
Thema: Byzantine-Fault-Tolerant Middleware for Web-Service Applications∗

Michael G. Merideth†, Arun Iyengar‡, Thomas Mikalsen‡, Stefan Tai‡,
Isabelle Rouvellou‡, Priya Narasimhan†

† School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
{mgm,priya}@cs.cmu.edu

‡ IBM TJ Watson Research Center, Hawthorne, NY, USA
{aruni,tommi,stai,rouvellou}@us.ibm.com

Abstract

Distributed applications composed of collections of Web
Services may call for diverse levels of reliability in differ-
ent parts of the system. Byzantine fault tolerance (BFT) is
a general strategy that has recently been shown to be prac-
tical for the development of certain classes of survivable,
client–server, distributed applications; however, little re-
search has been done on incorporating it into selective parts
of multi-tier, distributed applications like Web Services that
have heterogeneous reliability requirements. To understand
the impacts of combining BFT and Web Services, we have
created Thema, a new BFT middleware system that extends
the BFT and Web Services technologies to provide a struc-
tured way to build Byzantine-fault-tolerant, survivable Web
Services that application developers can use like other Web
Services. From a reliability perspective, our enhancements
are also novel in that they allow Byzantine-fault-tolerant
services: (1) to support the multi-tiered requirements of
Web Services, and (2) to provide standardized Web Services
support for their own clients (through WSDL interfaces and
SOAP communication). In this paper we study key archi-
tectural implications of combining BFT with Web services
and provide a performance evaluation of Thema using the
TPC-W benchmark.

1 Introduction
Distributed applications composed of collections of Web

Services [18, 25] may call for diverse levels of reliability
in different parts of the system. One Web Service may
have stringent availability requirements, while it may ac-

∗Merideth and Narasimhan were partially supported by the Army Re-
search Office through grant number DAAD19-02-1-0389 (“Perpetually
Available and Secure Information Systems”) to the Center for Computer
and Communications Security at Carnegie Mellon University and the Air
Force Research Laboratory grant number FA8750-04-01-0238 (“Increas-
ing Intrusion Tolerance Via Scalable Redundancy”). Merideth was also
partially supported through an IBM Research Summer Internship.

cess other Web Services that do not. This characteristic may
be by design, or due to the different Web Services being
owned or deployed by different organizations. Reliability,
i.e, continuous correct service, is of particular importance
in a multi-tier system, as failures of remote services and
nodes, unforeseen vulnerabilities introduced by updates, or
additional challenges such as untrusted client access over
the Internet cannot be ignored.

Web Services that must be highly available can be built
using replication. Byzantine fault tolerance (BFT) [11] is
a long studied high-reliability, replication technique that is
designed to protect against arbitrary problems ranging from
crash faults to software bugs and security violations. Un-
like a system that can tolerate only crash faults, a BFT ser-
vice can function correctly even if a number of its repli-
cas are compromised by a security violation or begin to
act arbitrarily instead of according to specification. While
BFT requires a higher degree of replication than techniques
that tolerate only crash faults (BFT requires a minimum of
3f + 1 replicas to tolerate f Byzantine faults), recent re-
search [4] has shown BFT to be practical for the creation of
certain classes of client–server distributed applications.

Previous BFT applications have been built with differ-
ent assumptions from those of modern Web Service appli-
cations. In particular, a popular class of BFT applications
built using state-machine-replication [17] has typically as-
sumed a client–server model, in which the server processes
the client-requests without requiring information from other
services. Originally designed to support survivable client–
server computing, these systems do not provide support
for multi-tiered computing in which a replicated BFT ser-
vice must act as a client of a second service, which may
not be Byzantine-fault-tolerant itself. By contrast, the Web
Services application model requires a more general, multi-
tiered, distributed system architecture, in which the func-
tionality of a single Web Service application is a function
of the aggregate behavior of a variety of individual Web
Services that may communicate with each other and that



may have diverse reliability requirements. Therefore, relia-
bility techniques for Web Services must allow for being in-
corporated into selective parts of multi-tiered applications
that have heterogeneous reliability requirements. Because
of this, BFT systems in their current form do not directly
support being used as general infrastructure to build Web
Service applications.

In this paper, we introduce Thema, a new BFT mid-
dleware system that provides a structured way to build
Byzantine-fault-tolerant, survivable Web Services that fit
the application model of standard Web Services. Thema
includes a client library (Thema-C2RS) that allows client
access to Byzantine-fault-tolerant Web Services, a server li-
brary (Thema-RS) that is designed to facilitate the creation
of these services, and an external service library (Thema-
US) that allows an external Web Service to be accessed
safely by a Byzantine-fault-tolerant Web Service. From
an application perspective, Thema-C2RS enables standard
Web Service client-application code to use stub-code gen-
erated from the WSDL interface of the service to access a
Byzantine-fault-tolerant Web Service as it would any other
Web Service. Similarly, Thema-US allows standard non-
replicated Web Services to be accessed safely by Byzantine-
fault-tolerant Web Services without changes to the applica-
tion. Finally, Thema-RS supports the standard technique of
service skeleton-generation and implementation of WSDL
interfaces, while giving the application control over the
Byzantine-fault-tolerant application API necessary to sup-
port distributed state management and non-deterministic
functions. In all three cases, the Thema libraries manage
both the interface between the standard SOAP engines and
the BFT libraries, and the underlying complexity of the
Byzantine-fault-tolerant protocol itself.

