFO portion, which
gets appended (in reverse, i.e. FIFO, order) to the tail
of the FIFO portion.

4.5 Using ICQ to Make a Request of the
Server

The entire ICQ is contained in a single 4KB page.
Individual queue entries are therefore of limited size,
and are used only to identify which service a request
is intended for, and the real address of a page-aligned
collection of input parameters and space for output
flags and data. It is the responsibility of, for example,
the VDISK device driver to learn the real addresses of
any buffers the VDISK service must use. The queue
entry doesn’t even have the full name of the service;
that goes in the input parameter area. Instead, only
the handle for the service goes in the queue entry.
When the server dequeues the request, the handle is
used to look up the service unless the check values
stored with the handle don’t match. In that case, the
full name is used to search the table of services. The
service code is then free to do whatever it wants to
with the request data. For example, the VDISK ser-
vice operates synchronously, setting a return code and

|3—|>E —1= D I A —

B T C

Figure 2: ICQ With LIFO and FIFO Elements.

a completion flag in the output area before returning.
Asynchronous services may hold onto input data until
they signal completion. These are service-specific as-
pects of the protocol, and of no concern to the server
or the ICQ code.

If a device driver runs out of ICQ request blocks
(free list empty), it treats this like a busy device: some
I/0 is in progress. The server should get time to run
(on a uniprocessor), and other threads or processors
should get time to complete their requests. Perhaps
the driver’s own earlier requests need to be completed
first: to some extent, a device driver manages ICQ
slots like channel paths to a real device.

4.6 Installation and Restart

The server needs to be maintainable without dis-
rupting the operating system. To allow for replace-
ment of the server code, this code must reside in sta-
ble memory. Each time the server code starts up, it
checks for the presence of a valid version of its persis-
tent data: the list of available services and the stable
memory in use by any of the services. This persistent
data is used by the server to continue processing as
though no change of server had occurred. A change in
server has no effect on the ICQ as long as that change
takes place while the server is quiescent.

Concurrent maintainability applies to individual
services as well. They are the virtual equivalent of
hot-swappable drives and hot-swappable control units.
Each service is registered in the server at run time.
Registration information includes the full name of the
service and the location of that services request han-
dling code. The server provides a place in its own per-
sistent data where each service can record one word
of information. This is used to point off to whatever
persistent data that particular service needs. The con-
tents of this word are passed back to the service every
time it is given a request to process.

Restarting a service can therefore be made as in-
visible to the user as can the restarting of the entire
server. As long as the service records all persistent
data in stable storage before returning to the server,
that service can be restarted, or replaced, whenever it
is convenient.

4.7 Multiple Host Operating Systems

All of the above has been discussed in terms of a
single host operating system, a single ICQ, and a sin-
gle server. This has been done solely to simplify the
exposition. There can be, in a single DM /6000, differ-
ent host operating systems using different processors,
multiple ICQs, and multiple servers of those queues.
Multiple host operating systems might be wanted in

the same DM/6000 for functional separation of envi-
ronments (e.g. development and production work), to
provide a hot standby to a critical system, or even
to provide multiple operating system platforms (say,
AIX and Windows/NT). Sharing of data among these
hosts is certainly possible. For example, requests from
multiple hosts could target the same VDISKs. Each
host could just as well be assigned its own portion of
the hidden memory and be the sole user of it, except,
perhaps, in the case of a failure of that host operating
system. One might then arrange, for example, to have
a standby running on another of these host operating
systems take over for the failed system and to assume
ownership of the data previously managed by the first.

The access protocols for the ICQ are such that
multiple operating systems could even share a single
ICQ safely. However, this is not really practical, since
it exposes each of the host operating systems to possi-
ble contamination due to failure of the other. Further-
more, it requires them to agree on the allocation and
initialization of the ICQ. It would be better to let each
operating system manage its own ICQ, which can be
connected separately to the same server, or even to a
different one.

5 Some Performance Results

We performed a test reading 64Mbytes from a raw
device using various block sizes — a VDISK on the
DM/6000, and a real disk on an RS/6000-250. Elapsed

time are shown in seconds:

Block size Vdisk Hdisk
4K 13.4 25.3
64K 1.6 26.2
1M 1.0 26.6

Both machines used a PowerPC 601. The
DM/6000 prototype was clocked at a conservative
40MHz, the RS/6000 at 66 MHz. Block size has a dra-
matic effect on the VDISK timing, because at small
block sizes the request handling time dominates the
transfer time. The throughput exceeds 60MB per sec-
ond at large block sizes, over 25 times faster than real
I/0O to the hard disk. (The actual requests issued were
“ time dd if=/dev/$disk of=/dev/null bs=$blocksize
count=3%blocks ” such that $blocksize x $blocks =
64M.)

