
A Scalable System for Consistently Caching Dynamic Web Data

Jim Challenger, Arun Iyengar, and Paul Dantzig

IBM Research

T. J. Watson Research Center

P. O. Box 704

Yorktown Heights, NY 10598

Abstract
This paper presents a new approach for consistently caching

dynamic Web data in order to improve performance. Our algo-
rithm, which we call Data Update Propagation (DUP), main-
tains data dependence information between cached objects and
the underlying data which affect their values in a graph. When
the system becomes aware of a change to underlying data,
graph traversal algorithms are applied to determine which
cached objects are affected by the change. Cached objects
which are found to be highly obsolete are then either invali-
dated or updated. DUP was a critical component at the official
Web site for the 1998 Olympic Winter Games. By using DUP,
we were able to achieve cache hit rates close to 100% com-
pared with 80% for an earlier version of our system which did
not employ DUP. As a result of the high cache hit rates, the
Olympic Games Web site was able to serve data quickly even
during peak request periods.

1 Introduction
Web servers provide two types of data: static data from files

stored at a server and dynamic data which are constructed by
programs that execute at the time a request is made. Dynamic
pages can seriously reduce Web server performance. High-
performance Web servers can typically deliver up to several
hundred static files per second on a uniprocessor. By contrast,
the rate at which dynamic pages are delivered is often orders
of magnitude slower; it is not uncommon for a program to
consume over a second of CPU time in order to generate a
single dynamic page. For Web sites with a high proportion of
dynamic pages, the performance bottleneck is often the CPU
overhead associated with generating dynamic pages [6, 7].

Dynamic pages are essential at Web sites which provide data
that change frequently. If pages are generated dynamically by a
server program, the server program can return the most recent
version of the data. If, on the other hand, files are created
to serve the pages statically, it may not be feasible to keep
the files current. This is particularly true if the number of files
which need to be updated frequently is large. Consequently, the
official Web site for the 1998 Olympic Winter Games generated
a high percentage of Web pages dynamically [3]. Whenever
new content became available to the computers implementing
the Web site, updated Web pages reflecting these changes were
made available to the rest of the world within seconds. Clients
could thus rely on the Web site to provide the latest results,
news, photographs, and other information from the Olympic
Games.

Since the Olympic Games Web site was one of the most
popular in the world for the duration of the Olympic Winter

Games, performance was critical. One of the most important
techniques we used for improving performance at the Olympic
Games Web site was to cache dynamic pages the first time
they were created. That way, subsequent requests for the same
dynamic page could access the page from a cache instead of
repeatedly invoking a program to generate the same page.

A key problem with caching dynamic pages is determining
what pages should be cached and when a cached page has
become obsolete. Our cache provides API’s which allow an
application program to explicitly add,delete, and update cached
objects [4]. Explicit management of the cache is essential for
optimal performance and consistency. However, API’s for
explicitly managing the contents of caches are not sufficient
for achieving both good performance and cache consistency.
At the official Web site for the 1996 Olympic Summer Games,
an earlier version of our cache was used which also had API’s
for explicitly adding, deleting, and updating objects. One of
the problems we encountered during the 1996 Olympic Games
was obtaining good performance after the system received new
information. It was difficult to precisely identify which cached
pages had changed as a result of the new information. In order
to insure that all stale pages were invalidated, many current
pages were also invalidated. This caused high miss rates after
the system received new information.

Using our experience from the 1996 Olympic Games, we
developed a new algorithm called Data Update Propagation
(DUP) for precisely identifying which cached pages have be-
come obsolete as a result of new information received by the
system. DUP significantly reduced the number of cached pages
which needed to be invalidated or updated after new informa-
tion was received. By using DUP in combination with prefetch-
ing, the 1998 Olympic Games Web site achieved cache hit rates
of close to 100% compared to around 80% for the 1996 Olympic
Games Web site. The high cache hit rates allowed the system
to serve pages quickly even during peak request periods.

2 The Data Update Propagation Algorithm
Data update propagation (DUP) determines how cached Web

pages are affected by changes to underlying data which deter-
mine the current values of the pages. For example, a set of
several cached Web pages may be constructed from tables be-
longing to a database. In this situation, a method is needed
to determine which Web pages are affected by updates to the
database. That way, caches can be synchronized with databases
so that they do not contain stale data. Furthermore, the method
should associate cached pages with parts of the database in as
precise a fashion as possible. Otherwise, objects whose values
have not changed may be mistakenly invalidated or updated



from a cache after a database change. Such unnecessary up-
dates to caches can increase miss rates and hurt performance.

DUP maintains correspondences between objects which are
defined as items which may be cached and underlying data
which periodically change and affect the values of objects.
Although an entity may be both an object as well as underly-
ing data, objects and underlying data could also be different,
which would mean that underlying data are not cacheable. In
our system, caches may contain both entire HTML pages and
fragments of HTML pages. It is possible for a cached HTML
fragment f to affect the value of a cached HTML page. In
this situation, f would constitute both an object and under-
lying data. In a simpler system, caches may consist entirely
of HTML pages and underlying data may consist entirely of
parts of databases. In this case, the underlying data and objects
would be disjoint.

The system maintains data dependence information between
objects and underlying data. When the system becomes aware
of a change to underlying data, it queries the dependence infor-
mation which it has stored in order to determine which cached
objects are affected. Caches use dependency information to
determine which objects need to be invalidated or updated as a
result of changes to underlying data.