Thema involves extensions of both the BASE [15] BFT
system and of current Web Services toolkits; together, these
extensions allow Thema to be used to create survivable Web
Services. First, Thema extends BASE to allow Byzantine-
fault-tolerant services to make requests of other services
(replicated or not); challenges in doing so are discussed in
Section 4. In such a configuration, the replicated Byzantine-
fault-tolerant portion of the system must act as a client of
some other service, and the service that is being accessed
must treat the replicated service as a single client. Second,
Thema extends the gSOAP [7] and Apache Axis [22] toolk-
its to provide BFT with support for the Web Services pro-
gramming model by (1) allowing Byzantine-fault-tolerant
services to implement WSDL interfaces directly, (2) allow-
ing client application code to access these services as they
would standard Web Services, (3) allowing Byzantine-fault-
tolerant services to act as Web Service clients, and (4) sup-
porting SOAP communication over a BFT protocol.

The contributions of this paper are as follows. Through
an analysis of the design of Thema, we study the architec-

tural implications of combining BFT with Web Services.
We use the TPC-W benchmark [21] to provide a perfor-
mance evaluation of the type of BFT Web-Services that can
be created using Thema.

The remainder of this paper is structured as follows. Sec-
tion 2 presents background information on Byzantine fault
tolerance and Web Services. Section 3 presents the assump-
tions made in the design of Thema. Section 4 highlights the
research challenges solved in Thema, while Section 5 dis-
cusses the design, and Section 6 discusses the implementa-
tion of the Thema system. We present an empirical evalu-
ation of Thema in Section 7. Section 8 compares and con-
trasts Thema to related work, while Section 9 concludes.

2 Background

BFT and CLBFT/BASE. Byzantine fault tolerance [11]
is a long-studied high-reliability, replication technique that
can tolerate a wide range of types of faults. Under a Byzan-
tine fault model, a faulty node may act arbitrarily (subject
to assumptions stated in Section 3); this is in contrast to
the more restrictive crash-fault model, which assumes that
a faulty node will simply be unresponsive. Although only
f + 1 replicas are required to tolerate f Byzantine faults
if communication is assumed to be synchronous and repli-
cas can authenticate messages, this synchrony assumption is
not practical for environments like the Internet, where there
is no a priori known upper-bound on communication laten-
cies. In such environments, in which messages can be made
to arrive eventually, e.g., through the use of retransmissions
or reliable messaging, 3f + 1 replicas are required to toler-
ate f Byzantine faults [6].

Castro–Liskov Practical Byzantine Fault Tolerance
(CLBFT) [4] is a BFT state-machine-replication proto-
col [17] and library implementation that can be used to
create client–server Byzantine-fault-tolerant applications.
CLBFT has two important characteristics that distinguish it
from previous BFT state-machine-replication systems [14,
9]. First, CLBFT does not rely on synchrony assumptions
(such as an upper bound on communication latency) for
safety (linearizability); because of this, it works in asyn-
chronous environments. Second, CLBFT provides good
performance because it does not require the use of public-
key cryptography during normal operation.

From the perspective of a client application, its CLBFT
library sends the request to the CLBFT service and waits
for f + 1 identical responses from different replicas in the
group. These f + 1 identical responses ensure that the re-
sult they contain is correct, because at least one non-faulty
replica states that the result is correct.

From the perspective of the service, each replica acts in-
dependently, but performs the same operations in the same
total order. For any operation to execute, at least 2f + 1
replicas must state that they will execute it. This guaran-



tees that at least f + 1 non-faulty replicas will execute the
request, so the client is guaranteed at least f + 1 identical
responses. Note that not all replicas need to execute a re-
quest for the group to make progress; out-of-date replicas
will be brought up-to-date through automated, inter-replica
state-transfer.

CLBFT does not provide a mechanism for a replicated
service to access an external service in a consistent fash-
ion. In Section 4, we discuss further the challenge that this
presents to using Byzantine fault tolerance in multi-tier Web
Service applications.

Web Services. An emerging trend in e-business is the
adoption of Web services as a technology to integrate ap-
plications in a loosely-coupled, multi-tier architecture. Web
services promote open, ubiquitous XML-based standards
such as WSDL [25] and SOAP [18]. WSDL is a Web ser-
vices interface definition language. SOAP is a transport-
neutral messaging format. Thema does not assume or re-
quire any Web services technology other than WSDL and
SOAP, nor does Thema modify the semantics of these Web
services standards.

3 Assumptions and System Model

We assume that Web Service applications may be com-
posed of multiple Web Services, and that these services
may have diverse reliability requirements. These services
may be owned and operated by different organizations, and
therefore may not be able to share a common infrastructure
or fault model.

For each Byzantine-fault-tolerant service, we consider a
distributed asynchronous system, and an inherently unreli-
able transmission medium. While Thema does not require
any synchrony assumptions for safety, Thema does, like
BASE, assume that messages are eventually delivered for
liveness. Our fault model considers processor- and process-
crash faults, communication faults such as message losses
and message corruption, and Byzantine/arbitrary faults in
processes and processors.

We assume that faulty replicas may behave arbitrarily,
but are computationally bound so that they cannot subvert
cryptographic techniques (such as message authentication
and digital signatures).

We assume that steps are taken to prevent common-mode
failures of multiple replicas. This is a standard assumption
in Byzantine fault tolerance that can be handled in some
cases by n-version redundancy. For some services, multiple
versions may already exist; in this case, the BASE library
provides support for making use of these different versions
together. Even if diverse implementations are not available,
and all replicas run the same service code, BFT can still
mask arbitrary faults like heisen-bugs; security risks might
be alleviated in a practical setting by taking steps such as

running the replicas on different platforms or keeping them
in different administrative domains.

We assume that non-replicated tiers (clients, external ser-
vices) can be configured to communicate with the replicated
service: clients need an additional client software library
provided by Thema, and external services need an external
service library, but this does not require modification of the
applications. Instead, the libraries provide low-level pro-
tocol code that is integrated with standard SOAP tools; in
Section 6, we discuss the integration that Thema currently
provides of BASE with gSOAP [7] and Apache Axis [22].

