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1.1 Intr oduction

Cachinghasbeenwidely deployed to improve Web performanceby reducing client-observed la-
tency andnetwork bandwidth usagein additionto improving serverscalabilityby reducingtheload
ontheservers.Webcachescanbedeployedatvariouspoints in thenetwork. Forwardproxy caches
aredeployedcloseto theclient at network entrypoints by ISPsto reduce thenetwork bandwidth
usageandimprove client latency by cachingfrequently accesseddata. Suchcachescanbeeither
transparent to the client or be manuallyconfigured. With transparent cachingthe packetsarein-
terceptedby an intermediaterouter (layer4 or layer7 switch)andtransparently routed to a cache
which in turn responds to theclient directly [cis]. Manualconfigurationrequirestheclient to ex-
plicitly configure thebrowserto go via a proxy cache.In additionto forward proxies,cachescan
be deployed asa front-endto a server farm to reduceserver load andincreaseserver scalability.
Suchcachescalledreverseproxiesareusefulin eliminatingtheloadof ahot-setfrom impactingthe
serverperformance.Typically reverseproxiesarein thesameadministrativedomainastheserver.

As with any caching system,Webcachesneedto usea cachereplacementpolicy to decidewhat
to keepin the cacheanda consistency mechanism on how to keepit current. Various cachere-
placement algorithms from LRU to Greedy-dualsizehave beenstudiedin thecontext of theWeb
to improve cacheperformance in termsof client responsetimesandserver throughput. For main-
tainingconsistency, Webobjectsmayhaveexplicit expiration timesassociatedwith themindicating
whenthey becomeobsolete.Theproblemwith expirationtimesis thatit is oftennotpossibleto tell
in advancewhenWebdatawill becomeobsolete. Furthermore,expiration timesarenot sufficient
for applications which have strongconsistency requirements.Without expiration timesthe proxy
cacheneedsto alwayscheckthestalenessof thedatawith theserver usingif-modified-sincemes-
sages,thereby, increasingclientresponsetimes.Stalecacheddataandtheinability in many casesto
cachedynamicandpersonalizeddatalimit theeffectivenessof caching. Numerousproposalshave
beenmadeto extendthe support for consistency suchthat stronger requirementscanbe met [Li
etal., 2000].

Simpleproxy cachingis limited by thespaceandprocessingcapacityof a singlecaching server.
To further improve performancecaching canbeextendedto includea group of cooperatingcaches
deployed in the network either in a hierarchical or distributedmanner. Hierarchicalcachessuch
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2 Practical Handbook of Internet Computing

as the NLANR Squid [Squ, 1997] cacheconsistof a single tree with parent child relationship,
whereas otherorganizationsinclude mesheswith hierarchical or centralized directories [Wolman
et al., 1999]. A furtherextensionof distributedcachingarecontent distribution networks(CDNs)
thatsupplement theclientsideproxy caching to otherpointsin thenetwork controlled by theCDN
serviceprovider. A CDN is a sharednetwork of serversor cachesthatdeliver content to userson
behalf of content providersby usingvariousrequest routing techniques.Theintentof a CDN is to
serve content to a client from a CDN server sothatresponsetime is decreasedover contacting the
origin serverdirectly. In doing soCDN’s alsoreducetheloadonorigin servers.

This chapter examinesseveralissuesrelatedto cachemanagementconsistency maintenanceand
theoverall architecture andtechniquesfor routing requestsin CDNs. We alsoprovide insight into
theperformanceimprovements typically achievedby CDN’s.

1.2 Practical Issuesin the Designof Caches

Webcachescanbeimplementedat theapplication level [Iyengar, 1999], kernellevel [Joubert etal.,
2001], or under an embedded operating system[Songet al., 2002]. Application-level cachesare
the easiestto designandhave the potentialfor the mostfeatures.Kernel-level cachesareharder
to designbut have the potential for betterperformance. Cachescanalsobe designed for embed-
dedoperatingsystemswhich maybeoptimized for certainfeatures suchascommunication. Such
cachesmayoffer comparableperformanceto kernel-level caches.A problemwith usingembedded
operatingsystemsis thatasprocessortechnology improves,it maynot befeasiblefor theembed-
dedoperating systemto keepup with new processors.This means that over time, the advantage
achievedby a cacherunning underanembeddedoperating systemmaydecrease.

HTTP providesa standardinterfacefor applications to utilize caches.An HTTP interfacealone
is limiting, however, anddoesn’t provide adequatesupport for explicitly managing thecontents of
a cache.It is alsonot themostefficient interfaceandcanbecumbersomefor applicationsto use.It
is therefore preferablefor thecacheto defineaninterfacewhichanapplication programcanuseto
explicitly add,delete,andupdatecachedobjects[Iyengar,1999].

Thenumberof transactionsperunit timethataWebcachehastoperform in order to achievegood
performance is ordersof magnitude lessthanthat neededby a processorcache. Therefore,Web
cachescanemploy moresophisticatedconsistency andreplacement policies. Cachereplacement
policiesareappliedwhenacachebecomesfull andit is necessaryto determinewhichobjectsin the
cacheto keep.The leastrecentlyusedalgorithm(LRU) hasbeenusedfor caching acrossa broad
range of disciplines.In LRU, theobjectwhich wasaccessedthefarthest in thepastis selectedfor
removal whenthecachebecomesfull. LRU hastheadvantagethatit is easyto implement. A doubly
linkedlist is usedto order objectsby accesstimes. Whenever anobjectis accessed,it is moved to
thefront of thelist.

A number of cachereplacement algorithms have beenproposedwhich result in highercache
hit ratesthanLRU. Oneof the mostcommonly usedsuchalgorithm is the GreedyDual-Sizeal-
gorithm [CaoandIrani, 1997]. TheGreedyDual-Sizealgorithm associatesa cost ���	��
 with each
object � . The costwould typically be associatedwith how expensive it is to fetch or createthe
object. It is preferableto cachemoreexpensive objectsbecausedoing soresultsin greatersavings
in theevent of a cachehit. GreedyDual-Sizedivides ������
 by thesizeof � , 
�����
�� in orderto arrive
at anestimate���	��
 of thesavingsperunit of cachememory which would beachievedby caching
theobject.