Our cache architecture centers around a cache manager
which is a long-running daemon process managing storage for
one or more caches. Application programs communicate with
cache managers in order to add or delete items from caches.
Application programs are also responsible for communicating
data dependencies between underlying data and objects to cache
managers. Such dependencies can be represented by a directed
graph known as an object dependence graph (ODG), wherein a
vertex usually represents an object or underlying data. An edge
from a vertex v to another vertex u denoted (v; u) indicates that
a change to v also affects u. Node v is known as the source
of the edge, while u is known as the target of the edge. For
example, if node go2 in Figure 1 changes, then nodes go5 and
go6 also change. By transitivity, go7 also changes. Edges may
optionally have weights associated with them which indicate
the importance of data dependencies. In Figure 1, the data
dependence from go1 to go5 is more important than the data
dependence from go2 to go5 because the former edge has a
weight which is 5 times the weight of the latter edge.

go1 go2
go3

go4

go5

go6

go7

10

12

5 1
8

2

3

Figure 1: An object dependence graph (ODG). Weights are
correlated with the importance of data dependencies.

In many cases we have encountered, the object dependence
graph is a simple object dependence graph having the following
characteristics:

� Each vertex representing underlying data does not have
an incoming edge.

� Each vertex representing an object does not have an out-
going edge.

� All vertices in the graph correspond to underlying data
(nodes with no incoming edges) or objects (nodes with no
outgoing edges).

� None of the edges have weights associated with them.

Figure 2 depicts a simple ODG. We first explain how DUP
works for simple ODG’s. We then show how DUP can be
generalized to any ODG.

ud3 ud4ud1 ud2

o1 o2

Figure 2: A simple object dependence graph.

2.1 DUP for Simple Object Dependence Graphs
The application program must determine an appropriate cor-

respondence between underlying data and vertices of the object
dependence graph G: For example, a vertex corresponding to
underlying data may represent a database table. Another ver-
tex corresponding to underlying data may represent portions
of several database tables. There are no restrictions on how
underlying data may be correlated with nodes of G. The ap-
plication program has freedom to pick the most logical and/or
efficient system.

Each object has a string obj id known as the object ID which
identifies the object. Similarly, each node representing under-
lying data has a string ud id known as the underlying data ID
which identifies it. The application program informs cache
managers that an object has a dependency on underlying data
via an API function:

add dependency(obj id; ud id)

Whenever underlying data corresponding to a node in G
changes, an application program notifies cache managers via
an API function:

underlying data has changed(ud id)

The cache managers then invalidate all cached objects having
dependencies on ud id: Referring to Figure 2,

underlying data has changed(ud4)

would cause o2 to be invalidated. The function call:

underlying data has changed(ud2)

would cause both o1 and o2 to be invalidated.
Cache managers maintain cache directories containing in-

formation about cached objects. Directory information for a



cached object with one or more dependencies on underlying
data includes the object ID and an incoming adjacency list con-
taining all underlying data ID’s corresponding to underlying
data which affect the value of the object. Figure 3 depicts the
incoming adjacency lists corresponding to the graph in Figure 2.

ud1 ud2 ud3

ud2 ud3 ud4

o1:

o2:

Figure 3: Incoming adjacency lists corresponding to the graph
in Figure 2.

Cache managers also maintain hash tables containing point-
ers to outgoing adjacency lists for nodes in G corresponding to
underlying data. Hash tables are indexed by underlying data
ID’s. Each outgoing adjacency list contains the object ID’s
of objects whose values depend on the underlying data rep-
resented by the underlying data ID. Figure 4 depicts the hash
table corresponding to the graph in Figure 2.

ud1

ud2

ud3

ud4

o1

o1

o1

o2

o2

o2

Hash Table

Figure 4: The hash table corresponding to the graph in Figure 2.

An invocation of the API function:

add dependency(obj id; ud id)

adds a new edge to G by adding obj id to the outgoing adja-
cency list for ud id and ud id to the incoming adjacency list
for obj id:

An invocation of the API function:

underlying data has changed(ud id)

is implemented by invalidating all objects on the outgoing ad-
jacency list for ud id:

It is sometimes desirable to delete nodes from G: For exam-
ple, all dependencies on an underlying data node could become
obsolete in which case the node would no longer be needed.
Similarly, an object could go away which would make its node
inG unnecessary. Object nodes are removed fromG by remov-
ing the object ID from outgoing adjacency lists for all nodes
on the incoming adjacency list for the object and removing the
incoming adjacency list for the object. Underlying data nodes
are removed from G by removing the underlying data ID from
incoming adjacency lists for all nodes on the outgoing adja-
cency list for the underlying data node and removing the hash
table entry for the underlying data node.

2.2 Generalizing DUP to Arbitrary Object Depen-
dence Graphs

2.2.1 Overview

We now present the generalized DUP algorithmwhich provides
a number of enhancements over the version just presented:

� The generalized DUP algorithm is applicable when the
ODG is not simple. In general, a node may have both
incoming and outgoing edges as in Figure 1. It is also
possible for a graph to have cycles. A cycle would imply
that a change to any node in the cycle would result in a
change to all nodes comprising the cycle.

It is not necessary for a node to correspond to an object
or underlying data. A node which does not correspond
to an object or to underlying data is said to represent a
virtual object. The purpose of a virtual object is usually to
propagate change information to nodes representing real
objects.