At first glance, these numbers seem to indicate
that the DMA hardware is not well used; it can trans-
fer data at a rate of about 300MB per second. How-
ever, it cannot transfer data directly from symbol-
plane memory to symbol-plane memory, only between

L3 cache and symbol-plane memory [1]. These trans-
fers are, therefore, two-stage transfers by way of the
L3 cache. Thus, copying data at 60MB per second re-
quires running the DMA at 120MB per second. Since
this load is produced by just one of the four proces-
sors, which ran the full code path for file I/O syn-
chronously with the DMA transfer, this starts to look
more respectable.

6 Database Recovery in the Presence
of Durable Memory

Databases utilize stable storage for data pages
and transaction logs. In the event of a failure, all
pages contained in conventional memory could be lost.
It is then necessary to recover a consistent state of
the database from the data pages and transaction log
stored in stable storage. There are several ways in
which a database could benefit from durable memory:

e In the event of a failure, the database would have
to be recovered from data stored in stable storage.
Backing up hot pages in durable memory instead
of disk can reduce the I/O cycles required for re-
covery. Throughout this section, the term disk
refers to traditional secondary storage.

e Durable memory can reduce the time to bring the
database to a warm state after a failure.

e In order to reduce recovery time in the event of a
failure, pages in main memory are often periodi-
cally checkpointed by writing them out to stable
storage. Pages can be checkpointed more quickly
to durable memory than to disk.

e Durable memory can speed up transaction log-
ging. Many databases such as IBM’s DB2 use a
write-ahead logging protocol in which the trans-
action log must be written to stable storage be-
fore the transaction commits and before any page
updated by the transaction is written to stable
memory. Writing transaction logs to disk can
slow down transactions considerably. In order
to improve performance, updates to the transac-
tion logs in stable storage can be batched. How-
ever, this cannot be done for transactions which
must commit immediately. Durable memory can
improve the performance of transaction logging.
The idea is to reserve space in durable memory
for transaction logs. A single transaction record
could then be stored in durable memory quickly.
Transaction logs could be moved from durable
memory to disk opportunistically when such a
data transfer would not affect performance. This
will prevent durable memory from becoming full.

A drawback to durable memory is that it reduces
the size of the buffer pool and can thus hurt perfor-
mance by causing more paging. The remainder of this
section examines the effect of durable memory on I/O
resulting from paging, checkpointing, recovery, and
bringing the database to a warm state. We distinguish
between I/O resulting from three different sources:

1. Paging I/O: 1/O resulting from pages being
brought into the buffer pool from stable storage
during normal database processing (i. e. not re-
covery).

2. Checkpoint I/0: 1/O resulting from periodically
checkpointing database pages in the buffer pool
to stable storage in order to reduce database re-
covery time.

3. Recovery I/0: 1/O which results from database
recovery after a failure.

A DM/6000 which has enough main memory to
store the entire database in main memory with room
to spare will always benefit by having durable memory.
For example, suppose that a DM/6000 has a maximum
of 512 mbytes of main memory which can be used for
storing database pages without significantly hurting
performance. For a database containing 400 mbytes,
memory could be partitioned so that all of the data-
base is stored in conventional memory and 112 pages of
durable memory are used to back up the hottest pages.
The use of durable memory will improve performance
of the system over one without durable memory.

Now consider a situation where the database is
too large to fit entirely within main memory. The
decision of whether or not to partition main memory
into durable and conventional memory is less clear. If
no durable memory is used for backing up database
pages, the buffer pool size is maximized and I/O re-
sulting from paging is minimized. If a fraction of main
memory is used for durable memory, checkpointing
and recovery I/O can be reduced. In the situations
we encountered, durable memory resulted in better
steady state performance when short recovery times
were desirable while no durable memory resulted in
better steady state performance when longer recovery
times were tolerable.

6.1 Methodology

We simulated databases in which dirty pages are
periodically checkpointed to disk in order to bound
recovery time. Databases are checkpointed synchro-
nously after every ¢ cycles where ¢ remains constant
throughout each simulation. During each checkpoint,
all pages which have been dirty since before the pre-
vious checkpoint are backed up in durable memory.