Whenobject � is first broughtinto thecache,���	��
 is setto ���	��
���
�����
 . Whenthecachebecomes
full andanobjectneeds to beremoved,theobject with thelowest � value, ��������� is removed,and
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all objectsreduce their � values by � ������� Whenanobject is accessed,its � valueis restoredto
������
���
��	��
 � Thatway, objectswhichareaccessedfrequently will on averagehavehigher � values
andaretherefore lesslikely to bereplaced.

A naive implementation would require  "!$# subtractions every time an object is replacedto
update � valuesfor theremaining cachedobjects,where  is thenumber of cachedobjects.This
is inefficient. Instead,an inflation value, %&� is maintained. Whenan objecto is accessed,������

is setto ���	��
���
�����
(')% . By adding % to compute the � valueof anaccessedobject, it becomes
unnecessaryto reduce� valuesfor all remaining objectswhenanobjectis replaced. % is initially
setto 0. Whenever anobjectis replaced, % is updatedto the � valueof thereplacedobject.

The cost function � dependson resourcesthe cacheis trying to minimize. If the objective is
to maximize cachehit rates,then the cost function shouldbe a constantfor eachobject. If the
objective is to minimizetime consumedfetching remote objects, then ������
 couldbetheexpected
latency for fetching � � For a dynamicWebobject,theCPUcyclesconsumedfor creatingtheobject
mayhave the mostsignificanteffect on performance.The costfunction for suchan objectcould
thusbeproportional to theCPUcyclesfor creating theobject.

Cachescanbe implementedusingboth main memory anddisk storage.Main memory offers
betterperformance. In somecases,however, disk storageis essential.If thecachesizeexceedsthe
mainmemory size,it maybedesirableto storecolderobjectsondisk insteadof deletingtheobjects
to keepthecachewithin memory limits. Disk storageis alsoessentialfor persistencewhenacache
mustbeshutdown andlaterrestarted.If thecacheis totally purgedeachtime themachineis shut
down, thenperformanceis likely to be poor while the machine is beingbrought to a warm state
afterstartup. If, on theotherhand, cached informationis maintainedondisk before theshutdown,
the cachecanbe brought to a warm stateright after the systemis restarted.Disk storageis also
important for fault tolerance.Whena cachefails, if hot objectsaremaintained on disk, thenthe
cachecanbequickly brought to awarmstateafterthefailure.

File systemsanddatabasescanbeusedfor persistentlystoringcacheddata.A key problemwith
file systemsanddatabasesis thatthey canbeinefficient. For Webcaches,therateat which objects
areaddedto anddeletedfrom cachescanbehigh [Markatoset al., 1999]. If a file systemis used
anda differentfile is usedto storeeachobject,theoverheadfor creatinganddeletingfiles canbe
significant.Customizeddisk storageallocators canoftenachieve muchbetterperformance. Good
performance for Web workloads hasbeenachieved by maintaining multiple objectsin a single
file andefficiently managing the storagespacewithin the file [Iyengaret al., 2001]. A portable
diskstorageallocatorwe havebuilt in Java achieves considerablybetterperformancethanbothfile
systemsanddatabases.

1.3 CacheConsistency

Cachinghasprovento beaneffective andpractical solutionfor improving thescalabilityandper-
formanceof Webservers.StaticWebpagecachinghasbeenappliedbothat browsersat theclient,
or at intermediariesthat include isolatedproxy cachesor multiple cachesor servers within a CDN
network. As with caching in any system,maintainingcacheconsistency is oneof themain issues
thata Webcachingarchitecture needsto address. As moreof thedataon theWeb is dynamically
assembled,personalized,andconstantly changing, thechallengesof efficient consistency manage-
mentbecomemorepronounced.To prevent staleinformationfrom being transmittedto clients,an
intermediarycachemustensure thatthelocally cacheddatais consistentwith thatstoredonservers.
Theexactcacheconsistency mechanismandthedegreeof consistency employedbyanintermediary
dependson thenatureof thecacheddata;not all typesof dataneedthesamelevel of consistency
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guarantees.Considerthefollowing example.

Example
Online auctions: ConsideraWebserver thatoffersonlineauctionsover theInternet.For eachitem
beingsold, theserver maintains informationsuchasits latestbid price(which changes every few
minutes)aswell asotherinformationsuchasphotographs andreviews for the item (all of which
change lessfrequently). Consideran intermediary that cachesthis information. Clearly, the bid
pricereturned by theintermediary cacheshouldalwaysbeconsistentwith thatat theserver. In con-
trast,reviewsof itemsneednotalwaysbeup-to-date,sinceausermaybewilling to receiveslightly
staleinformation.

The above example shows that an intermediary cachewill needto provide different degreesof
consistency for different typesof data. The degree of consistency selectedalso determines the
mechanismsusedto maintainit, andtheoverheadsincurredby boththeserverandtheintermediary.

1.3.1 Degreesof Consistency

In generalthedegrees of consistency thatanintermediarycachecansupport fall into thefollowing
four categories.

* strong consistency: A cacheconsistency level that always returnsthe resultsof the latest
(committed) write at theserver is saidto bestronglyconsistent.Dueto theunboundedmes-
sagedelays in the Internet, no cacheconsistency mechanism canbe stronglyconsistentin
this idealizedsense.Strongconsistency is typically implementedusinga two-phasemessage
exchangealongwith timeoutsto handle unboundeddelays.

* delta consistency: A consistency level thatreturns datathatis never outdatedby morethan +
time units,where+ is a configurableparameter, with thelastcommittedwrite at theserver is
saidto bedeltaconsistent.In practicethevalueof deltashouldbelarger than , which is the
network delaybetweentheserverandtheintermediaryat thatinstant,i.e., ,.-/+1032 .