� In some cases, it is acceptable for cached objects to be
slightly out of date. Retaining out of date objects in a
cache can be cheaper than always updating or invalidat-
ing objects after they change. At some point, an object
will become highly obsolete and will have to be invali-
dated or updated in the cache. A quantitative method is
needed for determining when a cached object has become
highly obsolete. The generalized DUP algorithm provides
a metric for determining how obsolete a cached object is.
In order to enable the metric, edges of the ODG should
have weights which are correlated with the importance of
dependencies such as in Figure 1.

� A cache manager might be managing multiple caches. In
this situation, the generalized DUP algorithm allows a
single ODG to be applied to multiple caches. Different
caches may concurrently be storing different versions of
the same object.

� The generalized DUP algorithm provides a metric for
quantitatively assessing how similar two versions of the
same object are. This is particularly useful when different
versions of the same object are being stored in different
caches.

When an application program notifies a cache manager that
underlying data has changed, the cache manager identifies all
objects which are affected by finding all nodes N reachable
from the nodes corresponding to the underlying data which has
changed. N can be found using graph traversal techniques
similar to depth-first search or breadth-first search. The degree
to which a version o1

1

of an object o1 is obsolete is determined
from the sum of the weights of edges terminating in o1 from
nodes n2 for which o1

1

is consistent with the latest version
of n2: If this sum falls below a threshold value, o1

1

is highly
obsolete and should be invalidated or replaced with a more
recent version. Under our definition, two objects are consistent
with each other if either:

1. Both of them are current.

2. At some point in the past, both objects were current.



2.2.2 Data Maintained by the Generalized DUP Algo-
rithm

Each vertex of G has an ID field representing it. For simplicity,
we will assume that object nodes, underlying data nodes, and
virtual graph object nodes share the same ID space. The cache
manager stores information about each vertex in G in a vertex
information block (VIB). The cache manager also maintains
a hash table which is indexed by vertex ID’s and contains
pointers to VIB’s. That way, the cache manager can locate the
VIB corresponding to a vertex ID in constant time.

A VIB for a node n1 has the following fields:

� ID : A string identifying the object, underlying data, or
virtual object corresponding to n1:

� update num : The number of updates the cache man-
ager is aware of which have been performed on n1: The
cache manager assigns version numbers to different ver-
sion numbers of the same object. The version number for
a particular version of an object is the update num field
at a time the version of the object was current.

� timestamp : Represents the time of the last change to n1
which the cache manager is aware of. While clocks can be
used for determining timestamps, the preferred method for
determining the current timestamp is the number of times
an application program has notified the cache manager of
changes to underlying data.

� cache list : If n1 corresponds to an object, a list identi-
fying all caches containing the object.

� incoming dep :The incoming adjacency list forn1:Each
element of incoming dep corresponds to an edge termi-
nating in n1 and contains two components:

1. The ID of the node which is the source of the edge.

2. The weight of the edge.

� outgoing dep : The outgoing adjacency list for n1: It
consists of ID fields for each node n2 for which a vertex
from n1 terminating in n2 exists.

� sum weight : The sum of the weights of all edges termi-
nating in n1:

� threshold weight : Ifn1 corresponds to an object o1; this
quantity is used to determine if a version o1

1

of the object
is highly obsolete. Version o1

1

is highly obsolete if the
sum of the weights of edges terminating in n1 from nodes
n2 such that o1

1

is current with respect to n2 falls below
threshold weight: An object is current with respect to
a node in G if the object is current or if no updates have
been made to the node since the object became noncurrent.
Highly obsolete versions should be invalidated or replaced
with a more recent version.

� latest object : If n1 corresponds to an object, a pointer
to the latest cached version of the object which the cache
manager is aware of. Caches use this pointer to obtain re-
cent versions of objects from other caches. This avoids the
overhead of having to calculate the objects from scratch.

The structure of G is stored in the ID; incoming dep;

outgoing dep; sum weight; and threshold weight fields in

VIB’s. Application programs specify the structure of G via
API functions which modify these fields.

Each cached version of an object has an object information
block (OIB) associated with it. Each cache stores OIB’s for all
objects contained in the cache in a directory. Pointers to OIB’s
are maintained in a hash table indexed by object ID’s. That
way, the cache manager can locate an OIB corresponding to an
object in a specific cache in constant time.

An OIB for an object o1 has the following fields:

� ID : A string identifying o1:

� version num :Different versions of the same object have
different version num fields. The version num field
for a particular version of o1 is equal to the update num

field of the corresponding VIB for o1 at a time when the
version of o1 was current.

� timestamp : represents the time at which the cached
version of o1 became current.

� actual sum weight : the sum of the weights of all edges
to o1 from a node n2 such that the cached version of o1 is
consistent with the current version of n2:

� dep list : The incoming adjacency list for o1: Each ele-
ment of dep list corresponds to an edge from a node in
the graph n2 terminating in the node corresponding to o1

and contains the following components:

1. The ID for n2.

2. weight act : A number representing how consistent
the current version of n2 is with the cached version
of o1: Our algorithm uses values of 0 (totally in-
consistent) or the weight of the corresponding edge
in the graph (totally consistent). A straightforward
extension is to allow values in between these two
extremes to represent degrees of inconsistency.

3. consistent version num : the update num field
in the VIB for n2 at the time the cached version of
o1 was current.

