
PREPARED FOR IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2010 1

Improving Application Placement Load-Balancing
for Cluster-based Web Applications

Chen Tian, Hongbo Jiang, Member, IEEE, Arun Iyengar, Senior Member, IEEE, Xue Liu, Member, IEEE,
Zuodong Wu, Jinhua Chen, Wenyu Liu, Member, IEEE, and Chonggang Wang, Senior Member, IEEE

Abstract—Dynamic application placement for clustered web
applications heavily influences system performance and quality
of user experience. Existing approaches claim that they strive
to maximize the throughput, keep resource utilization balanced
across servers, and minimize the start/stop cost of application
instances. However, they fail to minimize the worst case of
server utilization; the load balancing performance is not optimal.
Another problem is that, some applications need to communicate
with each other; we call such applications dependent applications.
There is significant system cost if the instances of dependent
applications are placed in different servers, and our work takes
this cost into consideration.

This paper has two major contributions. First we investigate
how to minimize the resource utilization of servers in the
worst case, aiming at improving load balancing among clustered
servers. We formulate this new optimization objective as a min-
max problem; a novel framework based on binary search is
proposed to detect an optimal load balancing solution. Second,
we consider communication cost among applications in making
placement decisions. Since applications can communicate, it is
desirable to put applications which communicate with each
other on the same node. We define system cost as the weighted
combination of both placement change and inter-application com-
munication cost. Our application placement framework attempts
to maximize the number of instances of dependent applications
that reside in the same set of servers. Extensive experiments
have been conducted and effectively demonstrate that: 1) the
proposed framework achieves a good allocation for clustered web
applications. In other words, requests are evenly allocated among
servers, and throughput is still maximized; 2) both placement
change costs and inter-application communication costs are
low; 3) our algorithm approximate an optimal solution within
polynomial time and is promising for practical implementation
in real deployments.

Index Terms—Load balancing, application placement, algo-
rithm design, cluster-based service, Class Constrained Multiple-
Knapsack Problem.

I. INTRODUCTION

WEB applications make it possible to deliver critical ser-
vices provided by organizations directly to clients [1],

[2], [3]. Modern web applications typically run on top of
a middleware system, which is responsible for processing
client requests and for allocating resources at a high rate [4].
Clustering technology enables middleware systems to achieve

The corresponding author is Hongbo Jiang: hongbojiang2004@gmail.com.
C. Tian, H. Jiang, Z. Wu, J. Chen and W. Liu are with Huazhong University

of Science and Technology, Wuhan, China, 430074.
A. Iyengar is with IBM T.J. Watson Research Center, Hawthorne, NY

100086.
X. Liu is with University of Nebraska-Lincoln, Lincoln, NE, 68588-0150.
C. Wang is with NEC Laboratories America, Princeton, NJ 08540.

high degrees of scalability and availability. On the other hand,
it also poses great challenges in scalable and high performance
computing. For instance, it is often cost-inefficient when
designing data centers to simultaneously handle the potential
peak demands of all the applications [5], due to the dynamical
fluctuation of request rate. As a result, the middleware systems
are supposed to allow dynamic resource allocation to meet
different performance requirements from diverse applications.
The problem becomes dynamic application placement: given
a set of machines1 with constrained resources2 and a set of
Web applications with dynamically changing demands, how
many instances of each application should be run, and where
should they be placed?

In past work, this problem has been generally formulated as
a variant of the Class Constrained Multiple-Knapsack Problem
[7], [8], with multiple objectives such as maximizing the
throughput of the whole system, and minimizing the distur-
bance due to application instance placements start/stop, just
to name a few. The scheme in [6] is advantageous over other
placement algorithms in terms of computational scalability,
application satisfied demand and placement change. There are
still two problems. First, its load balancing is not optimized:
some servers could be heavily loaded after executing the
application placement algorithm. We illustrate this problem by
the server load distribution results in Figure 1. The detailed
context of this experiment is given later in Section IV-B, the
key points are that the total system load is 50% averaged
from 500 independent experiments. As we can see from the
results, around 22% of the servers have utilization close to the
whole system load; however, there are a number of servers
that have load higher than 80%, and some of them even have
100% utilization. As a result, the response times on the servers
with high utilization could be significantly increased [9],
and the clients served by these servers may be exposed to
unnecessary long response latency, which is unfavorable for
real-time web-based applications such as stock trading and
multimedia streaming. To alleviate this problem, the worst
case of individual server utilization3 should be minimized and
load balancing in the whole system should be improved.