* weak consistency: For thislevel of consistency, areadattheintermediary doesnotnecessarily
reflectthelastcommitted write at theserverbut somecorrectpreviousvalue.

* mutual consistency: A consistency guaranteein whichagroupof objectsaremutuallyconsis-
tentwith respectto eachother. In this casesomeobjectsin thegroupcannot bemore current
thantheothers.Mutual consistency canco-exist with theotherlevelsof consistency.

Strongconsistency is useful for mirror sitesthat needto reflect the current stateat the server.
Someapplications basedon financial transactionsmay also require strongconsistency. Certain
typesof applicationscantoleratestaledataaslongasit is within someknown timebound. For such
applicationsdeltaconsistency is recommended. Deltaconsistency assumesthatthereis a bounded
communicationdelaybetweentheserver andtheintermediary cache.Mutual consistency is useful
whena certainsetof objectsat the intermediary (e.g., the fragmentswithin a sportsscorepage,
or within a financialpage)needto be consistentwith respectto eachother. To maintainmutual
consistency the objectsneedto be atomically invalidatedsuchthat they all eitherreflect the new
version or maintaintheearlierstaleversion.

Mostintermediariesdeployedin theInternettodayprovideonlyweakconsistency guarantees[Gw-
ertzmanandSeltzer,1996; Squ,1997]. Until recently, mostobjectsstoredonWebserverswererela-
tively staticandchangedinfrequently. Moreover, thisdatawasaccessedprimarily by humansusing
browsers. Sincehumans cantoleratereceiving staledata(andmanually correct it usingbrowser
reloads), weakcacheconsistency mechanismswereadequatefor this purpose. In contrast, many
objectsstoredon Web serverstodaychange frequentlyandsomeobjects(suchasnews storiesor
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Overheads Polling Periodic polling Invalidates Leases TTL
File Transfer 465 4758!9+ 475 475 475
ControlMsgs. :�;<!9465 :�;=�>,?!/�@475A!9+�
 :B475 :B475 475

Staleness 0 t 0 0 0
Write delay 0 0 notify(all) min(t, notify(all C )) 0
ServerState None None All All C None

Overheadsof Different Consistency Mechanisms.Key: , is the periodin periodicpolling or the
leasedurationin theleasesapproach. 4D5 is thenumber of non-consecutive writes.All consecutive
writeswith no interleaving readsarecounted asa singlewrite. ; is thenumberof reads. + is the
numberof writesthatwerenotnotifiedto theintermediary asonly weakconsistency wasprovided.
‘All’ meansall of the subscribers for server-driven invalidation. ‘All C ’ meansall of the servers
within leaseduration, .

stockquotes)areupdatedevery few minutes[Barford et al., 1999]. Moreover, theWeb is rapidly
evolving from a predominantly read-only informationsystemto a systemwherecollaborative ap-
plications andprogram-drivenagentsfrequently readaswell aswrite data. Suchapplications are
lesstolerantof staledatathanhumansaccessinginformation usingbrowsers. Thesetrendsargue
for augmenting theweakconsistency mechanismsemployed by today’sproxieswith thosethatpro-
videstrongconsistency guaranteesin order to makecachingmoreeffective. In theabsenceof such
strongconsistency guarantees,serversresortto markingdataasuncacheable,andtherebyreduce
theeffectivenessof proxy caching.

1.3.2 Consistency Mechanisms

Themechanismsusedby anintermediary andtheserver to provide thedegreesof consistency de-
scribedearlierfall into 3 categories:i) client-driven, ii) server-driven, andiii) explicit mechanisms
.

Server-drivenmechanisms,referredto asserver-based invalidation, canbeusedto providestrong
or deltaconsistency guarantees[Yin et al., 1999b]. Server-basedinvalidation,requirestheserver to
notify proxies whenthe datachanges. This approachsubstantiallyreducesthe numberof control
messagesexchangedbetweentheserver andthe intermediary (sincemessagesaresentonly when
anobjectis modified). However, it requirestheserver to maintainper-object stateconsistingof a
list of all proxiesthatcachetheobject;theamount of statemaintainedcanbesignificantespecially
atpopularWebservers.Moreover, whenanintermediary is unreachabledueto network failures,the
servermusteitherdelaywrite requestsuntil it receivesall theacknowledgmentsor atimeoutoccurs,
or risk violating consistency guarantees.Severalnew protocols havebeenproposedrecentlyto pro-
videdeltaandstrongconsistency usingserver-basedinvalidations.Webcacheinvalidationprotocol
(WCIP) is onesuchproposalfor propagatingserver invalidationsusingapplication-level multicast
while providing deltaconsistency [Li et al., 2000]. Web contentdistribution protocol (WCDP) is
another proposalthat supports multiple consistency levels usinga request-responseprotocol that
canbescaledto support distributionhierarchies[Tewari et al., 2002].

The client-driven approach,also referredto as client polling, requires that intermediaries poll
theserver on every read to determine if thedatahaschanged [Yin et al., 1999b]. Frequentpolling
imposesalargemessageoverheadandalsoincreasestheresponsetime(sincetheintermediary must
await the resultof its poll before responding to a readrequest).Theadvantage, though, is that it
doesnotrequireany stateto bemaintainedat theserver, nordoestheservereverneedto delaywrite
requests(sincetheonus of maintaining consistency is on theintermediary).