2.2.3 Adding Objects to Caches

When the current version of an object o1 is added to a cache
c1; the cache manager ensures that an OIB for o1 exists in
the directory for c1: This may require creating a new OIB for
o1: The version num; timestamp; and actual sum weight

fields of the OIB are set to the update num; timestamp;

and sum weight fields respectively of the corresponding VIB
fields. The dep list field in the OIB is copied from the
incoming dep field in the VIB. For each node n2 on the
dep list for o1; the consistent version num field is set to
the update num field in the VIB for n2: A pointer to c1 is
added to the cache list field of the VIB for o1 if o1 was not
previously contained in c1:

Noncurrent versions of objects may be copied from one cache
to another. If so, the OIB for the object is also copied to the
new cache.

2.2.4 Propagating Changes to Underlying Data

Whenever underlying data changes, the application program
informs the cache manager of the changes via an API func-
tion call. Let changed node list be a list of all nodes in G



corresponding to underlying data which has changed. The
cache manager must traverse all edges reachable from a node
in changed node list in order to correctly propagate changes
to all cached objects.

The cache manager maintains a counter num updates for
the number of updates which it is aware of. This counter is
incremented whenever the cache manager is informed of new
updates to underlying data. In response to such an update, all
nodes on changed node list are visited first. For each such
node n1, the cache manager increments the update num field
in the VIB for n1 by 1. The timestamp field in the VIB is set
tonum updates:This indicates thatn1 has been visited during
the current graph traversal. If n1 corresponds to an object, the
cache list field in the VIB is traversed in order to notify all
caches containing the object that the object has changed. Each
cache containing the object can then invalidate its version or
obtain a more recent version of the object.

After all nodes on changed node list have been visited, the
object manager must traverse all edges reachable from these
nodes. It can do so using graph traversal techniques such as
depth-first search or breadth-first search [1].

For each edge (n1; n2)which is traversed, the cache manager
determines if n2 has already been visited. This is true if and
only if the timestamp field for n2 is equal to num updates:

If n2 has not been visited yet, its update num field is incre-
mented by 1, and its timestamp field is set to num updates:

If n2 corresponds to an object o2, all caches containing o2

must update the OIB for o2 and possibly update or invalidate
their copies of o2: Such caches are located by traversing the
cache list field in the VIB for n2: For each such OIB, the
actual sum weight field is decremented by the weight act

field in the OIB corresponding to the edge (n1; n2): If this re-
sults in theactual sum weight field of the OIB being less than
the threshold weight field in the VIB, o2 is either invalidated
from the cache or replaced with a more recent version.

If actual sum weight >= threshold weight; o2 is not
replaced with a new version. Instead, the weight act field in
the OIB corresponding to the edge (n1; n2) is set to 0.

If, on the other hand, n2 has already been visited, a slightly
different procedure is followed. If n2 corresponds to an object
o2; all caches containing o2 must update the OIB for o2 and
possibly update or invalidate their copies of o2. For each such
cache, the cache manager determines if the cache contains a
current version of o2 by comparing the version num field in
the OIB with the update num field in the VIB. If the cached
version of o2 is current, the consistent version num compo-
nent in the dep list element corresponding to the edge (n1; n2)
is set to the update num field for n1:

If, on the other hand, the cached version of o2 is not
current, the actual sum weight field is decremented by the
weight act field in the OIB corresponding to the edge (n1; n2):
If this results in the actual sum weight field of the OIB being
less than the threshold weight field in the VIB, o2 is either
invalidated from the cache or replaced with a more recent ver-
sion.

If actual sum weight >= threshold weight; o2 is not
replaced with a new version. Instead, the weight act field in
the OIB corresponding to the edge (n1; n2) is set to 0.

2.2.5 Comparing Two Versions of the Same Object

Our algorithm provides a similarity score for assessing how
similar two versions of the same object o1

1

and o1
2

are. Let n1
be the node in G corresponding to o1: The similarity score is

based on the sum of the weights of incoming dependencies to
n1 from nodesn2 for which the same version ofn2 is consistent
with both o1

1

and o1

2

. Let common weight be this sum. The
similarity score is then given by the formula:

SS =

common weight

sum weight

where sum weight is obtained from the VIB forn2: Similarity
scores range from 0 (least similar) to 1 (most similar).

In order to calculate common weight; the cache manager
adds up the sum of the weights of all edges (n2; n1) in G such
that the consistent version num component corresponding
to the edge are the same in the OIB’s for both o1

1

and o1

2

:

3 DUP Implementation at the 1998 Olympic

Games

3.1 Prefetching Pages
One of the key techniques we used to obtain cache hit rates

close to 100% was to calculate and cache new versions of
pages immediately after it was determined that the pages were
obsolete instead of invalidating the pages and waiting for them
to be loaded on demand. Consequently, once a frequently
requested page was cached, a request for the page would always
result in a cache hit.

This technique was effective because frequently requested
pages were requested far more frequently than they were up-
dated. For example, pages for sports which were in progress
changed as often as once or twice per minute. However, re-
quests for the “sports-in-progress” pages tended to arrive at
rates of up to several thousand per second during peak periods.

During the 1996 Summer Olympic Games, we simply inval-
idated cached pages when the data changed, relying on demand
to cause a cache miss and rebuild the page. Since most pages
take 500 to 2000 milliseconds to render, we would experience
many cache misses in the time interval between invalidating a
page and replacing it in cache. Each such miss caused the page
to be rebuilt; the same page was therefore rebuilt and replaced
many times for each invalidation.