Another problem with previous works is their cost model:

1In this paper, we alternatively use the terms of machine, nodes, or server
unless explicitly explained. All these terms are referred to as the web servers
that handle the client requests.

2Like [6], this paper only considers CPU and memory resources. However,
our framework can be easily extended to deal with other types of resources.

3In this paper, we refer to the worst case of individual server utilization as
the highest CPU utilization among all machines.

PREPARED FOR IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2010 2

Fig. 1. Server Load Distribution of Tang’s work with configuration (Lmem=
0.6,Lcpu=0.5,reset-all-apps).

only start/stop cost of application instances are considered.
Some web applications have extensive communications among
themselves, which we called dependent applications. In this
paper, we assume that these dependencies are paired: applica-
tion a’s instances need data from application b’s instances, and
vice versa. It is desirable to put applications which communi-
cate with each other on the same set of servers (i.e.,localize
the inter-application communication) as much as possible;
the communication can then be efficiently accomplished by
inter-process mechanisms such as shared memory or local
sockets. By contrast, if instances of dependent applications
are placed in different servers, significant system cost can be
incurred: first, this utilizes network bandwidth; second, the
communication dependency among application instances may
slow down the applications and degrade their performance. To
sum up, the system cost should also model the inter-application
communication cost; by minimizing this cost in the algorithm,
we can achieve localize the inter-application communication
as much as possible.

In this paper, we propose an enhanced application place-
ment framework, which complements previous works and has
contributions in the following aspects.
• Improving load balancing. Previous studies [5], [6]

presented approximation algorithms to deal with multiple
optimization objectives in terms of throughput, placement
changes, and load balancing. While acknowledging the
effectiveness of the problem statement with those ob-
jectives, in this paper, we propose to integrate a new
optimization objective: limiting the worst case of each
individual server’s CPU utilization, formulated by a min-
max optimization problem. By doing so, the system load
balancing performance is greatly improved.

• Localizing inter-application communication. We look
at communications among applications and introduce
the concept of dependent application. Since some ap-
plications need to communicate with each other, it is
desirable to put applications which communicate with
each other on the same node. We define system cost as

the weighted combination of both placement change and
inter-application communication cost. Our application
placement framework attempts to maximize the number
of instances of dependent applications that reside on the
same set of servers.

• Practical approximation algorithm and extensive eval-
uation results: In our enhanced framework, the place-
ment algorithm is based on binary search to dynamically
probe the optimal application placement solution. It is
desirable that our placement algorithm is able to find a
near optimal solution within polynomial time. We conduct
extensive evaluations, and our results demonstrate that
compared with state-of-the-art algorithms, our framework
achieves better allocation for clustered web applications,
more balanced server load, and less system cost.

The remainder of this paper is organized as follows. Sec-
tion II discusses related work. Our enhanced framework is
proposed in Section III. Performance evaluation of our new
algorithm is presented in Section IV. Section V concludes the
paper.

II. RELATED WORK

Our work extends the research in application placement
described in [6], [10], [11]. With our experiments we demon-
strate that a utility-driven system outperforms demand-based
approach in terms of application satisfaction fairness. Among
them, the framework in [6] for dynamic application placement
is a representative example and it outperforms other existing
techniques.

Fig. 2 depicts the typical diagram of the Web application
control loop for application placement. The system is com-
posed of front-end Request Router, Application Placement
Controller, Placement Executor, Back-end Machines, and Ap-
plications. The request router receives external requests and
forwards them to the application instances. The placement
controller periodically calculates a placement solution that
optimizes certain objective functions, and then passes the
solution to the placement executor to start and stop application
instances accordingly.

A popular approach to dynamic server provisioning is to
allocate full machines to applications as needed [12], which
does not allow applications to share machines. The algorithm
proposed in [13] allows applications to share machines, but it
does not change the number of instances of an application and
only considers one bottleneck resource.

Placement problems have also been studied in the optimiza-
tion literature, including bin packing, multiple knapsack, and
multi-dimensional knapsack problems [14]. The special case of
the problem with uniform memory requirements was studied in
[7], [8], and some approximation algorithms were proposed.
Meta-scheduling algorithms for grid and parallel computing
also deal with the placement problem [15].