The simulator models a database running on a
100 Mhz machine with 512 mbytes of main mem-
ory which can be used for holding data pages. The
bandwidth between main memory and disk was 12.5
mbytes/second. The bandwidth between durable and
conventional memory was 100 Mbytes/second. Pages
are 4096 bytes.

We used a request distribution in which 80% of
the transactions were read requests. Hot pages con-
stituted 20% of all pages. 80% of all requests were dis-
tributed uniformly to hot pages, while the remaining
20% were distributed uniformly to cold pages. The
performance numbers only consider machine cycles
consumed by I/O operations and do not take into ac-
count other overheads.

During each checkpoint, we attempted to back up
as many pages as possible to durable memory. Pages

were only checkpointed to disk after durable memory
became full. At the time of each checkpoint, the num-
ber of candidates for durable memory was determined.
A page is a candidate for durable memory if a copy of
the page already exists in durable memory or the page
is just about to be checkpointed. When durable mem-
ory is not large enough to contain all candidates, pages
are given priority based on a formula which considers
the number of hits since the last checkpoint. Priority
increases with the number of hits since the last check-
point. Priority is also given to pages in durable mem-
ory which don’t have to be moved at a checkpoint. For
example, suppose that p; and ps have both been hit
seven times since the last checkpoint. Page p; is dirty
and needs to be backed up to stable storage. Page
ps does not have to be checkpointed. However, the
backup copy for p; is contained in stable storage. If
we just look at the number of hits since the last check-
point, both pages would have equal priority. However,
leaving the backup copy for p; in place and backing
up p; to disk incurs less I/O than moving the backup
copy for ps to disk and checkpointing p; to durable
memory. The system thus leaves the backup copy for
P2 in durable memory during the checkpoint.

The database manages conventional memory us-
ing LRU. Two strategies were tested for sending cold
pages to stable storage:

1. Always send cold pages to disk. The motivationis
to leave space in durable memory for checkpoint-
ing hot pages. This strategy worked best when
durable memory was small.

2. Send cold pages to durable memory whenever
durable memory is not full. This strategy worked
best when durable memory was plentiful.

The performance differences for the two strategies was
not significant. The statistics presented in this paper
use the first approach.

We present the performance statistics obtained
from four different configurations:

1. A database containing 256 mbytes, no durable
memory. All pages of the database fit in con-
ventional memory.

2. A database containing 256 mbytes for which main
memory is partitioned into 256 mbytes of conven-
tional memory and 256 mbytes of durable mem-
ory.

3. A database containing 1.024 gbytes, no durable
memory. Conventional memory contains space
for 512 mbytes of the database.

4. A database containing 1.024 gbytes for which
main memory is partitioned into 307.2 mbytes
of conventional memory and 204.8 mbytes of
durable memory. Partitioning was chosen to
make durable memory size equal to the hot page
size.

Unless otherwise noted, the performance statistics
were taken after the database had reached a steady
state.

Performance for a single configuration was var-
ied by varying the checkpoint interval. More frequent
checkpointing results in faster recovery after a fail-
ure. However, checkpointing consumes significant I/0
bandwidth and has an adverse effect on steady state
performance. There is thus a trade-off between steady
state performance and recovery time. A system opti-
mized for steady state performance would checkpoint
infrequently. A system optimized for fast recovery
time would checkpoint frequently.

6.2 Results and Discussion

Figures 3 and 4 plot recovery time as a func-
tion of the average request time after the database
is in a steady state. Recovery time is expressed as
the number of megacycles for restoring the database
to the most recent consistent state which can be re-
constructed after a failure. Average request times
were calculated by dividing the cycles for both paging
and checkpointing over an interval of several requests
which included multiple checkpoints by the total num-
ber of requests in the interval. Measurements for av-
erage request times were taken after the database was
in a steady state.

Performance for a given memory configuration
and database was varied by varying the checkpointing
interval. Recovery time varies from near zero to ar-
bitrarily large times with or without durable memory
depending upon the time between checkpoints. We use
the following criterion for comparing the performance
of two memory systems m; and ms on the same data-
base:

Let maz_recov_time be the maximum num-
ber of recovery cycles which are tolerable.
Let ¢; be the largest number of cycles be-
tween checkpoints which allows recovery on
my using a maximum of z I/O cycles. Let
¢z be the analogous quantity for my. System
my outperforms ms if and only if the the av-
erage request time in a steady state (which is
affected by both paging and checkpointing)
of m; using a checkpoint interval of ¢; is less
than that of my using a checkpoint interval
of 3.