We assume that each node has a public–private key-pair
and that distribution of the public keys is handled outside
of the Thema system. In Thema, as in BASE, clients and
services use public-key cryptography to establish symmet-
ric session keys that are used during operation to create less
expensive message authentication codes (MACs).

4 Challenges Addressed by Thema
Thema is designed to address the challenges of creat-

ing distributed applications composed of multiple Web Ser-
vices, some of which may be Byzantine-fault-tolerant. This
section presents three of these challenges: using BFT in this
mixed fault-model; allowing Byzantine-fault-tolerant ser-
vices to make safe requests of external services, and provid-
ing SOAP and WSDL support for Byzantine-fault-tolerant
applications.

4.1 Working in a Mixed Fault-Model

For a Byzantine-fault-tolerant Web Service to be used in
Web Service applications, it must support access from non-
replicated clients and access to non-replicated Web Ser-
vices. This creates three problems: (1) clients must treat
the Byzantine-fault-tolerant Web Service as a single entity,
(2) the Byzantine-fault-tolerant Web Service must guaran-
tee internal consistency when acting as a client, and (3)
external Web Services must treat a Byzantine-fault-tolerant
Web Service acting as a client as a single entity. Previous
BFT systems have addressed problem (1), but not problems
(2) and (3).

Clients must treat the Byzantine-fault-tolerant service as
a single entity. Unlike systems that support only crash-
faults, the fact that replicas in a BFT system may return
incorrect values means that the client must directly authen-
ticate and verify the responses returned by up to 2f + 1
replicas (in order to get f + 1 identical responses) before
choosing a result; to get the benefit of BFT, the client can-
not rely on any service that is not Byzantine-fault-tolerant
to perform these operations for it. As seen in Section 5,
Thema applications do not need to be aware of this com-
plexity because it is managed by the infrastructure.

A Byzantine-fault-tolerant service must guarantee inter-
nal consistency when acting as a client. If it accesses a non-
Byzantine-fault-tolerant external service, it may choose to



protect itself from the possibility of its non-faulty repli-
cas receiving and using incorrect results. The first step is
for replicas to authenticate the responses from external ser-
vices; this authentication can be done as it is done in BASE,
either by having the external service digitally sign the re-
sult using public-key cryptography (so that all replicas can
verify the result if any non-faulty replica receives it), or by
authenticating the result using MACs. However, if a faulty
external service were to return different results to different
replicas of a Byzantine-fault-tolerant Web Service acting as
a client, the state of the replicas could diverge unless the
replicas do something to verify that they have all received
the same result. This may require an additional agreement
phase like the one done for client requests.

Finally, external services must treat a Byzantine-fault-
tolerant Web Service acting as a client as a single entity.
Because replicas may be faulty and may make requests that
were not intended by the application developer, this require-
ment implies that an external service cannot perform an op-
eration requested by some of the replicas of a Byzantine-
fault-tolerant service unless it is certain that enough replicas
have requested the same operation. Because the BASE pro-
tocol ensures that no non-faulty replica will execute an op-
eration unless at least f other non-faulty replicas will even-
tually execute that operation, the external service needs to
wait until it knows that at least one non-faulty replica has
requested the operation. In order to verify this, it must au-
thenticate at least f + 1 identical requests from different
replicas. As in the case of the client of the Byzantine-fault-
tolerant Web Service, the external service middleware also
must directly authenticate and verify the request messages
to get the benefit of the BFT guarantees of the Byzantine-
fault-tolerant Web Service; it cannot rely on any service that
is not Byzantine-fault-tolerant to perform this operation.

4.2 The Asynchronous Operation of BASE

The correct operation of BASE hinges on being able to
collect messages from groups of servers, as described in
Section 2. As detailed in [4], for normal operation of the
protocol, each replica must collect at least 2f + 1 mes-
sages from different replicas (including itself) in the differ-
ent stages of the protocol. Each replica is guaranteed by the
fact that there are 3f +1 replicas in the system, out of which
at most f can be faulty, that it will be able to collect at least
2f + 1 messages eventually. It is important to note that in
the case where the maximum number f replicas are faulty,
all 2f + 1 non-faulty replicas will need to send messages;
for the system to be live, 2f +1 non-faulty replicas must, at
all times, at some point in the future be ready to participate
in the protocol. It is partly for this reason that naive ap-
proaches to adding multi-tier support to BASE can lead to
hard-to-detect, incorrect protocol-operation that would only

occur in corner-cases not touched by performance testing in
the fault-free case.

The asynchronous nature of the protocol means that re-
quest execution in BASE can be performed at different
replicas at different times. In fact, non-faulty replica X
can execute request A in a different view from non-faulty
replica Y . The BASE protocol guarantees that if a request
executes at any non-faulty replica, the request will be as-
signed the same sequence number in subsequent views, so
request execution across views will not result in any incon-
sistency between non-faulty replicas.

Assume that the execution of a given request requires ac-
cess to an external service and that f replicas in the system
are faulty. According to the BASE protocol, any replica is
free to execute the request once that request has commit-
ted locally, i.e., once the replica knows that 2f + 1 replicas
have claimed that the request prepared. Of these 2f + 1
replicas that claim that the request has prepared, at least
f + 1 are non-faulty; assume that the other f are indeed the
faulty nodes in the system. In general, to avoid potential
state-corruption, in BASE, non-faulty replicas cannot exe-
cute additional requests before completing the execution of
the current request. Suppose that the replica that committed
locally sends its request to the external service and blocks,
waiting for a response.

Now, as discussed in Section 4.1, the external service ac-
cessed by the request should not accept the request until at
least f+1 replicas have requested it; otherwise, it might per-
form an operation requested only by faulty replicas. There-
fore, upon receiving the request from the replica that com-
mitted locally, this service will not return a response until it
also receives a corresponding request from at least f other
replicas.