Mostexistingproxiesprovideonly weakconsistency by (i) explicitly providing aserverspecified
lifetime of anobject (referredto asthe time-to-live (TTL) value), or (ii) by periodic polling of the
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FIGURE 1.1
Efficacy of server-based invalidation and client polling for thr ee differ ent trace workloads
(DEC, Berkeley, BostonUniversity). The figure shows that server-basedinvalidation has the
largeststatespaceoverhead; client polling hasthe highestcontrol messageoverhead

the server to verify that the cacheddatais not stale[Cate,1992; GwertzmanandSeltzer,1996;
Squ,1997]. TheTTL valueis sentaspartof theHTTP responsein anExpires tagor usingthe
Cache-Control headers. However, a priori knowledge of whenan objectwill be modifiedis
difficult in practiceandthedegreeof consistency is dependentontheclockskew betweentheserver
andtheintermediaries. With periodic polling thelengthof theperioddeterminestheextentof the
objectstaleness.In eithercase,modifications to theobject before its TTL expiresor betweentwo
successive polls causestheintermediary to returnstaledata.Thusbothmechanismsareheuristics
andprovide only weakconsistency guarantees.Hybrid approacheswherethe server specifiesa
time-to-live valuefor eachobjectandtheintermediary polls theserver only whentheTTL expires
alsosuffer from thesedrawbacks.

Server-basedinvalidation andclient polling form two endsof a spectrum. Whereasthe former
minimizes thenumberof control messagesexchangedbut mayrequireasignificantamount of state
to be maintained, the latter is statelessbut canimposea large control messageoverhead. Figure
1.1 quantitatively comparesthesetwo approacheswith respectto (i) the server overhead, (ii) the
network overhead,and(iii) theclient responsetime. Dueto their largeoverheads,neitherapproach
is appealingfor Webenvironments.A strongconsistency mechanism suitablefor theWebmustnot
only reduceclient responsetime,but alsobalancebothnetwork andserveroverheads.

Oneapproachthat providesstrongconsistency, while providing a smoothtradeoff betweenthe
statespaceoverheadandthenumber of control messagesexchanged,is leases [GrayandCheriton,
1989]. In this approach,theserver grantsa leaseto eachrequestfrom an intermediary. Thelease
durationdenotestheinterval of timeduring whichtheserver agreesto notify theintermediary if the
objectis modified. After theexpirationof thelease,theintermediary mustsenda messagerequest-
ing renewal of thelease.Theduration of theleasedetermines theserver andnetwork overhead.A
smallerleasedurationreducestheserver statespaceoverhead,but increasesthenumber of control
(leaserenewal)messagesexchangedandviceversa.In fact,aninfinite leasedurationreducestheap-
proachto server-basedinvalidation,whereasazeroleasedurationreducesit to client-polling. Thus,
theleasesapproachspanstheentirespectrum betweenthetwo extremesof server-basedinvalidation
andclient-polling.

Theconceptof a leasewasfirst proposedin thecontext of cacheconsistency in distributedfile
systems[Gray andCheriton,1989]. The useof leasesfor Web proxy cacheswasfirst alludedto
in [Liu andCao,1997] andwas subsequently investigated in detail in [Yin et al., 1999b]. The
latter effort focusedon the designof volume leases – leasesgrantedto a collectionof objects–
so asto reduce (i) the leaserenewal overheadand(ii) the blocking overheadat the server dueto
unreachableproxies. Otherefforts have focusedon extending leasesto hierarchical proxy cache
architectures[Yin et al., 1999a;Yu etal., 1999]. Theadaptive leaseseffort describedanalyticaland
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quantitative resultson how to selectthe optimal leaseduration basedon the server andmessage
exchangeoverheads[Duvvuri etal., 2000].

A qualitative comparisonof theoverheadsof thedifferentconsistency mechanismsis shown in
Table1.1. Themessageoverheadsof aninvalidation-basedor lease-basedapproachis smallerthan
thatof polling especiallywhenreadsdominatewrites,asin theWebenvironment.

1.3.3 Invalidatesand Updates

With server-drivenconsistency mechanisms,whenanobjectis modified, theorigin server notifies
each“subscribing” intermediary. The notificationconsistsof eitheran invalidatemessageor an
updated(new) versionof theobject.Sendinganinvalidatemessagecausesanintermediaryto mark
the object as invalid; a subsequent requestrequires the intermediary to fetch the object from the
server (or from a designatedsite). Thus,eachrequestaftera cacheinvalidateincursanadditional
delaydueto this remote fetch. An invalidationaddsto 2 control messagesanda datatransfer(an
invalidationmessage,areadrequestonamiss,andanew datatransfer)alongwith theextra latency.
No suchdelayis incurred if theserver sendsout thenew versionof theobjectuponmodification.
In an update-basedscenario, subsequent requestscan be servicedusing locally cacheddata. A
drawback,however, is thatsendingupdatesincursa largernetwork overhead(especiallyfor large
objects).Thisextraeffort is wastedif theobjectis neversubsequentlyrequestedat theintermediary.
Consequently, cacheinvalidatesarebettersuitedfor lesspopular objects,while updatescanyield
betterperformance for frequently requestedsmall objects. Delta encoding techniqueshave been
designed to reduce thesizeof thedatatransferredin anupdateby sendingonly thechanges to the
object[Krishnamurthy andWills, 1997]. Notethatdeltaencodingis notrelatedto deltaconsistency.
Updates,however, require bettersecurityguaranteesand make strongconsistency management
morecomplex. Nevertheless,updatesareuseful for mirror siteswheredataneeds to be “pushed”
to thereplicas whenit changes.Updates arealsousefulfor pre-loadingcacheswith contentthat is
expectedto becomepopular in thenearfuture.

A servercandynamically decidebetweeninvalidatesandupdates basedon thecharacteristicsof
an object. Onepolicy couldbe to sendupdatesfor objects whosepopularity exceeds a threshold
andto sendinvalidatesfor all otherobjects.A more complex policy is to take bothpopularity and
objectsizeinto account. Sincelargeobjectsimposea largernetwork transferoverhead, theserver
canuseprogressively larger thresholds for suchobjects(the largeran object,the morepopular it
needs to bebefore theserverstartssendingupdates).

Thechoicebetweeninvalidationandupdatesalsoaffects theimplementationof a strongconsis-
tency mechanism. For invalidationsonly, with a strongconsistency guarantee,theserver needsto
wait for all acknowledgmentsof theinvalidationmessage(or a timeout)to commit thewrite at the
server. With updates,on theotherhand, theserver updatesarenot immediatelycommitted at the
intermediary. Only aftertheserver receivesall theacknowledgments (or a timeout)andthensends
a commitmessageto all the intermediaries is thenew updateversioncommitted at the intermedi-
ary. Suchtwo-phasemessageexchangesareexpensive in practiceandarenot required for weaker
consistency guarantees.