If main memory is large enough to store all data-
base pages with room to spare, performance can al-
ways be improved by partitioning memory and reserv-
ing some space for durable memory. This is the case
for the 256 mbyte database, and the performance ad-
vantage resulting from durable memory is conveyed by
the graph in Figure 3. The configuration with durable
memory results in better performance than the con-
figuration without durable memory for all values of
mazx_recov_time.

In Figure 4, the database is too large to fit in
main memory. The use of durable memory results in
better performance if maz_recov_time < 1650 mega-
cycles (16.5 seconds assuming a 100 Mhz clock rate).
Not creating a durable memory partition results in
better performance if maz_recov_time > 1650 mega-
cycles. The reason for the crossover point is that

256 Mbyte Database
2000 | | | | | |

1800 - No Dur. Mem. —— i

Dur. Mem. ----

1600
1400 |-
1200
1000 |-
800 |-
600 -
400 =
200 - n

\

0 ik S |]]]]

0 05 1 15 2 25 3 35
Kiloycles per Request

Recovery Timein Megacycles

Figure 3: Recovery Time versus Steady-State Request
Times with Smaller Database.

1.024 Gbyte Database

$ 3000 | | ” | |
o) No Dur.Mem. ——
g 2500 1 DurjMem. ---- 7]
g om0} | -
= l
) 1500 : -
£ |
l_
Z 1000 |- ': -
O |
% 500 |- ;\ -
@ 0 L1 Rt

8 9 10 11 12 13 14

Kiloycles per Request

Figure 4: Recovery Time versus Steady-State Request
Times with Larger Database.

durable memory reduces checkpointing cycles but in-
creases paging by reducing the buffer pool size. Check-
pointing cycles dominate the average request time if
checkpointing is done frequently in order to provide
fast recovery. If fast recovery is not crucial, however,
checkpointing can be done infrequently. In this situa-
tion, the average request time is dominated by paging.

If the limiting factor is the average request time,
a similar analysis applies. The lowest average request
time which can be achieved without durable memory
on the 1.024 Gbyte database is 8150 cycles and occurs
when there is no checkpointing. The lowest average re-
quest time with durable memory is 11100 cycles and
also occurs when there is no checkpointing. If the av-
erage request time must be less than 8150 cycles, 512
mbytes are not sufficient to achieve this level of perfor-
mance with or without durable memory. If an average
request time between 8150 and 11150 I/O cycles must
be achieved, then the memory configuration without
durable memory should be used. If an average re-
quest time of more than 11150 I/O cycles per request
is acceptable, then the durable memory configuration
should be used in order to minimize recovery time.

Another advantage of durable memory is that
it allows databases to be brought to a warm state
quickly. For the 256 mbyte database, the configuration
without durable memory required 2.8 million requests
consuming 2.10 gigacycles for paging I/O to bring the
database to a steady state from a state in which no
database pages are stored in conventional memory. If
all pages are backed up in durable memory, a steady
state is reached after 2.8 million requests consuming
262 megacycles for paging I/O. In both cases, a steady
state was reached when all database pages were loaded
into conventional memory.

For the 1.024 gbyte database, the configura-

tion without durable memory resulted in performance
which was substantially inferior to steady state perfor-
mance from the time conventional memory was empty
until 150 kilorequests consuming 2.4 gigacycles for
paging I/O had been satisfied. At this point, mem-
ory was b8% full. It took a total of 500 kilorequests
consuming 4.3 gigacycles for memory to become 100%
full. Between the time memory was 58% and 100%
full, performance was slightly superior to steady state
performance. The reason for this behavior is that a
memory system which is not full can read in a page
from disk without sending a cold page to disk. There-
fore, twice as many pages can be accessed from disk
per unit of time compared to a memory system which
is full. After memory became 100% full, steady state
performance was reached.

The durable memory configuration with the 1.024
gbyte database did not exhibit cold start performance
problems when all hot pages were backed up in durable
memory. Surprisingly, performance was superior to
steady state performance during the time conventional
memory was filling up. The reason for this behavior is
the same reason why the nondurable memory config-
uration also results in superior performance between
the time memory is 58% and 100% full. However,
durable memory provides a significant advantage be-
cause hot pages can be read in from durable memory
much more quickly than from disk. Therefore, supe-
rior performance commences immediately instead of
after memory was 58% full. Memory became 100% full
after 175 kilorequests consuming 1.13 gigacycles for
paging I/O had been satisfied. At this point, steady
state performance was reached.