The problem here is that the one replica that committed
locally now is blocked waiting for a response instead of par-
ticipating in the BFT protocol. If but a single replica, from
the group of f + 1 non-faulty replicas that is prepared, re-
quests a view change before committing locally, the view
change will never happen (because 2f + 1 replicas must
request the new view, but f are faulty and one non-faulty
replica is not participating in the protocol, leaving only 2f
replicas for the view change), and the external service will
never get f additional requests, because one of these f repli-
cas is requesting a view change. The f faulty replicas can-
not be relied upon to solve this problem.

Section 6.1.1 presents the solution to this problem that is
employed in the current implementation of Thema.

4.3 Supporting SOAP and WSDL

Web Services typically communicate via SOAP mes-
sages that are sent over HTTP. This implies a reliable mes-
saging layer (since HTTP runs over TCP/IP). Web Service
clients wait for a single reply to their request. Web Services



may communicate securely using authenticated, encrypted
HTTPS. BASE clients, on the other hand, communicate via
BASE messages that are sent using unreliable UDP, with re-
transmissions to handle message losses. BASE clients wait
for up to 2f+1 replies (in order to get f+1 identical replies)
for a single request. BASE provides its own authentication
via MACs, but does not encrypt messages.

Web Service toolkits provide tools for Web Service client
and service application development that allow for a clean
separation of application logic from communication details.
WSDL is provided as a standard interface definition lan-
guage, and stub and skeleton generators allow these inter-
faces to be called using the standard method invocation pro-
cedures of the application programming language. BASE
provides a client and service API. The client API provides
a way to invoke service operations; how these operations
are identified or described is left to the application devel-
oper. The service API provides additional functions for
state management that are required for stateful BFT ser-
vices.

As described in Section 6.2, Thema allows clients and
services to be programmed as standard Web Service ap-
plication components by providing an integration of SOAP
toolkits and BFT support.

5 Design of Thema
Thema consists of a client library (Thema-C2RS), a BFT

service library (Thema-RS), and an external service library
(Thema-US). Each of these libraries provides support for
the standard multi-tier Web Service programming model
and SOAP communication.

5.1 Overall Architecture

Figure 1 represents the architecture and communication
paths of a three-tier Thema Web Service application. Each
node, be it a client (first tier), a Byzantine-fault-tolerant
Web Service (middle tier), or an external Web Service (third
tier), has a Thema middleware library for BFT communica-
tion, SOAP messaging, and Web Service programming. In
Figure 1, the client invokes a request on a Byzantine-fault-
tolerant Web Service, which in turns invokes a request on
an external Web Service. The sequence of interactions (also
labeled in Figure 1) is:

1. The client application calls a stub function, which
transparently executes a request for service pro-
vided by the Byzantine-fault-tolerant Web Service and
blocks, waiting for a reply. The client’s request is con-
verted into an XML SOAP request message by the
client’s SOAP engine. This SOAP request is sent to the
Thema-C2RS library, which bundles the request into
a BASE request message, and sends it to the primary
replica of the Byzantine-fault-tolerant Web Service.
The request message then travels across the network

Operating System

7

7

8

8

8 8

6

4
4

4

5

55

3

3

2

1

1 1

Network

BFT
Protocol

Operating System Operating System

SOAP Engine

Web Service 2
(Non-BFT)

Web Service 2

Web Service 1
(BFT)

Web Service 1

Client

Client

{

Asynchronous
distributed
system

Synchronous
end-to-end
operation

SOAP EngineSOAP Engine

Thema-C2RS Thema-US

WSDL WSDL

Thema-RS

Figure 1. The architecture and communica-
tion paths of a three-tier Thema application.

to the Byzantine-fault-tolerant Web Service. When
the request message arrives, the Thema-RS library re-
ceives it.

2. Before executing the request, the replicas of the service
must reach agreement on the ordering of the request.
This step uses the BASE protocol, consisting of three
phases in normal-case operation, which are described
in [15]. Once the replicas have reached agreement, at
least 2f + 1 replicas have agreed to the ordering, so
at least f + 1 non-faulty replicas will eventually exe-
cute the request given the ordering; this is sufficient to
ensure that the replicated group stays internally con-
sistent.

3. When the replicas have reached agreement on the re-
quest ordering, the request is sent at each replica to the
replica’s SOAP engine, where it is dispatched to the
corresponding Web Service function.

4. The Web Service application logic calls a stub func-
tion, which transparently invokes a request on a non-
replicated external Web Service and blocks, waiting
for a response.1 As in Step 1, this request is converted
into an XML SOAP request message by the replica’s
SOAP engine. This SOAP request is sent back down to
the Thema-RS library, which bundles the request into
a BASE request message and sends it to the external
Web Service. Because at least f + 1 non-faulty repli-
cas will eventually execute the same request, at least
f +1 identical request messages will be sent by differ-
ent replicas to the external Web Service. The Thema-
US library of the external service waits to receive f +1
identical request messages from different replicas in
the group, and sends the request to the SOAP engine,
where it is dispatched to the corresponding function.

1Note that the BFT protocol logic of the replica must continue to run,
as described in Section 4.2, even as the application logic remains blocked
waiting for the stub function to return.



5. The result of the external Web Service operation trav-
els back down through the external service’s SOAP en-
gine, where it is converted into a SOAP response mes-
sage, and down to the Thema-US library, which bun-
dles the response into a BASE reply message. Thema-
US sends this reply message to all of the replicas in the
Byzantine-fault-tolerant Web Service. The Thema-RS
library of each non-faulty replica receives a copy of the
reply.

6. The replicas may now perform an agreement phase on
the reply message to ensure that their state does not
diverge as a result of a faulty external service.

7. The SOAP response message is extracted from the
BASE reply message and is sent back to the applica-
tion function that originally made the request.