1.4 CDNs: Impr ovedWebPerformancethr ough Distrib ution

End-to-endWebperformanceis influencedby numerousfactorssuchasclient andserver network
connectivity, network lossanddelay, server load,HTTP protocol version,andnameresolution de-
lays. The content-servingarchitecture hasa significantimpact on someof thesefactors, aswell
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FIGURE 1.2
Content-serving architectures

factorsnot relatedto performancesuchascost, reliability, andeaseof management.In a tradi-
tional content-servingarchitecture all clients requestcontent from a single location,asshown in
Figure1.2(a). In this architecture, scalabilityandperformanceare improved by addingservers,
without the ability to addresspoor performance dueto problems in the network. Moreover, this
approachcanbeexpensive sincethesite mustbe overprovisionedto handle unexpectedsurgesin
demand.

SomeISPsaddressperformancebottlenecks in the network by deploying caching proxies near
clients to reducenetwork traffic and improve client performance. Cachingproxies are limited,
however, sincethey operatebasedonly on userdemand for a very largeanddiversesetof content.
Most proxy cachestudies,for example, find they achieve only a 20–40% hit rate[IRCacheProject
Daily Reports,2002; Wolmanetal., 1999].

Anotherway to addresspoorperformance dueto network congestion, or flashcrowds at servers,
is to distributepopular contentto servers or cacheslocatedcloserto theedgesof the network, as
shown in Figure1.2(b). Sucha distributednetwork of servers comprisesa content distribution
network (CDN). A CDN is simply a network of serversor cachesthatdelivers content to userson
behalf of contentproviders.Theintentof a CDN is to serve content to a client from a CDN server
suchthattheresponse-timeperformanceis improvedovercontactingtheoriginserverdirectly. CDN
servers aretypically shared,delivering content belonging to multiple Websitesthough all servers
maynot be usedfor all sites. SinceCDN servers receive requestsonly for hostedcontent,cache
missestypically occuronly for compulsorymissesdueto theinitial request for somecontent.

CDNshaveseveraladvantagesover traditional centralized content-servingarchitectures,includ-
ing [Verma,2002]:

* improving client-perceivedresponsetimeby bringing content closerto thenetwork edge,and
thuscloserto end-users

* off-loadingwork from origin serversby servinglarger objects,suchasimages andmultime-
dia, from multipleCDN servers

* reducing contentprovider costsby reducing the needto invest in morepowerful servers or
morebandwidth asuserpopulationincreases
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FIGURE 1.3
CDN architectureand request-routing

* improving siteavailability by replicatingcontent in many distributedlocations

Contentdistribution serviceproviders(CDSPs)manage andoperatetheCDN, thusfreeing con-
tentprovidersfromthetasksof maintaining theserversthemselves. Somenetworkserviceproviders
offeraCDN servicein additionto network accessservice(e.g., AT&T andCable&Wireless).Other
CDSPsfocusprimarily onproviding a variety of CDN services(e.g., AkamaiandSpeedera).

CDN serversmaybeconfiguredin tree-likehierarchies[Yuetal.,1999] or clustersof cooperating
proxiesthatemploy content-basedroutingto exchangedata[Gritter andCheriton, 2001]. Commer-
cial CDNsalsovarysignificantlyin their sizeandserviceofferings. CDN deploymentsrangefrom
a few tensof servers(or server clusters),to over ten thousand servers placedin hundredsof ISP
networks. A large footprint allows a CDSPto reachthemajority of clientswith very low latency
andpathlength.

ContentprovidersuseCDNsprimarily for servingstaticcontent like imagesor largestoredmul-
timediaobjects(e.g., movie trailersandaudioclips). A recent studyof CDN-servedcontent found
that96%of theobjectsservedwereimages[Krishnamurthyet al., 2001]. However, theremaining
few objectsaccounted for 40–60% of the bytes served, indicating a small number of very large
objects. Increasingly, CDSPsoffer servicesto deliver streamingmediaanddynamic datasuchas
localizedcontentor targetedadvertising.

1.4.1 CDN Ar chitectural Elements

As illustratedin Figure1.3(a),CDNshave threekey architectural elements in addition to theCDN
servers themselves: a distribution system,anaccounting/billing system,anda request-routingsys-
tem[Dayetal.,2002]. Thedistribution systemis responsible for movingcontent fromoriginservers
into CDN serversandensuringdataconsistency. Section1.4.4describessometechniquesusedto
maintainconsistency in CDNs. Theaccounting/billing systemcollectslogsof client accessesand
tracksCDN serverusagefor useprimarily in administrative tasks.Finally, therequest-routing sys-
tem is responsible for directingclient requeststo appropriate CDN servers. The request-routing
systemmayalsointeractwith thedistribution systemto keepanup-to-dateview of which content
residesonwhichCDN servers.
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Therequest-routingsystemoperatesasshown in Figure1.3(b). Clientsaccesscontent from the
CDN serversbyfirst contacting arequestrouter (step1). Therequestroutermakesaserver selection
decisionandreturnsa server assignmentto theclient (step2). Finally, theclient retrievescontent
from thespecifiedCDN server (step3).

1.4.2 CDN Request-Routing

Clearly, the request-routingsystemhasa direct impacton the performanceof the CDN. A poor
server selectiondecisioncandefeat the purposeof the CDN, namelyto improve client response
time over accessingthe origin server. Thus,CDNs typically rely on a combination of staticand
dynamicinformationwhenchoosingthebestserver. Several criteriaareusedin therequest-routing
decision, including the content being requested,CDN server andnetwork conditions, andclient
proximity to thecandidateservers.