7 Related Work

Other well-known fault-tolerant architectures use
redundant storage devices or processors, or some com-
bination of both as in IBM’s High Availability Cluster
Multi-Processing %HACMP) [2] and Tandem’s Non-
Stop architecture [4]. In these systems, there is more
than one copy of the operating system and applica-
tions running on more than one system, with one copy
acting as a standby in case the other fails. The hyper-
visor approach taken by Bressoud and Schneider [6] is
similar, but uses virtual machines within a single sys-
tem. We exploit the DM/6000’s hardware resiliency
by treating the hardware as fault-free and limiting our
task to operating system isolation and fast failure re-
covery.

We isolate ourselves from operating system soft-
ware failures by hiding a portion of memory. We place
our compact, limited function kernel in the hidden
memory. Because our kernel is compact and has ex-
tremely limited function, it is possible to be shipped
essentially error free. In itself, this is not a new or
novel approach. For example, the hypervisor in CP-
67 [14] and the later VM/370 [10] also limits the
amount of kernel function. Our kernel design goes
much further and is similar to that used in the Cou-
pling Facility for the S/390 Parallel Sysplex [5], in that
our kernel runs in real mode and does not accept in-
terrupts, instead polling for work.

Unlike the Coupling Facility, however, we share
main storage with a standard host operating system.
Our prototype design prevents the host operating sys-
tem from modifying our protected, hidden memory
by indicating to the operating system that the storage
does not exist. The operating system simply does not
use hidden storage, and we are isolated from almost
all operating system failures. Our design does not use
hardware protection mechanisms such as those used
by VM/370 since they were not available on the pro-
totype hardware. This additional protection would
eliminate the possibility of an operating system fail-
ure in boot or address translation service damaging
durable (hidden) memory.

This sharing of main memory was also examined
by Li and Petersen [12]. They observed that using
a slower, extended memory as a cache (as a stage of
memory between fast main memory and disk) gave
poorer overall system performance than accessing it
directly (as the bulk of a much larger but slower main
memory) for applications with large data structures.
However, they did not consider the possibility of hav-
ing the cache survive system crashes, how that might
be done, or the consequences of such survival to sys-
tem design or performance.

IBM’s Transaction Processing Facility (TPF) [13]
does not recover from faults but instead restarts as
quickly as possible, attempting to reuse data surviv-
ing in the buffer areas. Our architecture requires a
buffer reload when AIX fails, but data are copied from
durable memory.

The VDISK service has goals that are similar to
those for the Phoenix file system [9]. A Phoenix logical
disk resides in memory but is kept safe from certain
kinds of failures through a copy-on-write strategy that

leaves intact a timestamped version of the logical disk.
However, the data is not safe from intrusion from other
parts of the kernel, nor extensions to it. In contrast,
the contents and structure of a VDISK are safe from
all failures other than those of the ICQ server and
those few services it runs, and no operating system
failure can interrupt a VDISK operation.

The intent of the work done by Chen, et al, for
Rio [7] is similar to that behind PCACHE. They
put their file cache in a portion of real memory that
will not be overwritten when the system crashes and
restarts. To protect the data from being overwritten,
the write-permission bits in the page table are turned
off except while data is being written to the cache.
Their performance is better than ICQ, at the expense
of slower recovery. With DM /6000, the cache that sur-
vives a crash is outside the file system, so file system
recovery is not affected. With Rio, a recovery step is
needed during reboot, to reconcile the file system on
disk with the surviving cache. The use of Rio is also
restricted to just that of a cache for files used by a sin-
gle operating system, rather than a general-purpose
server that can be shared by multiple operating sys-
tem images. Further, since Rio is not a device driver,
it cannot be used to store a fast-boot image of the op-
erating system. Rather, Rio depends on the operating
system to be rebooted so that the operating system
can help bring Rio back up.

For our prototype we assume, like Rio, that the
virtual memory manager will not improperly assign
real storage addresses. Rio’s approach is probably
more forgiving of such a failure. Our view is that this
exposure should be corrected in hardware inaccessi-
ble to the operating system, as in IBM’s System/390
PR/SM LPAR [11] product.

8 Conclusions

Our approach to running a general-purpose oper-
ating system on a fault-tolerant computer has been
to hide the computer’s resources from the operating
system. Instead, these resources are managed by a
limited-functionality, highly reliable server that com-
municates with the operating system only through the
passing of messages on a queue. By hiding the memory
resources of the computer from the operating system,
the contents of that memory becomes as reliable as
the hardware that contains it.