8. The application returns a result to the original client.
The result is first converted into a SOAP response mes-
sage by the replica’s SOAP engine, and is then bundled
into a BASE reply message by the Thema-RS library.
Thema-RS sends the BASE reply message across the
network, back to the client. The client’s Thema-C2RS
library waits for f + 1 identical replies, and then un-
packages the SOAP response message and sends it up
through the client’s SOAP engine. The SOAP engine
sends the return value specified in the response mes-
sage back to the client application code.

6 Implementation
Our current implementation of Thema relies on the

BASE library implementation [15] of CLBFT for two-tier
BFT support, but involves modifications to BASE to allow
BFT replicas to make calls of external services during appli-
cation execution. In addition, Thema provides support for
the Web Services programming model by integrating with
the gSOAP [7] and Apache-Axis [22] SOAP toolkits.

6.1 Changes to the BASE Library

Thema’s underlying BFT library, BASE, provides a
client library and a server library. Thema includes modifica-
tions of the BASE server library to allow a service to make
requests of external services (Thema-RS), and provides a li-
brary for allowing external services to support requests from
replicated BFT services (Thema-US). Although the BASE
library supports authentication using either digital signa-
tures or MACs, our current implementation of Thema uses
MACs for all communication, for improved performance.
The Thema client library (Thema-C2RS) is based directly
on the BASE client library.

6.1.1 BFT Service Library (Thema-RS)

Our implementation of Thema-RS builds on the BASE
server library. Most of the modifications are to allow con-
sistent protocol operation during request execution, as re-
quired by Section 4.2. We have disabled the proactive re-

covery functionality [5] of the BASE library, and the ten-
tative execution optimization, both of which can cause the
state of a replica to rollback. When invoking a method on an
external service, each replica communicates directly with
the external service; the Thema modifications make it safe
for the replica to do so. Our current implementation does
not perform agreement on the response from an external
service, although this extension is possible.

All non-faulty replicas that are waiting for a response
from an external service must continue to participate in the
BASE protocol, otherwise the system can deadlock, as de-
scribed in Section 4.2. Because the application code written
to run on top of Thema is the code that will initiate a call
to an external service, the middleware must either provide
a way to run the application logic asynchronously from the
protocol logic, or to suspend the application code and re-
sume it when the response arrives.

The solution in our current prototype of Thema involves
suspending and resuming execution. The BASE library is
single-threaded. Our Thema implementation adds multi-
threading (through the pthreads library) to provide one
thread for the BASE protocol, and a second thread for the
execution of requests. The Thema-RS library implemen-
tation must take care to avoid state corruption, which can
occur because both the application and the BASE protocol
can update the state of a replica. For example, in BASE,
state transfer can be used to synchronize the state of a slow
replica with other replicas. If the execution thread modifies
state during state-transfer that is initiated by, and running
in, the protocol thread, inconsistency can occur.

In our prototype, to provide state consistency, only one
thread runs at a time. The protocol thread runs until the
time when a request is ready to be executed. At that point,
the protocol thread yields to the execution thread, which
yields to the protocol thread either when it finishes request
execution, or when it sends a request to an external service.
When the protocol thread receives a response from an exter-
nal service, it yields to the execution thread, which contin-
ues the application execution from the point of the match-
ing request, using the response. If the state is updated by
the protocol thread (for example, because of BASE state-
transfer) while the execution thread is waiting for a reply
from an external service, the execution thread aborts execu-
tion of the current request.

6.1.2 External Service Library (Thema-US)

Our implementation of Thema-US is based on the BASE
client and server libraries. Like the BASE client and server
libraries, Thema-US communicates using UDP with mes-
sage authentication. Thema-US waits for f + 1 identical
request messages from different replicas from the same ser-
vice before executing a request. Upon the completion of the
execution of the request, Thema-US sends the result to all



replicas. Our current implementation of Thema-US main-
tains a log of all replies that it has sent, so that replicas can
re-request a reply message, which may be lost due to the
use of UDP. A future implementation of Thema-US might
retain replies only until it is certain that the replicated group
has enough information to retransmit the reply internally.

6.2 Standard SOAP and WSDL Support

gSOAP Service (C++). The integration with the gSOAP
skeleton compiler allows a BFT Web-Service to be imple-
mented in C/C++ based on a WSDL interface that describes
its methods. The normal-case operation of the standard
gSOAP functionality is to read a SOAP message from a
socket, parse the message, and dispatch the request to the
appropriate service function. The gSOAP library provides a
mechanism to instruct it to use a specific socket for reading
and writing.

The Thema integration is as follows. When the Thema
service library (Thema-RS or Thema-US) is initialized, it
replaces the gSOAP socket with a UNIX domain socket ob-
tained through the socketpair() function of the Socket
API. When a Thema client-request arrives over the network,
the Thema library extracts the embedded SOAP request
from the message payload, and writes the contents of the
SOAP message to the socket pair. The Thema library then
instructs the gSOAP library to read from the socket and to
execute the appropriate application method. After the ap-
plication method has completed, the Thema library reads
from the socket pair a SOAP response, which is created by
the gSOAP library, bundles this response into a BASE reply
message, and sends the message to the client.

The BASE server library provides an API that the appli-
cation code must use when updating the service state; this
API is required so that the replicated service can do effi-
cient state management (checkpointing and garbage collec-
tion) and transfer. Our current implementation of Thema
provides the same API to the Web Service application.

gSOAP Client (C++). The integration with the gSOAP
stub compiler allows for any Web-Service C++ client pro-
grammed using the gSOAP toolkit to access a BFT Web-
Service without modification of the application logic. The
standard gSOAP C/C++ client stub functions, which are
generated from the Web Service’s WSDL file, work as fol-
lows. gSOAP connects a socket to the remote Web Service.
The C/C++ client stub function translates the application’s
function call into a SOAP request message, which it writes
to the socket. gSOAP waits for a SOAP reply message,
which it reads from the socket, converts to the appropriate
C/C++ return values, and returns to the application.