For the 1998 Winter Olympic Games in Nagano, when data
changed, we used Data Update Propagation to first identify
the pages affected by the data change. The appropriate pages
were re-generated and the stale pages replaced in cache in
a single atomic operation. Cache misses were almost never
observed; therefore, even during peak periods, the system was
not particularly busy and had considerable excess capacity.

When a page changed, our system would regenerate the page
once and store the updated page in multiple caches. Multiple
caches were needed to satisfy the large number of requests to
the site. Since pages only need to be generated once regardless
of the number of caches in the system, our system scales effi-
ciently as more caches are needed to handle more requests. By
contrast, the conventional approach of demand-based caching
with caches operating autonomously would cause a new page
generation each time a page is added to a cache. As the number
of caches increases, the overhead from redundant page gener-
ations required to store current versions of the same object in
different caches would become significant.

3.2 Dynamic Compound Pages
A dynamic compound page is a page which consists of mul-

tiple fragments of information, any of which may change in-
dependently over time (Figure 5). Any fragment may itself be
composed of smaller fragments, to an arbitrary level of nesting.



A change to the underlying data from which a dynamic com-
pound page has been composed is likely to affect only some of
the fragments comprising the page.

Data Sources Published Page

Fragment

A

Fragment

B

Fragment

C

Epilog

Prolog

DB2 Source

Lotus Notes

Source

File Source

Figure 5: Dynamic compound pages.

Our system caches fragments of dynamic compound pages
and constructs dynamic compound pages from the underly-
ing fragments. ODG’s are used to represent dependencies be-
tween fragments and dynamic compound pages. The fragments
needed to construct dynamic compound pages are obtained by
traversing ODG’s. Consequently, generation of multiple pages
which are constructed from the same fragment will only result
in the fragment being created once. By contrast, the conven-
tional method of generating pages independently of each other
results in the data comprising the fragment being recalculated
for each page. If the fragment is expensive to generate, our
method results in considerable savings over the conventional
method.

3.3 Overview of the Trigger Monitor
It was discovered during implementation of the Olympic

Games system that significant optimizations could be realized
by maintaining only a portion of the ODG in the cache and
dynamically calculating the subset of the ODG related to a
specific change when that change occurred. Savings included:

� Space savings. Only a subset of the ODG physically
existed at any given time.

� Reliability and complexity savings. The ODG is a rather
complex structure. If a system fails, the ODG must be re-
stored rapidly if that system is to be made functional again
quickly. Since the most dynamic and complex portion of
the ODG was calculable on demand, it was possible to im-
plement an extremely fast, reliable, and simple automated
backup and restore algorithm for the ODG.

The trigger monitor calculates portions of the ODG includ-
ing the nodes corresponding to entire HTML pages. The trigger
monitor is an event-driven process. When data changes (e.g. a
row is inserted into a DB2 database, a photograph is published),
the entity making the change notifies the trigger monitor of the
change. When the trigger monitor is notified of changes to
underlying data, it expands the relevant portion of the ODG,
coordinates the building or rebuilding of relevant pages, and

broadcasts new and updated pages to the serving nodes. Per-
sistent state is maintained for each transaction reporting a data
change from the time of acceptance to the time the transaction
leaves the system to guarantee processing of the event in the
face of system or component failure. Retry and commit logic
is used to insure delivery of messages and proper composition
of pages. Figure 6 shows how the trigger monitor fits in the
overall system.

Database

Loader

Database

Tables

Lotus

Notes

Trigger

Table

Cached

Pages

Static

Files
1. Transaction

2. Insert

Row

1. ODBC

Insert

Row

3. DB2

Trigger

6. Write

HTML

6. Write

HTML

HTTPD

4. Query

Dependencies

5. Get

HTML

Trigger

Monitor

Figure 6: The system components used to provide updated
pages.

Caches Dependencies
Hash

Table

Page1

Page2

Page3

Page4

Page5

HTML Pages
Cache

Manager

...

Cache 1

Cache 2

Dependency1

Dependency2

Dependency3

Dependency5

Dependency6

Dependency4

Cache 3

Figure 7: The stored portion of the ODG. These dependency-
to-page relationships are stored in caches.

When a data change is detected, the object dependence graph
(ODG) for the event must be traversed. Since only a portion of
the ODG is explicitly stored in the system, we must generate
the rest of the ODG as it pertains to the current event. When
a page is composed and cached, the dependencies representing
the data from which the page is built are also cached. Given a
page, it is possible to find its dependencies; given a dependency,
it is possible to find the pages dependent on it (Figure 7). Figure



8 is a representation of a portion of this relationship as used in
the Olympic Games.

Pages with

medals

Schedules

Tables

Ski Jumping

Schedule

Fragment

generator

Results-

Fragments.ht

ml

�

Results

Tables

Ski- Jumping-

results.html

Ski Jumping

Today.html

Ski- Jumping-

Analysis.html

Medals-

Summary.htm

l

Underlying

Data

Pages

Dependencies

Figure 8: Another depiction of the stored portion of the ODG.

When an event occurs, for example, a skier wins, or a new
event schedule arrives, a summary of that event is sent to the
trigger monitor. The summary record is expanded into the
set of cache dependencies corresponding to that event. This
constitutes one of the calculations required to fully identify the
ODG of an event. In Figure 9, the “trigger events (a)” occur as
the result of data update events. From these events, it is possible
to calculate the dependencies that comprise this portion of the
ODG.