Our design of the communication queue provides
high performance and safety. Through the use of
checks in the ICQ data structures and a lock-free ac-
cess protocol, the server is protected from the operat-
ing system. There is never a moment when the queue
is incorrectly structured. Thus, halting the operat-
ing system cannot block the server. And, since all of
the structures of the ICQ are checked during access,
damage to the structure is detected by the server. Re-
pair of the ICQ is also detected by the server, and once
the operating system has restarted, it can immediately
start to use the server. At the same time, the server
program is decoupled from the rest of the DM /6000 by
keeping its persistent state in memory separate from
its own volatile storage areas. If the server program
needs to be repaired or enhanced, this can be done

at any time, without loss of information and without
any apparent interruption of service to the operating
system.

The simulations we performed established when
this approach actually improves performance. While
non-volatile main memory can reduce performance on
certain applications by reducing the amount of main
memory available to programs, it can also improve
performance on applications such as recoverable data-
bases which must periodically store information in sta-
ble storage. We found that non-volatile main memory
results in improved performance when databases are
small, or when databases are large but small recovery
times are essential.

One direction for research that we have not yet
mentioned is in the area of more intelligent services
that move the data farther from the application, but
do more per request to the service. One example
would be a service that supported a main memory
database in stable storage. By providing high-level
requests, such as insertion of a record in a table with
multiple indexes, the cost of making a request to the
server is amortized over more instructions. Determin-
ing the right trade-offs between service functionality,
performance, and reliability is a problem requiring fur-
ther study.

Acknowledgments

We gratefully acknowledge the contributions of
Basil Smith to the DM/6000 hardware which made
the work described in this paper possible.

References

[1] M. Abbott et al. Durable Memory RS/6000
System Design. In Digest of the 2/th Interna-
tional Symposium on Fault-Tolerant Computing

Systems, pages 414-423, June 1994.

[2] G. Ahrens et al. Evaluating HACMP/6000: A
Clustering Solution for High Availability Distrib-
uted Systems. In IEEE Conference on Fault-

Tolerant Parallel and Distributed Systems, pages
2-9, June 1994.

[3] M. Baker et al. Non-Volatile Memory for Fast,
Reliable File Systems. In Proceedings of ASPLOS
V, pages 10-22, September 1992.

[4] J. Bartlett. A NonStop Kernel. In Eighth Sympo-
sium on Operating System Principles, pages 22—

29, December 1981.

[5] M. Bradley. Understanding the S/390 Parallel
Sysplex: a Technical Introduction. In CMGY4
Proceedings, pages 1139-1148, December 1994.

[6] T. Bressoud and F. Schneider. Hypervisor-Based
Fault-Tolerance. ACM Trans. Comput. Syst.,
pages 80-107, February 1996.

[7] P. M. Chen and W. T. Ng. The Rio File Cache:
Surviving Operating System Crashes. In Pro-
ceedings of ASPLOS VII, pages 74-83, September
1996.

[8] G. Copeland et al. The Case for Safe RAM. In
Proceedings of the Fifteenth VLDB, August 1989.

[9] J. Gait. Phoenix: A Safe In-Memory File Sys-
tem. Commaunications of the ACM, 9(3):199-218,
1970.

[10] IBM. GC20-1801 IBM Virtual Machine Facil-
ity/870 Planning Guide, 1972.

[11] IBM. ZZ81-0334 Using PR/SM LPAR, 1993.

[12] K. Li and K. Petersen. Evaluation of Memory
System Extensions. In Proceedings of the 18th
Annual International Symposium on Computer

Architecture, pages 84-93, May 1991.

[13] R. J. Martin. Transaction Processing Facility:
a guide for application programmers. Yourdon

Press, 1990.

[14] P. Meyer and L. Seawright. A virtual machine
time-sharing system. IBM Syst. J., 9(3):199-218,
1970.

[15] Motorola. PowerPC 601 User’s Manual, 1993.

[16] W. T. Ng and P. M. Chen. Integrating Reliable
Memory in Databases. In Proceedings of the 23rd
VLDB, 1997.

[17] J. Stone. A Simple and Correct Shared-Queue
Algorithm Using Compare-and-Swap. Technical
Report RC 15675, IBM Research Division, York-
town Heights, NY, April 1990.

[18] S. Tucker. The IBM 3090 system: An overview.
IBM Syst. J., 25(1):4-19, 1986.

[19] M. Wu and W. Zwaenepoel. eNVy: A Non-
Volatile Main Memory Storage System. In Pro-
ceedings of IEEE 4th Workshop on Workstation
Operating Systems WWOS-III, pages 116-118,
October 1993.