The Thema integration is as follows. gSOAP provides
a mechanism to replace the function that it uses to connect
to a socket, the function that it uses to write requests to the
socket, and the function that it uses to read replies from

the socket. Our current implementation replaces these stan-
dard gSOAP functions (which operate on TCP sockets) with
Thema functions. The standard connect function is re-
placed with one that initializes the BASE client library. The
write function, which is used to send requests, is replaced
with one that fills a BASE request message buffer and sends
it. The read function, which is used to receive replies, is
replaced with one that reads from a BASE reply message
buffer. In this way, gSOAP transparently sends SOAP mes-
sages over the BFT transport instead of over TCP.

Axis Client (Java). The integration with Apache Axis al-
lows for any Web-Service Java client programmed using
the Apache Axis tools to access a BFT Web-Service with-
out modification of the application logic. Our current im-
plementation is as follows. Thema provides a BFT Java
transport class (ThemaTransport) and a Java native wrap-
per around the C++ BASE client library. ThemaTransport
can be loaded by an unmodified Axis client library based
on the type (BFT or other) of the Web Service. Axis trans-
lates Java method calls, made by the application, into SOAP
request messages, which it passes to ThemaTransport, and
receives SOAP replies, which it translates into Java return
values, from ThemaTransport. ThemaTransport makes use
of the Java native wrapper around the C++ BASE client
library. ThemaTransport bundles the SOAP messages re-
ceived from Axis into the payload of BASE messages and
sends them using the BASE client library. The BASE client
library waits for f + 1 identical responses, and returns the
BASE message to ThemaTransport, which unpackages the
SOAP response and passes it to Axis.

7 Performance Evaluation
This section describes our experimental results obtained

through the use of a micro-benchmark and the TPC-W
benchmark [21]. The micro-benchmark is designed to test
the performance of Thema in a three-tier configuration,
while the TPC-W benchmark is used to test the impact of
making a critical service Byzantine-fault-tolerant.

The micro-benchmark measures the round-trip response
time from the client’s perspective for a three-tier Web Ser-
vice application. We compare two versions of the applica-
tion: a Thema version, in which the middle-tier is a BFT
Web Service; and a non-replicated gSOAP version in which
the middle-tier is a non-BFT Web Service. Both versions
use the identical application logic implemented in C++, but
the Thema version uses SOAP communication over BFT
(UDP), while the gSOAP version uses SOAP communica-
tion over TCP. The client program is written in C++.

We use the Wisconsin TPC-W benchmark implemen-
tation [3] as a macro-benchmark in order to measure the
impact of making one tier of a multi-tiered application
Byzantine-fault-tolerant. The TPC-W scenario is designed
to simulate the operation and workload of an online book-



store application. The primary metric is the number of
web interactions per minute (WIPS) that the bookstore pro-
cesses. When an order is submitted by a Remote Browser
Emulator (RBE), the specification calls for the credit card
information and order identifier to be sent to a remote Pay-
ment Gateway Emulator (PGE) for authorization. The PGE
computes a random authorization string of 15 characters,
records this string along with the order identifier, and re-
turns the authorization string to the bookstore.

For our evaluation, we create two versions of the PGE:
a Byzantine-fault-tolerant Thema Web Service version, and
a non-replicated gSOAP version. In both cases, we add a
non-replicated external Web Service on which the PGE re-
lies for credit-card information. Our PGE acts as specified
by the benchmark, but makes a call to the external service
as part of its processing. As illustrated in Figure 2, credit-
card verification in our modified TPC-W scenario is actu-
ally a four-tier process. The RBEs (tier a) place orders with
the bookstore (tier b), which causes the bookstore to call
the PGE (tier c), which calls the external credit-card service
(tier d).

The Wisconsin implementation of the TPC-W bench-
mark is made up of Java servlets that together perform the
bookstore functionality, and Java client programs that act
as RBEs, simulating bookstore customers, to provide one
of three specified workloads (shopping, browsing, or order-
ing). The Wisconsin implementation does not provide code
for the PGE or simulate a call to the PGE, so we modify the
code to call the PGE as specified, using the Thema Java
client support (Section 6.2), which transparently chooses
the BFT or HTTP communication library based based on
the type of the PGE. The benchmark specification requires
the call to the PGE to take at least two seconds; we do not
follow this requirement, as it would mask the overhead of
calling the PGE altogether.

7.1 Experimental Setup

We run our experiments on the Netbed/Emulab [24] test-
bed. Each machine is an 850 Mhz Pentium III with 512M
RAM. Each node runs Redhat 9 kernel 2.4.20. Our exper-
imental setup consists of two configurations, one for the
micro-benchmark, and one for the TPC-W benchmark. All
C++ code is compiled with debugging information turned
off, using GNU g++ 2.95. We use gSOAP version 2.7.0 and
Apache Axis version 1.2 RC1.

For the micro-benchmark, we use six machines in the
BFT case (four middle-tier replicas, one client, and one ex-
ternal service), or three machines in the non-replicated case
(one middle-tier service, one client, and one external ser-
vice), connected to a 100Mbps LAN. This allows us to test
the round-trip latency of the Thema system without the ad-
ditional overhead of message delays or packet loss.

Remote
Browser

Emulators
(RBEs)

TPC-W
Bookstore

HTTP

SOAP
over
BFT

SOAP
over
BFT

Replica of
Payment Gateway
Emulator (PGE)

LAN
WAN WAN WAN

T
h

e
m

a
-C

2
R

S

T
h

e
m

a
-R

S

T
h

e
m

a
-U

S

Tomcat

MySQL

(a) (b) (c) (d)

Figure 2. Experimental configuration of the
TPC-W benchmark.