Some events do not have explicitly stored dependencies.
Rather, it is possible to determine directly from the event code
what pages are affected. An example was the arrival of a
new sports photo. The data event this triggered was encoded
so that the relevant URLs could be directly computed. This
computation is another calculation required to identify the ODG
portion corresponding to an event. The “trigger events (b)” in
Figure 9 correspond to this portion of the ODG.

CALCULATE

DEPENDENCY CALCULATE

DEPENDENCY

Headlines Photos
Flash

Quotes

Schedule

Tables

Fragment

generator

Result Tables Medals

Tables
Underlying Data

Database Update

Pages

Update Event

Ski

Jumper

Finishes

Ski

Jumper

Wins

Underlying Data

News Photos Misc

Ski

Jumping

Schedule

Arrives

Trigger Event (a)

Trigger Fragment GenerationCALCULATE

DEPENDENCY

CALCULATE

DEPENDENCY

CALCULATE

DEPENDENCY

CALCULATE

DEPENDENCY

CALCULATE

DEPENDENCY

Trigger Event (b)

Figure 9: The calculated portion of the ODG.

Finally, it may not be possible to calculate some components
of the object dependence graph directly from the initial event.
These components tend to be dynamic and change over the
course of an event. An example would be athlete and country
pages. A given athlete page is only dependent on changes in
the medals tables if the athlete wins a medal; a country page
is not dependent on medals or recent results updates until its
athletes actually perform. These dependencies are discovered
and calculated over time as results arrive. Recent news and re-
sults are embedded into appropriate pages as HTML fragments

which were generated from triggers as described above. Since
fragment generation might modify the dependency relation-
ships residing in the cache (e.g. Germany’s page is dependent
on updates to the medals table), the pages composed of the
fragments must also be generated when the request completes.
The fragments constitute both underlying data and objects. We
therefore view building fragments as one step in calculating the
ODG for the initial event. We represent this in Figure 9 as the
“Trigger Fragment Generation” action that occurs in response
to a trigger event. Combining Figures 8 and 9, we get the
completed ODG of Figure 10.

Headlines Photos
Flash

Quotes

Schedule
Tables

Fragment
generator

Result Tables
Medals
TablesUnderlying Data

Database Update

Pages

Update Event

Ski
Jumper
Finishes

Ski
Jumper
Wins

Underlying Data

News Photos Misc

Ski
Jumping
Schedule
Arrives

Trigger Event (b)

Trigger Fragment Generation

�

CALCULATE

DEPENDENCY

CALCULATE

DEPENDENCY

CALCULATE

DEPENDENCY

CALCULATE

DEPENDENCY

CALCULATE

DEPENDENCY

CALCULATE

DEPENDENCY

CALCULATE

DEPENDENCY

Ski Jumping
Today.html

Ski-
Jumping-

results.html

Ski-
Jumping-

Analysis.html

Medals-
Summary.html

Results-
Fragments.html

Ski Jumping
Schedule

Trigger Event (a)

Figure 10: The complete ODG.

After expansion of the ODG and generation of HTML, pages
and fragments are scanned for error messages and are discarded
and retried until the pages are correct, or until it is determined
(by retry count or manual intervention) that the page cannot
be built correctly. The final action of the trigger monitor is
to insure that generated pages are successfully delivered to
the servers. Commit and retry algorithms are used to insure
that temporary malfunction of a server does not result in data
inconsistency.

3.4 Maintaining Consistency Among Pages
A Web site is composed of pages which may result from

several discrete but related data sources. Data changes may
affect multiple pages, and insuring that the pages are mutually
consistent can be difficult. A number of consistency problems
arose in the Olympic Games:

� Any given fragment or page is typically composed from
multiple database tables, and any given event typically
causes multiple tables to be updated. How does one deter-
mine which database updates should trigger generation,
and how does one eliminate multiple redundant page gen-
erations?

� Most pages consist of multiple fragments, and often a
single database update results in many fragment updates.
How does one insure that all fragments have been gener-
ated before the page is generated?

� News stories and headlines are published on separate
pages. How can one insure, in the presence of propagation
and update delays, that headlines are not physically made
available until all related news stories are also available?



The first problem is solved with the trigger table. The trig-
ger table solves several interesting problems in addition to
consistency and is discussed in detail in Section 3.5.

The second problem is solved by permitting a single trigger
event to be processed in any number of “passes”. Each pass
through the processing loop is equivalent to redelivery of the
same trigger with the correct pass number. Mechanisms are
implemented to easily tailor the page generation logic for each
pass through the processing loop. Thus, one might generate
all fragments associated with a trigger in the first pass, and all
pages composed of those fragments in the second pass.

The third problem is solved by creating a dependent group
of triggers. A dependent group consists of exactly one inde-
pendent trigger followed by zero or more dependent triggers.
Dependent groups are processed one group at a time in strict
FIFO order. We refer to independent triggers as type S triggers
because independent triggers are processed sequentially. De-
pendent triggers are referred to as type P triggers because all
dependent triggers within a group may be processed in parallel.

Within a dependent group, the independent type S trigger
must be fully processed before any of the dependent type P
triggers are processed. Since dependent groups are processed
in FIFO order, this implies that at any given time, at most one
type S trigger is being processed. On completion of a dependent
group, the data source is optionally notified of completion of
the group in order to aid the data source in sequencing triggers
appropriately.