A disk load balancing criterion which combines a static
component and a dynamic component is described in [16].
The static component decides the number of copies needed for
each movie by first solving an apportionment problem and then
solving the problem of heuristically assigning the copies onto

PREPARED FOR IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2010 3

Fig. 2. Control loop for application placement (Adapted from [6]).

storage groups to limit the number of assignment changes.
The dynamic component solves a discrete class-constrained
resource allocation problem for optimal load balancing, and
then introduces an algorithm for dynamically shifting the
load among servers (i.e. migrating existing video streams).
A placement algorithm for balancing the load and storage in
multimedia systems is described in [17]. The algorithm also
minimizes the blocking probability of new requests.

Xueyan’s work [18] and Hsiangkai’s work [19] are focused
on content replica placement and request routing in content
distribution networks; these works are related to our topic.
However, in our scenarios all servers are considered centrally
located together instead of geographically distributed.

III. ENHANCED APPLICATION PLACEMENT FRAMEWORK

A. Symbols

Table I lists symbols used in this paper4. The inputs to the
placement controller include the current placement matrix I∗,
the CPU and memory capacities of each machine (Ωn and Γn),
and the CPU and memory demands of each application(ωm and
γm). Both values correspond to only the workload controlled
by the placement controller. Capacity used by other workloads
should be subtracted prior to invoking the algorithm. The
outputs of the placement controller are the updated placement
matrix I and the load distribution matrix L.

The system has two main costs: one is the start/stop cost
of application instances when performing placement changes;
the other is the communication cost among dependent applica-
tions. Let I∗ denote the old placement matrix, and I denote the
new placement matrix. Let c demote the number of placement
changes. We have:

c =
∑
m∈M

∑
n∈N

∣∣∣Im,n − I∗m,n
∣∣∣

It is hard to directly model the inter-application communi-
cation cost. There are some non-trial questions: for a specific
pair of dependent applications, how to specify the cost for
communication between instances on the same node and cost
for communication between instances on different nodes? for
different pairs of dependent applications which have different

4The table directly inherits symbols of previous works and is extended with
new definitions.

TABLE I
SYMBOLS USED IN THIS PAPER

N The set of machines.

n One machine in the set N.

M The set of applications.

m One application in the set M.

I The placement matrix. Im,n = 1 if application m is
running on machine n; Im,n = 0 otherwise.

L The load distribution matrix. Lm,n is the CPU cycles
per second allocated on machine n for application m.
L is an output of the placement algorithm; it is not
measured from the running system.

Γn The memory capacity of machine n.

Ωn The CPU capacity of machine n.

γm The memory demand of application m, i.e., the
memory needed to run one instance of application
m.

ωm The CPU demand of application m, i.e., the total
CPU cycles per second needed for application m
throughout the entire system.

ω′m The satisfied demand of application m by previous
stage.

New definitions
ρ the utilization of the entire system.

ρn the utilization of machine n.

p the utilization fraction parameter of the entire sys-
tem.

p∗ the optimum utilization fraction parameter of the
entire system.

c the calculated number of needed placement change.

p− the lower bound of the utilization fraction parameter.

p+ the upper bound of the utilization fraction parameter.

R The application dependence matrix. Rm1,m2 = 1 if
application m1 and m2 have inter communication
with each other.

h the localized fraction of all inter-application commu-
nication.

s the system cost.

sorts of communication patterns, how to differentiate their
cost parameters? To make the problem tractable, we exploit
an observation of dependent applications that an instance’s
inter-application communication cost is mostly proportional to
its workload. Instead of modeling communication costs of all
those pairs of dependent applications one by one, we record
the total wordload of these applications, and calculate how
much workload reside in the same set of servers:

h =

∑
n∈N

∑
m1∈M

∑
m2∈M Im1,nIm2,nRm1,m2(Lm1,n + Lm2,n)∑

m1∈M
∑

m2∈M Rm1,m2(ωm1 + ωm2)

Thus, based on out assumption, h indirectly denotes the
localized percentage of all inter-application communication.

It is obvious that, c should be minimized and h should be
maximized. The next question is how to combine c and h into
a single system cost. We define system cost as the weighted
combination of both placement change and inter-application
communication cost. Let c be normalized by application
number |M|, and let (1 − h) as the non-localized percentage
of all inter-application communication, we use weight values

PREPARED FOR IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2010 4

α and β to adjust their weights in the system cost s.

s = α ∗
c
|M|

+ β ∗ (1 − h)

Note that α and β should be adjusted accordingly for in-
dividual systems, based on the administrator’s estimation of
the importance of placement change cost v.s. inter-application
communication cost, especially the percentage and magnitude
of applications that communicate with other applications 5.
Even with rough modeling, we still get reasonably good results
in the evaluation, as shown in Section IV.