Themostobvious requestrouting strategy is to direct theclient to a CDN server thathoststhe
content beingrequested.This is complicated,however, if the request router doesnot know what
content is beingrequested,for exampleif request-routingis donein thecontext of nameresolution.
In thiscasetherequestcontains only aserverhostname(e.g., www.service.com) asopposedto
thefull HTTPURL.

For goodperformancethe client shouldbe directedto a relatively unloaded CDN server. This
requires that the request routeractively monitor the stateof CDN servers. If eachCDN location
consistsof a clusterof serversandlocal load-balanceror connectionrouter, it maybepossibleto
query aserver-sideagent for serverloadinformation,asshown in Figure1.4. After theclientmakes
its request,therequestrouterconsultsanagentateachCDN siteload-balancer(step2), andreturns
anappropriateanswerbackto theclient.

As Web responsetime is heavily influenced by network conditions, it is important to choosea
CDN server to which the client hasgood connectivity. Upon receiving a client request, the re-
questroutercandeterminewhich CDN server is closestto theclient andthenrespondto theclient
appropriately.

A commonstrategy usedin CDN request-routingis to chooseaserver“nearby” theclient,where
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proximity is definedin termsof network topology, geographic distance,or network latency. Exam-
plesof proximity metricsincludeautonomoussystem(AS) hopsor network hops.Thesemetricsare
relatively staticcomparedwith server loador network performance,andarealsoeasierto measure.

Note that it is unlikely thatany oneof thesemetricswill besuitablein all cases.Most request
routersusea combinationof proximity andnetwork or server load to make server selectiondeci-
sions.Forexample,clientproximity metricscanbeusedtoassignaclienttoa“default” CDNserver,
which providesgood performance mostof the time. Theselectioncanbe temporarily changed if
loadmonitoring indicatesthatthedefault server is overloaded.

Request-routingtechniquesfall into threemaincategories: transport-layermechanisms,application-
layerredirection,andDNS-basedschemes[Barbir etal., 2002]. Transport-layerrequestrouters use
informationin thetransport-layerheadersto determine which CDN server shouldserve theclient.
For example, therequestroutercanexamine theclient IP addressandport number in a TCPSYN
packet andforward the packet to an appropriateCDN server. The target CDN server establishes
the TCP connectionandproceedsto serve the requestedcontent. Forward traffic (including TCP
acknowledgments)from theclient to thetargetservercontinuesto besentto therequestrouterand
forwardedto theCDN server. Thebulk of traffic (i.e.,therequestedcontent)will travel onthedirect
pathfrom theCDN server to theclient.

Application-layerrequest-routing hasaccessto muchmoreinformationabout thecontent being
requested. For example, the request-routercanuseHTTP headers like the URL, HTTP cookies,
andLanguage.A simpleimplementationof anapplication-layerrequestrouteris a Webserver that
receivesclient requestsandreturns anHTTP redirect(e.g.,statuscode302)to theclient indicating
theappropriateCDN server. Theflexibility affordedby thisapproachcomesat theexpenseof added
latency andoverhead,however, sinceit requiresTCP connectionestablishment andHTTP header
parsing.

With request-routingbasedontheDomainNameSystem(DNS),clientsaredirectedto thenearest
CDN server during the nameresolution phaseof Web access.Typically, the authoritative DNS
server for thedomain or subdomain is controlled by theCDSP. In this scheme,a specializedDNS
serverreceivesnameresolution requests,determinesthelocationof theclientandreturnstheaddress
of a nearby CDN serveror a referral to anothernameserver. Theanswermayonly becachedat the
client-sidefor a short time so that the request routercanadapt quickly to changes in network or
server load. This is achievedby settingthe associatedtime-to-live (TTL) field in the answerto a
verysmallvalue(e.g., 20seconds).

DNS-basedrequest routing may be implemented with either full- or partial-sitecontentdeliv-
ery [Krishnamurthy et al., 2001]. In full-site delivery, thecontentprovider delegatesauthority for
its domainto theCDSPor modifies its own DNSserversto returnareferral (CNAME or NSrecord)
to theCDSP’sDNSservers. In thisway, all requestsfor www.company.com, for example,arere-
solvedto aCDN serverwhichthendeliversall of thecontent. With partial-sitedelivery, thecontent
providermodifiesits contentsothatlinks to specificobjectshavehostnames in adomainfor which
the CDSPis authoritative. For example, links to http://www.company.com/image.gif
arechanged to http://cdsp.net/company.com/image.gif. In this way, the client re-
trieves the baseHTML pagefrom the origin server but retrieves embeddedimagesfrom CDN
servers to improve performance. This type of URL rewriting may alsobe done dynamically as
thebasepageis retrieved,though thismayincreaseclient responsetime.

The appealof DNS-basedserver selectionlies in both its simplicity – it requires no change to
existing protocols,andits generality – it works acrossany IP-basedapplication regardlessof the
transport-layerprotocol beingused.Thishasledto adoption of DNS-basedrequestrouting asthede
facto standard method by many CDSPsandequipment vendors.UsingtheDNSfor request-routing
doeshave somefundamental drawbacks,however, someof which have beenrecentlystudiedand
evaluated[Shaikhetal., 2001; Maoet al., 2002; Barbiret al., 2002].

Oneproblemis thatrequest-routingis done on thegranularity of DNS domains, ratherthanper-
object,thuslimiting theability tomakeobject-specificserverselectiondecisions.A secondproblem
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is thatrequestsusuallycometo theDNS server not from clients,but from their local nameservers.
Hence,theCDN server is chosenbasedonthelocalnameserveraddressinsteadof theclient,which
may lead to poor decisions if clients and their local nameservers are not proximal. Finally, as
mentionedearlier, DNS request routersreturnanswerswith small TTLs to facilitatefine-grained
load balancing. This may actually increaseWeb accesslatency becauseclientsmustcontact the
DNS server morefrequently to refreshthename-to-addressmapping.