For every news story that arrives, many sets of headlines
require updating because multiple hypertext links to the story
exist. No headline can be updated until all relevant stories are
also published. In order to provide stories and headlines in the
proper order, news is published in dependent groups consisting
of a news story (the independent type S trigger) followed by all
relevant headlines (the dependent type P triggers). If a set of
headlines are dependent on multiple news stories, each news
story corresponds to an S trigger of a different dependent group;
the headlines correspond to P triggers of the last dependent
group.

The technique is applicable to other types of problems, for
example, insuring that product descriptions do not get published
before the related product details have been published at an e-
commerce site.

3.5 The Trigger Table

In DB2/6000 which was used to store underlying data at
the Olympic Games Web site, a programmer may write SQL
statements which are automatically executed when changes
occur in the database. This SQL code is known as a trigger.
Triggers may be associated with a wide variety of changes such
as row insertion, update, or deletion. The trigger table used
in the Olympic Games was an ordinary DB2 table containing
triggers which were executed whenever a row was inserted into
the trigger table.

We used the trigger table for several purposes: synchronizing
data updates with generated pages, guaranteeing delivery of
triggers, and permitting Lotus Notes to interact with the trigger
monitor without any direct knowledge of the trigger monitor
API or message format.

Note that the trigger monitor itself does not require a database
or database triggers, and in fact has no knowledge of databases
at all. The trigger monitor mechanism is encapsulated entirely
in the trigger monitor API and may be invoked by any entity
within the system (e.g. as a result of firing a database trigger).

3.5.1 Synchronizing Updates

If the database is normalized, any single external event (e.g.
somebody winning a sporting event, a price change in a com-
merce site) typically results in the update of many different
tables. Although one could trigger page generation on update
of one or more tables, this can be difficult to do correctly and
efficiently. How does one determine when all tables are up-
dated? How does one prevent redundant regenerations of the
same page? Database transactions associated with an event
may change over time. If new table updates are added or ex-
isting table updates are removed from a transaction, how does
one insure that the correct triggers continue to be delivered?

The trigger table solves all of these problems. Each row of
the trigger table corresponds to a database transaction which
may cause multiple updates to database tables. We assume that
the data loader knows when a database transaction is complete
and thus when to commit each transaction. A trivial modifica-
tion to the loader enabled it to update the trigger table after each
transaction was committed. Data in the trigger table encoded a
summary of the related transaction such as the event type, date,
status, and phase. Figure 11 depicts an abstract view of this
process. Figure 6 shows how the trigger table fits in the overall
system.

1. Event updates

Table A, B, C D

5. Trigger Monitor

generates pages

from tables ABCD.

2. Update Tables

A, B, C, D

Table A

Table B

Table C

Table D

SCDE

DGHVD

DEFC

ABCD

3. Write ABCD to

row in trigger table 4. Deliver ABCD

message to

trigger

monitorData Loader

Trigger Table

Trigger Monitor

Data Tables

Figure 11: The trigger table.

Each database trigger is thus attached to a trigger table row
and not the tables involved in the transaction. A single trigger
can update pages after multiple table updates corresponding
to a single committed transaction are performed, avoiding re-
dundant page regenerations. One may change the transaction
without affecting triggers, since the triggers are defined at the
transaction level, not on the individual tables.

3.5.2 Guaranteed Delivery

It is important that a trigger, once issued by the application, is

1. accepted quickly, and

2. once accepted, is guaranteed to be carried through to com-
pletion.

Rather than attempting to encapsulate complex and poten-
tially expensive protocols into the trigger monitor API, the
system uses DB2/6000 triggers to guarantee delivery. One
field in each row of the trigger table is used to record when the
trigger monitor has accepted each trigger. Committing the row



in the trigger table provides a permanent record of the event.
The database can easily be queried to determine which triggers
have been delivered and which have not. Once in the database,
it is a trivial matter to deliver or redeliver any particular trigger
with no knowledge or assistance from the application.

3.5.3 Application Independence

One interesting use of DB2 triggers is that ODBC calls can be
used to insert rows into the trigger table and thus notify the trig-
ger monitor of data changes without knowing about the trigger
monitor API itself. This allows ODBC-enabled applications
to use the triggering mechanisms without modifications to the
source code.

We used this technique in the Olympic Games as the basis
for the interface between Lotus Notes and the trigger monitor.
News stories were edited by sports writers using Lotus Notes.
When a news story was published, an ODBC request was issued
by Lotus Notes to DB2 to insert the Lotus URL for the story
into the trigger table. A DB2 trigger transmitted the URL to
the trigger monitor which then fetched the story and placed it in
the Web server’s document directory. These documents were
now served to the Internet as flat files. We thus combined the
communication, editing, and publishing capabilities of Lotus
Notes with the high throughput achievable when serving static
files.

4 Performance of the 1998 Olympic Games Web

Site
As a result of DUP and prefetching, we were able to achieve

cache hit rates close to 100% throughout the entire Olympic
Games. These high hit rates allowed the system to serve pages
quickly even during times of peak demand.