In addition, ρ and ρn denote the utilization of the entire
system and the utilization of an individual machine n respec-
tively. From the view of load balancing, ρn should stay close
to ρ.

ρn =

∑
m∈M Lm,n

Ωn

ρ =

∑
m∈M

∑
n∈N Lm,n∑

n∈N Ωn

B. New Formulation of the Application Placement Problem

Application placement addresses the problem of how to
distribute applications among multiple servers in order to
maximize performance. Apart from [6], this paper is based
on the basic idea that the worst case load performance of
individual machines should be minimized first. From the users’
point of view, it is undesirable to experience a long response
time due to high load at a server. Intuitively, if the worst case of
each individual machine utilization is minimized, applications
will be distributed more evenly across machines. Thus, our
approach can improve the balance among the servers.

The placement controller should first attempt to find a place-
ment solution that maximizes the total satisfied application
demand. Secondly, it also tries to minimize the total system
cost, including the number of application starts and stops,
because placement changes disturb the running system and
waste CPU cycles, and the cost of dependent application
communications. Our approach also minimizes the worst case
load utilization to balance the load across machines. These
objectives are listed in the formulated problem below:

(i)Maximize:
∑
m∈M

∑
n∈N

Lm,n

(ii)Minimize: s

(iii)Minimize: p = max
n∈M

(ρn) = max
n∈M

(∑
m∈M Lm,n

Ωn

)
(iv)Minimize:

∑
n∈N

|ρn − ρ|

=
∑
n∈N

∣∣∣∣∣∣
∑

m∈M Lm,n

Ωn
−

∑
m∈M

∑
n∈N Lm,n∑

n∈N Ωn

∣∣∣∣∣∣

(1)

5In our current implementation, we simply assign them equal weight; hence
α = β = 100

Subject to:

(a)
∑
m∈M

γmIm,n ≤ Γn,∀n ∈ N

(b)
∑
m∈M

Lm,n ≤ Ωn,∀n ∈ N

(c)
∑
n∈N

Lm,n ≤ ωm,∀m ∈ M

(d)Im,n = 0⇒ Lm,n = 0,∀m ∈ M,∀n ∈ N

(e)Lm,n ≥ 0, Im,n ∈ {0, 1},∀m ∈ M,∀n ∈ N.

(2)

Constraint set (a) specifies that the memory demand of all
applications in machine n should not exceed the memory
capacity; (b) specifies that the total CPU cycles consumed
in each machine should not exceed the machine’s CPU ca-
pacity; (c) specifies that the total allocated CPU cycles to an
application should not exceed its demand; (d) specifies that an
application can be serviced in a machine if and only if it is
stored at that machine; (e) define the variables’ feasible range.

This problem is NP hard, and we develop an approximation
algorithm to solve it. Before presenting its details, we first give
a high-level description and outline the key ideas behind the
algorithm. Observe that the satisfied CPU demand provided
by each single machine is directly confined by the constraints
of Equation 2(b). If we scale all Ωn down by the same ratio
p ≤ 1, the constraints of Equation 2(b) are changed to

(b)
∑
m∈M

Lm,n ≤ p ∗Ωn,∀n ∈ N, ρ < p ≤ 1 (3)

Then if we solve the placement problem, it is guaranteed that
ρn ≤ p from the definition of ρn.

Theorem 1: The decrease of p converges to p∗.
Proof: Suppose ρ ≤ p1 ≤ p2 ≤ 1 and denote a solution of

p1 by I1 and L1 respectively. Since all other constraints need
to be met, we have:∑

m∈M

L1 ≤ p1 ∗Ωn ≤ p2 ∗Ωn,∀n ∈ N

Hence a solution of p1 is also a solution of p2.
A p value is an acceptable value if all constraints are

satisfied. Above all, the total satisfied application demand
should still be maximized. A lower p value reduces the feasible
region compared with the original formulation. To fulfill the
demand, more placement changes may be needed.