For the TPC-W scenario, we use eight machines. One
machine runs the RBEs with Java J2SE 5.0. This machine is
connected via a 10Mbps link to the TPC-W bookstore ma-
chine, which uses the open source servlet container Apache
Jakarta Tomcat version 4.1.31 with Java J2SE 5.0 to run
the servlets, the open source MySQL database server ver-
sion 4.1 to store the bookstore information, and the Thema-
C2RS library with the Thema Java client to call the PGE.
The bookstore acts as a Thema Web services client of the
C++ Web Service PGE (which is either a single machine
in the non-replicated case, or four machines connected to
a 100Mbps LAN, implemented using Thema-RS with the
Thema C++ service support, in the replicated case), to
which it is connected via a 10Mbps link through a gate-
way machine. Finally, the credit-card Web service runs
on its own machine, is implemented using Thema-US and
the Thema C++ service support, and is accessed by the
PGE through the gateway and via a 10Mbps link. Both
the Thema and gSOAP PGE services, and the credit card
services, run identical implementations of the C++ PGE ap-
plication code.

7.2 Micro-Benchmarks

Figure 3 shows the round-trip times for the three-tier
micro-benchmark with varying request sizes. Each data
point represents the average latency value for that request
size over three independent runs of 1000 requests each. All
requests are issued sequentially from a single client ma-
chine. For Thema, the latency scales linearly with request-
size in the request-size range. For the non-Thema, non-
BFT, gSOAP case, the same is true except for the case of
the 6K request, which causes a reproducible spike in aver-
age latency, due to a number of requests taking more than
200,000 microseconds.

7.3 TPC-W: Macro-Benchmark

Figure 4 shows results obtained from the TPC-W bench-
mark using varying numbers of RBEs. The PGE authoriza-
tion request size is approximately 580 bytes, including the
soap envelope. All runs were done with the ordering work-



0

5000

10000

15000

20000

25000

30000

0 1000 2000 3000 4000 5000 6000 7000 8000

argument size (bytes)

la
te

n
c
y

(m
ic

ro
s
e
c
o

n
d

s
)

Thema

gSOAP

Figure 3. Thema and gSOAP (non-replicated)
for varying request sizes on the LAN.

0

2

4

6

8

10

12

14

20 30 40 50 60 70 80 90 100

RBEs (#)

W
IP

S

Thema PGE

gSOAP PGE

Figure 4. Change in WIPS resulting from vary-
ing the number of RBEs.

load, which is the TPC-W workload that most often requires
a call to the PGE (approximately one call per every ten inter-
actions). The number of WIPS obtained by the benchmark
is very similar for both versions of the PGE.

8 Related Work

Web Service Reliability and Security. Various XML-
based standards for Web services reliability and security
have been proposed as part of the Web services platform ar-
chitecture (the set of WS-* specifications) [23]. These spec-
ifications define message formats and protocols to support
various reliable messaging and security concerns, including
guaranteed delivery, message ordering, and authentication,
which relate to the topic of this paper. However, the WS-*
specifications are focused on interoperability between ser-
vices that execute in heterogeneous environments. They
suggest ways to encode the non-functional properties as part
of the SOAP messages. Thema is not primarily concerned

with interoperability but addresses reliability and security
at the transport layer: Thema sends SOAP messages over
the BFT transport. To address non-functional requirements
on the transport, messaging, and even application layers,
Thema can complement the WS-* specifications. For exam-
ple, [19] discusses various ways to implement Web services
reliable messaging. Additional work is needed in defining
ways of reconciling non-functional properties at the various
layers.

Birman et al. [2] argues that Web Services need to be-
come more autonomic in order to increase reliability; the
paper does not address BFT specifically. Townend and
Xu [20] seeks to provide higher reliability for Web Services
through the dynamic discovery and construction of voting
groups of functionally-equivalent Web Services.

Byzantine Fault Tolerance. A great deal of work has
been done on Byzantine fault tolerance and making it ef-
ficient [12, 9, 4, 10]. One aspect of Thema is the extension
of the BASE library [15] to support multi-tier use of BFT.
At a high-level, our solution (presented in Section 6.1.1)
to the problem presented in Section 4.2 uses a mechanism
similar to making the agreement phase of the protocol run
asynchronously from the execution phase in a fashion sim-
ilar to [27, 10], which do so to reduce the number of dedi-
cated execution nodes from 3f + 1 to 2f + 1, to allow the
insertion of a privacy firewall, and to increase throughput.
The implementations of both systems also use BASE, but
run separate processes for agreement and execution, instead
of multi-threading a single replica process.

In previous work considering multi-tier BFT systems [1,
8, 26], every tier is BFT replicated. Fry and Reiter [8]
explores enabling objects implemented as Byzantine-fault-
tolerant quorums to act as clients of other objects; the prop-
erties of quorum systems are different from those state-
machine replication systems like BASE. Two multi-tiered
Byzantine-fault-tolerant DNS systems [26, 1] have been
presented, which both use the CLBFT protocol; neither sys-
tem addresses the problems presented in Section 4 directly.
Ahmed [1] proposes a communication technique between
tiers to reduce message overhead to increase scalability;
such a technique may be appropriate for Thema.

One aspect of Thema is the Web Services program-
ming model; other projects have explored and provided
techniques for building BFT systems with other pro-
gramming models. The Immune System [13] provides
a CORBA distributed object programming model us-
ing the SecureRing [9] Byzantine-fault-tolerant group-
communication protocol, which provides different safety
and liveness guarantees than CLBFT. The ITDOS
project [16] looks to provide a framework for building
heterogeneous Byzantine-fault-tolerant distributed object
CORBA systems on top of CLBFT, but provides no imple-
mentation details. BASE [15] provides a way to use BFT



replication support for pre-built applications. In the orig-
inal CLBFT library, the application had to be designed to
be compatible with BFT; BASE allows the application to be
treated as a black box. The important application behavior
is distilled into an abstract specification, and the black-box
application is wrapped to conform to the specification.