1.4.3 Request-Routing Metrics and Mechanisms

Request-routing systemsusea number of metricsandtechniquesin decidingwhich CDN server
is bestsuitedfor a given client. This sectiondescribessomespecificmetricsandtechniquesused
in commercially availableload-balancingandrequest-routingproducts.Notethatthesetechniques
arenot necessarilylimited to CDNs– they areapplicable to load-balancingandrequest-routingin
many replicatedcontent-servingarchitectures.

Determining server availability and load

Serveravailability is oftenthemostcritical criterionusedin requestrouting. Availability is usually
determinedusing“healthchecks” initiatedby therequest-router. Theseprobesmaybeimplemented
at layer-3 with ICMP (Internet Control MessageProtocol) ping, or layer-4 by checking that TCP
connectionscanbe established,for example. In addition, the request router is often configured
to perform application-layerhealthchecks, suchasretrieving a specifiedfile usingHTTP or FTP,
or interactingwith an IMAP mail server or telnetserver. Application-layerchecks areimportant
to detectcaseswhena hostmachine maybeoperational,but a mission-criticalapplication is not,
hence makingtheserverunsuitablefor handling client requests.

As describedin Section1.4.2, therequestroutermayconsultalocalload-balancingswitchateach
siteto determinetherelative loadat candidateserver sites.Thelocal loadbalancertypically keeps
trackof statisticslike thenumberof active client connections,theaggregatepacket andconnection
arrival rates,andnumberof availableservers. Usingagentsthatresideontheserversthemselves,the
local loadbalancermayalsocollect informationsuchasper-server CPU loadandmemory usage.
All or someof thesestatisticscanbequeriedby therequest-routerto assesstherelativeloadof each
serveror servercluster.

In mostvendor solutions therequestrouter is tightly integratedwith anagentat theserver-side
load-balancerwhich reports statistics,or an aggregate“score.” This schemeusuallyrequiresthat
therequestrouterandload-balancerarefrom thesamevendor sincethey oftencommunicateusing
proprietaryprotocols.Limitedsupport mayalsobeavailablefor communicatingwith heterogeneous
local loadbalancersor servers.This is oftendone usingtheSimpleNetwork ManagementProtocol
(SNMP),sincemostproductsandoperating systemssupport SNMPqueriesof informationsuchas
packet arrival rateor numberof activeconcurrentconnections.Therequestrouter mayalsousethe
responsivenessof application-layerhealthchecks asanindication of thesiteor server load. These
checks appearasnormal client requestsandthusdonot require specialprotocols.

Determining network proximity and performance

Sincenetwork performanceplaysanimportantrole in overall end-to-endWebperformance, there-
questroutertriesto directclientsto thenearestserverin termsof geographicor topological location,
or network latency. In a typicalDNS-basedrequest-routingsystem,however, this is complicatedby
several factors.Thenetwork performance(e.g.,delay, loss,throughput) maychangedynamically
anddramatically over time, requiring that the notionof “nearest” beupdated regularly. Also, the
client’sactuallocationmaybedifficult to determineif thelocalnameserverthatsendsDNSrequests
onbehalf of theclient is notnearbytheclient. Finally, thenetworkperformancemustbedetermined
from thepointof view of eachserversite,ratherthanfrom therequestrouter.
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Oneapproachis for therequestrouter to askcandidateCDN serversto measurenetwork latency
to theclient (or its nameserver) usingICMP echo(i.e., ping) andreport themeasuredvalues.The
requestrouterthenresponds to theclient with theaddressof theCDN server reporting the lowest
delay. Sincethesemeasurementsaredone on line, this techniquehastheadvantageof adapting the
request-routingdecisionto the mostcurrent network network. Measurement resultsarereported
backto therequest router andcanbecachedfor a shorttime to serve subsequent requestsfrom the
sameor nearbyclients. On theotherhand,this technique canintroduceadditional latency for the
clientastherequest router waitsfor responsesfrom theCDN servers.

In aslightlydifferent approachtherequestroutercanforward therequesttoagentsatseveral sites,
eachof which thenrespond directly to theclient. Theclient usestheresponsethatreachesit first,
thusautomaticallychoosingthenearestsite.For a fair “race”, therequestroutermustknow its one-
way latency to eachsite,anddelaytheforwarding accordingly, to ensurethateachsitereceivesthe
forwardedrequestat the sametime. This approachavoidsactively probing theclient nameserver
from eachserver site, but it doesrequirethat eachresponding agent spoof the IP addressof the
requestrouter (to which the requestwasoriginally sent). Otherwisetheclient maynot acceptthe
response.

Anotheralternative approachis to passively monitor client connectionsto the CDN servers to
build aperformancedatabasethatcanbeconsultedby therequestrouterwhenmaking its decision.
For example, the local loadbalancercancaptureandexamineTCPpacketsto estimatetheround-
trip time betweenthe site and a particular client. Using theseestimates,the request router can
determine which site hasthe lowestdelayto somegroup of clients. This technique mustaddress
several issues,however, suchashow to collecta sufficient numberof samplesat eachCDN server,
andhow to aggregateclient performance statistics. It alsorequirestight integration betweenthe
request routerandthe performance monitoring entity at eachserver. Note that all threeof these
approachesfor determining client network proximity havebeenusedin vendor products.

In additionto dynamic metricssuchasnetwork latency, request routing systemsoften depend
on morestaticnotions of network proximity, basedeitheron hopcountor geographiclocation. A
hopcount-basedmetric may be implementedby simply usinga UDP-basedtraceroute from each
server site to the client nameserver, similar to the ICMP echotechnique described above. If the
requestrouterhasaccessto network routersat the server sites,it canconsultinterdomainrouting
tablesateachsiteto find out thedistancebetweenthesiteandtheclientsubnetin termsof AS-hops.
This requires a specializedagentor protocol on the network routers,however. Moreover, several
studieshaveshown hopcountto bea poorpredictor of network latency [Crovella andCarter,1995;
Obraczka andSilva,2000].