We use the MaxDemandMinChange algorithm in [6] as
the baseline algorithm of our framework. After running the
baseline algorithm first, we get the maximum demand that
can be satisfied max demand′ and the corresponding system
cost s′. The next step is to obtain p. The original objectives
(i) and (ii) now can be transformed to the constraints: max
demand should be strictly satisfied and the system cost should
be controlled. For each new formulation of p, our framework
attempts to optimize objectives (iii) and (iv).

We enhance the baseline algorithm with the optimization
of communication cost in the basic load-shift and placement
change procedures (extension presented in Section III-C1).
Our algorithm repeatedly probes the minimum p in multiple
rounds. In each round, it fixes a p value and uses the MaxDe-
mandMinCost algorithm to calculate the maximum total

PREPARED FOR IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2010 5

application demand that can be satisfied max demand by the
current p value together with the system cost s to see if this
p value is acceptable. p will finally converge to the optimum
value p∗.

C. The Full Placement Algorithm

The next problem is how to optimize p as quickly as
possible. We develop an algorithm based on Binary Search.
Instead of a blind probe, the upper bound of p, p+, and
the lower bound of p, p− are calculated iteratively. In each
iteration, either p+ or p− are updated. The full high level
pseudo code is depicted in Algorithm 1 where the function
MaxDemandMinCost is shown in Algorithm 2 and the
function BoundAcceptable is shown in Algorithm 3. The
general process is composed of three main building blocks:
initialization, iterative optimizing and final rebalancing.

Algorithm 1 PlaceFrame()
Require: : output: L′′m,n: the load distribution matrix; I′′m,n: placement matrix.
1: p+ = 1, p− = ρ, p = 1;
2: MaxDemandMinChange(max demand′, s′);
3: while p+−p−

p+ > ε do
4: p =

p++p−
2 ;

5: MaxDemandMinCost(max demand, s, L′m,n);
6: if BoundAcceptable() then
7: p+ = p; //decrease the upper bound of p value
8: else
9: p− = p; //increase the lower bound of p value

10: end if
11: end while
12: p′ = p+;
13: ω′m =

∑
n∈N L′m,n;

14: Final Rebalancing();
15: I′′m,n = I′m,n;

Algorithm 2 MaxDemandMinCost()
Require: Input: p: the maximal machine utilization threshold.

Output: calculated max satisfied demand max demand and the cost s.
Lm,n: the load distribution matrix.

1: for i = 0 to K // K=10 by default; do
2: calc max demand satisfied by current placement ();
3: if all demands satisfied then
4: if worst case satisfied then
5: //the maximal machine utilization
6: //is less than the given threshold p;
7: break out of the loop;
8: end if
9: end if

10: . . . // we omit the details about placement changes.
11: end for

1) Initialization: In the initialization phase(lines 1-2 in
Algorithm 1), we set p− with ρ, and p+ with 1, p = 1. After
performing the function MaxDemandMinChange() described
in [6], we obtain max demand′ and c′, which will be used as
constraint parameters in the later iterative optimizing phase.

For simplicity, we omit details about the algorithm in
this paper. Briefly speaking, it strives to probe the maximal
application demand by means of iteratively making placement
changes in order to increase the total satisfied demand, for
instance, stopping “unproductive” application instances and
starting useful ones. We also made some minor modifications

Algorithm 3 BoundAcceptable()
Require: Input: max demand′ and max demand: the demand satisfied before

and after updating worst case machine utilization constrains; Cost s′ and
s: the system cost before and after updating worst case machine utilization
constrains.

1: if max demand′ == max demand then
2: if BOUNDED then
3: if s > s′ then
4: return FALSE;
5: end if
6: end if
7: return TRUE;
8: end if
9: return FALSE;

to this function. For example, by integrating an additional
optimization objective, the system stops making application
changes only when the worst case (the maximal machine
utilization) is less than a given threshold p.

2) Iterative Optimizing: The system attempts to iteratively
decrease the upper bound or increase the lower bound of
p (lines 3-11 in Algorithm 1) in order to approximate an
optimal solution. The revised problem with parameter p is then
addressed by continuously identifying whether the updated
value of p is acceptable or not. If the solution is acceptable, p+

is updated; otherwise p− is updated. As such, the difference
between p+ and p− is decreased. That is, the system strives
to find the optimal value for p based on binary search. This
loop executes until the difference between p+ and p− is small
enough. For an ε−approximation of the optimum value p∗, the
iterative search can be completed in O(log2(1/ε)) rounds [20].
The final p value is a good approximation to constrain the
worst case of the machine utilization across all machines.