The site contained approximately 87,000 unique pages of
which approximately 21,000 were dynamically generated. Dy-
namic pages reflected current events within a maximum of sixty
seconds after the events occurred. Up to 58,000 pages were
generated or regenerated per day during peak activity, with an
average of 20,000 pages generated per day over the course of
the Olympic Games. All dynamic pages could be cached in
memory without overflow. Therefore, the system never had to
apply a cache replacement algorithm. In general, the memory
requirements for caching data belonging to a single Web site are
significantly less than those required for proxy caches which
store data from several Web sites [5, 2, 8]. The maximum
memory required for a single copy of all cached objects was
around 175 Mbytes. A detailed description of the architecture
of the Olympic Games Web site is contained in [3].

A total of 634.7 million requests were serviced during the
Olympic Games. On the peak day (Day 7, Feb 13), the site
served 56.8 million requests over a 24-hour period. By contrast,
the 1996 Olympic Games Web site peaked at 17 million hits
a day, fewer than any day for the 1998 Olympic Games. The
maximum number of hits per minute was 110,414; this occurred
around the time of the Women’s Figure Skating Free Skating
on February 20 (Day 14). Even during peak request periods
such as this one, the Web site was able to serve data at all times
without ever coming close to sustaining maximum load.

The total number of hits to the site as well as the maximum
number of hits during a single minute were both determined by
independent organizations which audited the Web logs. On July
14, 1998, the Guinness Book of World Records recognized the
1998 Olympic Games Web site for setting two world records:

� The Most Popular Internet Event Ever Recorded based on
the officially audited figure of 634.7 million requests over
the 16 days of the Olympic Games.

� The Most Hits On An Internet Site In One Minute based
on the officially audited figure of 110,414 hits received in
a single minute around the time of the Women’s Figure
Skating Free Skating.

Figure 12 shows the number of hits received by the Web site
each day. Table 1 compares the access times and transmission
rates for the Olympic Games Web site to those of home pages
of other major US Web sites measured on Day 14 in the US
using 28.8 Kbps modems. These numbers indicate that the
Nagano site was one of the most responsive sites on the Internet.
Response times for the Olympic Games Web site measured in
other countries were also fast [3].

60

Day

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

19.623.1

37.3
42.647.651.756.8

37.536.5
49.453.4 49

40.5
53.4

23.6 21
H

it
s
 (

m
ill

io
n

s
)

Figure 12: Hits by day in millions.

Even during peak periods, the system was never close to
being stressed. Virtually all of the delays in response times for
the Olympic Games Web site in Table 1 were caused not by
the Web site but by the client and the client connection to the
network. For clients communicating with the Internet via fast
links, response times were nearly instantaneous. Additional
performance statistics for the Web site are contained in [3].

5 Conclusion
We have presented DUP which is a new approach for con-

sistently caching dynamic Web data in order to improve perfor-
mance. DUP maintains data dependence information between
cached objects and the underlying data which affect their val-
ues in a graph. When the system becomes aware of a change
to underlying data, graph traversal algorithms are applied to
determine which cached objects are affected by the change.
Cached objects which are found to be highly obsolete are then
either invalidated or updated.

We described how DUP was implemented at the official Web
site for the 1998 Olympic Winter Games. By using DUP, we
were able to achieve cache hit rates close to 100% compared
with 80% for an earlier version of our system which did not
employ DUP. As a result of the high cache hit rates, the Olympic
Games Web site was able to serve data quickly even during peak
request periods.

Acknowledgements
Many people made valuable contributions to the 1998

Olympic Games Web site including Kim Benson, John Chi-
avelli, Glen Druce, Cameron Ferstat, Kip Hansen, Michael
Maturo, Kent Rankin, Paul Reed, Jerry Spivak, Elin Stilwell,
Brian Taylor, and John Thompson.



Web Site Olympic Games Compuserve AOL MSN NETCOM AT&T

Mean Response 18.26 19.14 23.91 20.17 19.72 19.71
Time (seconds)
Transmit 23.31 21.86 19.05 18.60 21.01 20.84
Rate (Kbps)

Table 1: Response times and transmission rates measured in the US on Day 14 using 28.8 Kbps modems. These numbers were
measured by IBM and were not verified by an independent organization.

References
[1] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analy-

sis of Computer Algorithms. Addison-Wesley, 1974.

[2] P. Cao and S. Irani. Cost-Aware WWW Proxy Caching
Algorithms. In Proceedings of the USENIX Symposium on
Internet Technologies and Systems, December 1997.

[3] J. Challenger, P. Dantzig, and A. Iyengar. A Scalable and
Highly Available System for Serving Dynamic Data at Fre-
quently Accessed Web Sites. In Proceedings of ACM/IEEE
SC98, November 1998.

[4] J. Challenger and A. Iyengar. Distributed Cache Manager
and API. Technical Report RC 21004, IBM Research Di-
vision, Yorktown Heights, NY, October 1997.

[5] B. M. Duska, D. Marwood, and M. J. Feeley. The Measured
Access Characteristics of World-Wide-Web Client Proxy
Caches. In Proceedings of the USENIX Symposium on
Internet Technologies and Systems, December 1997.

[6] A. Iyengar and J. Challenger. Improving Web Server Per-
formance by Caching Dynamic Data. In Proceedings of
the USENIX Symposium on Internet Technologies and Sys-
tems, December 1997.

[7] A. Iyengar, E. MacNair, and T. Nguyen. An Analysis of
Web Server Performance. In Proceedings of GLOBECOM
’97, November 1997.

[8] S. Manley and M. Seltzer. Web Facts and Fantasy. In
Proceedings of the USENIX Symposium on Internet Tech-
nologies and Systems, December 1997.