Many requestrouting systemsattemptto direct clientsto the geographically nearest site, often
basedon coarsenotionsof regions(e.g.,U.S.Eastcoast)or continents(e.g.,Asia-Pacific clients).
Determining geographicproximity basedonIP addressesremainsanactiveandopenresearchtopic
andthough anumberof heuristicshavebeendeveloped,they arenotalwaysaccurate[Mooreetal.,
2000; PadmanabhanandSubramanian,2001]. Nevertheless,it is possibleto useinformationpub-
lished by regional Internet registries to obtain rough per-country addressblock allocations[ian,
2003]. Thesecanbeusedto determine, to someextent, the locationof theclient in order to direct
it to the nearestsite. Most request-routing products alsooffer the ability to manually specify IP
addressesandtheir associatedgeographic regions. This is useful,for example, whentherequests
areanticipatedfrom known clients(e.g.,remotebranchoffices).

1.4.4 Consistency Management for CDNs

An important issuethat must be addressedin a CDN is that of consistency maintenance. The
problemof consistency maintenancein thecontext of a singleproxy usedseveral techniquessuch
astime-to-live (TTL) values,client-polling, server-basedinvalidation,adaptive refresh[Srinivasan
etal.,1998], andleases[Yin etal.,2001]. In thesimplestcase,aCDN canemploy thesetechniques
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ateachindividual CDN serveror proxy– eachproxy assumesresponsibility for maintaining consis-
tency of datastoredin its cacheandinteractswith theserverto dosoindependentlyof otherproxies
in theCDN. Sincea typical CDN mayconsistof hundredsor thousands of proxies (e.g., Akamai
currently hasa footprint of more than14,000 servers), requiring eachproxy to maintainconsis-
tency independentlyof otherproxiesis notscalablefrom theperspectiveof theorigin servers(since
theserver will needto individually interactwith a largenumber of proxies). Further, consistency
mechanismsdesigned from theperspective of a singleproxy (or a small group of proxies) do not
scalewell to largeCDNs. Theleasesapproach,for instance,requirestheorigin server to maintain
per-proxy statefor eachcachedobject. This statespacecanbecome excessive if proxies cachea
large numberof objectsor someobjectsarecachedby a large numberof proxies within a CDN.

A cacheconsistency mechanismfor hierarchical proxy cacheswasdiscussedin [Yu etal., 1999].
Theapproachdoesnot proposea new consistency mechanism, ratherit examinesissuesin instan-
tiating existing approachesinto a hierarchical proxy cacheusingmechanismssuchasmulticast.
They arguefor afixedhierarchy (i.e.,afixedparent-child relationshipbetweenproxies). In addition
to consistency, they alsoconsiderpushing of contentfrom origin servers to proxies. Mechanisms
for scalingleasesarestudiedin [Yin et al., 2001]. The approachassumesvolumeleases,where
eachleaserepresentsmultiple objects cachedby a stand-aloneproxy. They examine issuessuchas
delaying invalidationsuntil leaserenewalsanddiscussprefetchingandpushingleaserenewals.

Anothereffort describescooperative consistency alongwith a mechanism,calledcooperative
leases,to achieveit [Ninanetal.,2002]. Cooperativeconsistency enablesproxiesto cooperatewith
oneanother to reducetheoverheadsof consistency maintenance.By supporting deltaconsistency
semanticsandby usingasingleleasefor multipleproxies,thecooperativeleasesmechanismallows
thenotionof leasesto beappliedin ascalablemanner to CDNs.Anotheradvantageof theapproach
is that it employs application-level multicastto propagateserver notifications of modifications to
objects,which reducesserver overheads. Experimental resultsshow that cooperative leasescan
reducethenumber of servermessagesby afactorof 3.2andtheserverstateby 20%whencompared
to original leases,albeitat anincreasedproxy-proxy communicationoverhead.

Finally, numerousstudieshave focusedon specificaspectsof cacheconsistency for content dis-
tribution. For instance,piggybackingof invalidations[Krishnamurthy andWills, 1997], theuseof
deltasfor sending updates[Mogul et al., 1997], anapplication-level multicastframework for Inter-
netdistribution [Francis,2000] andtheefficacy of sendingupdatesversusinvalidates[Fei, 2001].

1.4.5 CDN PerformanceStudies

Several researchstudieshave recentlytried to quantify the extent to which CDNs areableto im-
prove response-time performance.An earlystudyby Johnson et al. focusedon thequality of the
request-routingdecision[Johnsonet al., 2000]. The studycompared two CDSPsthat useDNS-
basedrequest-routing. The methodology wasto measurethe responsetime to download a single
object from the CDN server assignedby the request routerandthe time to downloadit from all
otherCDN serversthatcould beidentified.Thefindings suggestedthattheserverselectiondid not
alwayschoosethebestCDN server, but it waseffective in avoidingpoorly performingservers,and
certainlybetterthanchoosingaCDN serverrandomly. Thescopeof thestudywaslimited,however,
sinceonly threeclient locationswereconsidered,performancewascomparedfor downloading only
onesmallobject,andtherewasnocomparisonwith downloadingfrom theorigin server.

A studydone in the context of developing the requestmirroring MedusaWeb proxy, evaluated
the performance of oneCDN (Akamai) by downloadingthe sameobjects from CDN serversand
origin servers [KoletsouandVoelker,2001]. Thestudywasdone only for a single-userworkload,
but showedsignificant performanceimprovement for thoseobjectsthat wereservedby theCDN,
whencomparedwith theorigin server.

More recently, Krishnamurthy et al. studiedtheperformanceof a number of commercial CDNs
from thevantagepoint of approximately20 clients[Krishnamurthy et al., 2001]. Theauthors con-
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cludethat CDN servers generally offer muchbetterperformancethanorigin servers, though the
gains weredependenton thelevel of caching andtheHTTP protocol options. There werealsosig-
nificantdifferencesin downloadtimesfrom differentCDNs. Thestudyfindsthat,for someCDNs,
DNS-basedrequestrouting significantlyhampersperformancedueto multiplenamelookups.
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