MaxDemandMinCost is an extension of the baseline al-
gorithm to support the minimization of inter-application com-
munication cost (in addition to instance start/stop cost). We
currently can deal with paired-dependency: two applications
have communications with and only with each other; we
plan to extend the algorithm to more complex dependency
relationships in the future.

The main improvement to MaxDemandMinChange is the
load-shifting part. For example, application a and b are de-
pendent on each other. The MaxDemandMinCost algorithm
identifies all those servers that already contain both a and
b instances, say, Group 1; and all those servers that contain
either a or b instances, say, Group 2. After sort the machines
by an increase order of residual memory, our algorithm selects
servers in Group 1 and puts them at the head of the list, and
those servers in Group 2 in the tail of the list. The intuition
here is to shift the load of dependent application from Group
2 to Group 1. Instances of dependent application in Group
2 servers are more likely to be idle after the load-shifting
phase and hence easier to deal with in the placement change
phase. In the placement change phase, each time we change
at most one instance per dependent pair, i.e., at most one
server per pair moved to Group 1. For each pair of dependent
applications, we find one server in its Group 2 with the most
appropriate residual memory and the largest idle CPU power,
add the missing application’s instance, and move it to Group
1.

PREPARED FOR IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2010 6

3) Final Rebalancing: The last step of the algorithm is
Final Rebalancing(line 14 in Algorithm 1). In [6], the final
load-balancing component from [10] was used, which moves
the new application instances across machines to balance the
load, while keeping the total satisfied demand and the number
of placement changes the same.

While the basic idea of our Final Rebalancing component
is similar to [6], [10], it differs from previous work in the
following ways: it not only keeps the total satisfied demand
and the number of placement changes the same, but also keeps
the maximal machine utilization less than the given threshold
for the worst case. That is, the system attempts to find another
load distribution matrix L′′ that satisfies the same demand
for all dynamic clusters while achieving more balanced load
across machines. We calculate L′′ by solving the following
optimization problem:

Minimize:
∑
n∈N

∣∣∣∣∣∣∣∑m∈M

L′′m,n − ρ ∗Ωn

∣∣∣∣∣∣∣ (4)

Subject to: ∑
m∈M

L′′m,n ≤ p′ ∗Ωn,∀n ∈ N∑
n∈N

L′′m,n = ω′m,∀m ∈ M

I′m,n = 0⇒ L′′m,n = 0,∀m ∈ M,∀n ∈ N

(5)

Here p′ presents a constraint for the worst case machine
utilization and w′m is the satisfied demand of application m
calculated during the first two phases (line 12-13 in Algo-
rithm 1). The goal of the last phase is to reassign the load
across machines, accordingly balancing the load and making
all ρn as close to system load ρ as possible. We transform the
problem in the last phase into a min-cost flow problem [21]
as shown in Fig. 3. In this figure, from left to right, we can
see
• Source node S has outbound edges to every application

vertex m, where the capacity of the edge S → m is equal
to load-dependent requirement ω′m, and its cost is equal
to 0.

• Each application vertex m has outbound edges to machine
vertices n representing the machines that the application
is placed on, conforming with Im,n. The capacity of edge
m→ n is equal to ω′m, and its cost is equal to 0.

• Each machine vertex n has an outbound edge to the ideal
auxiliary machine vertices n′ that corresponds to the same
physical machine. The capacity of the edge n → n′ is
equal to the desired upper bound usage of the machine
ρΩn, and its cost is equal to 0.

• The rebalancing vertex R has inbound edges from ma-
chine vertices n → R, whose capacity is equal to
(p − ρ)Ωn. The cost of these inbound vertices in 1.

• The rebalancing vertex R has outbound edges to ideal
machine vertices R→ n′. Each such edge has the capacity
ρΩn and the cost of 1.

• All ideal machine vertices have an outbound edge to the
sink node T , with capacity limit equal to ρΩn and the
cost of 0.

Fig. 3. Transformed Rebalancing Problem

The flow max demand is injected into the network at source
node S and leaves the network at sink node T . This network
will push each ρn close to system load ρ because any deviation
from ρ incurs a cost. This min-cost flow can also be solved
by linear programming [20], as a linear function is needed to
be optimized, and all constraints are linear.