9 Conclusions
This paper has presented Thema, a new middleware sys-

tem for creating Byzantine-fault-tolerant, survivable Web
Services that support the normal Web Services application
and programming models. In this paper, we have introduced
a number of challenges in combining Byzantine fault toler-
ance with Web Services, including working in a mixed-fault
model, adding multi-tier support to BFT without compro-
mising correctness, and providing SOAP and WSDL sup-
port for BFT. We have presented the design and implemen-
tation of Thema, and provided a performance analysis using
the TPC-W benchmark.

Acknowledgments. We would like to thank Rodrigo Ro-
drigues for providing the BASE source-code on which we
based our implementation of Thema, Miguel Castro for dis-
cussions on the workings of the CLBFT protocol, and Mike
Dahlin and Ramakrishna Kotla for providing the source
code for their High-Throughput BFT implementation. We
would like to thank Deepti Srivastava for discussions about
Thema, BFT, and the paper, and the anonymous referees for
helpful feedback on drafts of the paper.

References
[1] S. Ahmed. A scalable Byzantine fault tolerant secure do-

main name system. Master’s thesis, MIT, Jan. 2001. Also as
Technical Report MIT-LCS-TR-849.

[2] K. Birman, R. van Renesse, and W. Vogels. Adding high
availability and autonomic behavior to Web services. In In-
ternational Conference on Software Engineering, pages 17–
26, May 2004.

[3] H. W. Cain, R. Rajwar, M. Marden, and M. H. Lipasti. An ar-
chitectural evaluation of Java TPC-W. In International Sym-
posium on High-Performance Computer Architecture, page
0229, January 2001.

[4] M. Castro and B. Liskov. Practical Byzantine fault tolerance.
In Symposium on Operating Systems Design and Implemen-
tation, 1999.

[5] M. Castro and B. Liskov. Proactive recovery in a Byzantine-
fault-tolerant system. In Symposium on Operating Systems
Design and Implementation, 2000.

[6] C. Dwork, N. A. Lynch, and L. J. Stockmeyer. Consensus
in the presence of partial synchrony. Journal of the ACM,
35(2):288–323, 1988.

[7] R. A. V. Engelen and K. A. Gallivan. The gSOAP toolkit
for Web services and peer-to-peer computing networks. In
IEEE/ACM International Symposium on Cluster Computing
and the Grid, page 128, May 2002.

[8] C. P. Fry and M. K. Reiter. Nested objects in a Byzantine
quorum-replicated system. In IEEE International Sympo-
sium on Reliable Distributed Systems, pages 77–89, 2004.

[9] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. The
SecureRing protocols for securing group communication. In
Hawaii International Conference on System Sciences, vol-
ume 3, pages 317–326. IEEE Computer Society Press, 1998.

[10] R. Kotla and M. Dahlin. High throughput Byzantine fault tol-
erance. In International Conference on Dependable Systems
and Networks, page 575, June–July 2004.

[11] L. Lamport, R. Shostak, and M. Pease. The Byzantine gener-
als problem. ACM Transactions on Programming Languages
and Systems, 4(3):382–401, July 1982.

[12] D. Malkhi, M. K. Reiter, D. Tulone, and E. Ziskind. Persis-
tent objects in the Fleet system. In DARPA Information Sur-
vivability Conference & Exposition II, pages 126–136, 2001.

[13] P. Narasimhan, K. P. Kihlstrom, L. E. Moser, and P. M.
Melliar-Smith. Providing support for survivable CORBA ap-
plications with the Immune system. In International Con-
ference on Distributed Computing Systems, pages 507–516,
1999.

[14] M. K. Reiter. The Rampart toolkit for building high-integrity
services. In Theory and Practice in Distributed Systems, vol-
ume 938, pages 99–110. Springer-Verlag, Berlin Germany,
1995.

[15] R. Rodrigues, M. Castro, and B. Liskov. BASE: Using ab-
straction to improve fault tolerance. In Symposium on Oper-
ating Systems Principles, 2001.

[16] D. Sames, B. Matt, B. Niebuhr, G. Tally, B. Whitmore, and
D. Bakken. Developing a heterogeneous intrusion tolerant
CORBA system. In International Conference on Depend-
able Systems and Networks, pages 239–248, 2002.

[17] F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: a tutorial. ACM Computing Sur-
veys, 22(4):299–319, 1990.

[18] SOAP specifications. http://www.w3.org/TR/soap,
April 2005.

[19] S. Tai, T. Mikalsen, and I. Rouvellou. Using message-
oriented middleware for reliable web services messaging. In
WES 2003, Springer LNCS 3095, pages 89–104, 2003.

[20] P. Townend and J. Xu. Replication-based fault tolerance in a
grid environment. In U.K. e-Science 3rd All-Hands Meeting,
August–September 2004.

[21] TPC-W. http://www.tpc.org/tpcw, April 2005.
[22] WebServices - Axis. http://ws.apache.org/

axis/, April 2005.
[23] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F.

Ferguson. Web Services Platform Architecture. Prentice-
Hall, 2005.

[24] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An inte-
grated experimental environment for distributed systems and
networks. In Symposium on Operating Systems Design and
Implementation, pages 255–270, Boston, MA, Dec. 2002.

[25] Web services description language (WSDL) 1.1. http://
www.w3.org/TR/wsdl, April 2005.

[26] Z. Yang. Using a Byzantine-fault-tolerant algorithm to pro-
vide a secure DNS. Master’s thesis, MIT, Jan. 1999.

[27] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for Byzan-
tine fault tolerant services. In Symposium on Operating Sys-
tems Principles, pages 253–267, October 2003.