D. Discussion

Next we turn to the time complexity of our placement algo-
rithm. For the first phase of Initialization, the computational
time is the same as the previous placement algorithm in [6],
whose time time complexity is O(|N|2.5). For the second phase
of Iterative Optimizing, the computational time is the time of
the previous placement algorithm multiplied by the number
of iterations of the outer loop (lines 3-11 in Algorithm 1).
Note that the outer loop is based on Binary Search: in each
iteration, either p+ or p− are updated, and the search scope is
halved, until the relative error is less than a given threshold,
defined by ε. Since for an ε−approximation of the optimum
value p∗ the iterative search can be completed in O(log2(1/ε))
rounds [20], the overall computational time of the second
phase is O(|N |2.5log2(1/ε)). In our implementation, ε is set
to be 0.01, that is, the outer loop is only performed a few
rounds. As such, the time complexity of the second phase
becomes O(|N |2.5). For the last phase of Final Rebalancing,
the time complexity is O((|N|+ |M|)2.5) [20]. Overall, the time
complexity of our placement algorithm is O(|N |2.5) when it is
assumed that |N| is comparable to |M| value, which is similar
to the time complexity of the previous algorithm in [6].

We assume that the placement controller produces a new
placement solution that optimizes certain objective functions
based on the current inputs such as γm and ωm periodically
every T miniatures (e.g., T=15 minutes). That is, during this
period, it is assumed that the system with all running appli-
cation instancex will not change significantly . Accordingly,
the optimal worst case value p∗ will not change significantly
during this period as well.

IV. PERFORMANCE EVALUATION

This section evaluates the performance of our proposed
framework. First, we describe the evaluation methodology and
explain how experiments are set up. Then we present the load
balancing example in Section IV-B as an illustration to our
main objective. After that, we present simulation results of the

PREPARED FOR IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2010 7

proposed framework under different scenarios. The cost and
sensitivity analysis are given in Section IV-D and Section IV-E
respectively.

A. Evaluation Methodology

Experimental Setup: Uniform application demand distri-
bution is assumed because there is no significant difference
between uniform and power-law distributions [6]. In addition,
the demand of each application is normalized proportionally
to the total application demand. The application demands
change from cycle to cycle. We conduct experiments with
two different demand changing patterns. With a vary-all-
apps pattern, each application’s demand changes randomly and
independently within a ±20% range of its initial demand. With
a reset-all-apps pattern, the demands in two consecutive cycles
are independent of each other. This pattern represents the most
extreme demand change for severe cases.

All experiments are configured as follows. Define CPU
Load Factor Lcpu as the ratio between the total CPU demand
and the total CPU capacity. That is, Lcpu =

∑
m∈M ωm∑
n∈N Ωn

, where
ωm is the CPU demand for application m, and Ωn is the
CPU capacity of machine n. Also let Application Load Factor
Lmem stand for Lmem =

|M|γ
|N |Γ

, where γ is the average memory

requirement of applications, Γ denotes the average memory
capacity of machines, and |M| is the number of applications.
Note that 0 ≤ Lmem ≤ 1 dictates the number of applications
instead of the real memory requirement; an application may
need several instances to meet the demand, and the problem is
most difficult when Lmem = 1. We uniformly distribute the con-
figuration of machines over the set (1GB:1GHz, 2GB:1.6GHz,
3GB:2.4GHz, 4GB:3GHz), where the first number is mem-
ory capacity and the second is CPU power. The memory
requirement of applications is uniformly distributed over the
set (0.4GB, 0.8GB, 1.2GB, 1.6GB). Accordingly, the number
of machines |N| is set to be 100 in this paper. The number
of applications |M| is configured by |M| = 2.5 ∗ |N | ∗ Lmem

according to |N | and Lmem. For example, Lmem = 0.4 leads
to the same number of applications and machines, while
Lmem = 0.8 results in twice as many applications. Higher
values of Lmem correspond to more applications that need
to be scheduled. Below, we concisely represent the system
configuration of a placement problem as (Lcpu, Lmem, demand
variability), e.g., (Lcpu = 0.9, Lmem = 0.4, vary-all-apps).
Among all the applications, we randomly pick 2% and paired
them to simulate dependent applications.

Performance Metrics: First, we measure the maximal
machine utilization p since it can result in adverse response
time for users. Second, it is noted that the most balanced load
is a uniform distribution; hence we measure the amount of
inequality in the load distribution. Like [10], we consider the
Gini index as an alternative metric. Assume the area between
the line of perfect (uniform) distribution (45 degree line)
and the Lorenz curve of the actual distribution is A and the
area below the Lorenz curve of the actual distribution is B.
The Gini index is thus referred to as A/(A + B). This Gini
coefficient is often used to measure income inequality [22].
A Gini index of 0 indicates perfect equality while a Gini

Fig. 5. Server Load Distribution of our work with configuration (Lmem=
0.6,Lcpu=0.5,reset-all-apps).

index of 1 indicates complete inequality, or in our case,
completely unbalanced load distribution. Third, when max
demand should be strictly stratified, we present the number of
placement changes, c, induced by both algorithms for compar-
ison. Fourth, we compare the execution time of our algorithm
with previous work [6]. All the reported data are averaged over
the results on 100 randomly generated system configurations.
For each configuration, the placement algorithm executes for
7 cycles under changing application demands, including an
initial placement and 6 dynamic placement executions. Our
results show that often the first execution is dominated by
the initial placement(Cycle 1 → 2). Therefore for most
experiments, we exclude this result and consider the five most
recent executions. Unless otherwise stated, each reported data
point is averaged over 500 placement results.

Peer Algorithms: As already demonstrated in [6], the ap-
plication placement algorithm presented in that paper performs
better than the two algorithms in [10], [11] with respect
to maximizing demand, reducing placement changes, and
execution time. Accordingly, we compare our proposed frame-
work with the algorithm presented in [6]. For convenience of
presentation, we use Tang to stand for the placement algorithm
in [6], and This for our new placement algorithm.

B. Distribution of Server Utilization

In this illustration, we choose a typical setting where Lmem =

0.6 and Lcpu = 0.5. The result of Tang’s work is already
shown in Figure 1: the load balancing is not satisfactory, and
some servers have 100% utilization when total system load
is only 50%. As a comparison, our work shows much better
load-balancing: shown in Figure 5, around 37% of the servers
have utilization close to system load; only a few servers have
utilization higher than 65%, and the worst case is no more
than 80%. Consistent with our expectation, the worst case of
individual server utilization is minimized, and load balancing
in the whole system is greatly improved.

PREPARED FOR IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2010 8

Fig. 4. Maximal machine utilization p value, Gini index, and placement changes with configuration (Lmem=0.2,0.4,0.6,0.8,Lcpu=x,vary-all-apps)

C. Performance Comparison

1) Vary-all-apps: Fig. 4 shows the experimental results
with a variety of CPU load factors (Lcpu from 0.1 to 0.9)
and application load factors (Lmem=0.2, 0.4, 0.6 and 0.8). For
all these settings, the new framework proposed in this paper
consistently outperforms the previous algorithm in terms of
maximal machine utilization and Gini index.

First, Fig. 4 left column shows that the worst case machine
utilization p using the This framework is less than that
using Tang, especially in lightly load cases. For instance,
when Lmem = 0.2 and Lcpu = 0.1, the p value using the
Tang framework is around two times of that using the This
algorithm, which is close to ρ. Second, compared with the
Tang framework, the This framework greatly reduces the Gini
index shown in Fig. 4 middle column. We found the Gini
index is always less than 0.1. Third, the system costs using

the This framework are stable as shown in Fig. 4 right column.
The reason is that our new framework strives to reduce p and
is thus capable of evenly distributing the applications. As a
result, it will not cause considerable load fluctuations. Fourth,
since the system costs of the new framework are limited by
the previous algorithm Tang, it is guaranteed that This always
introduces less cost than Tang while achieving better results
in terms of p and Gini index. Finally, This achieves best
results in terms of p, Gini index and cost s. However, there is
no limitation on placement changes, so it could incur higher
placement change, i.e., when Lmem = 0.6, 0.8 in Fig. 4 right
column; we will discuss this in the cost part.

2) Reset-all-apps: We next turn to the severe case when the
demands in two consecutive cycles are independent of each
other. In this case, we reset all applications every execution
during all seven cycles. Fig. 6 depicts the results. First, most

PREPARED FOR IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2010 9

Fig. 6. Maximal machine utilization p value, Gini index, and placement changes with configuration (Lmem=0.2,0.4,0.6,0.8,Lcpu=x,reset-all-apps)

results are similar to those shown in Fig. 4. For example, the
curves of p and the Gini index exhibit similar trends: p values
shown in the left column of Fig. 6 are almost the same as those
in the left column of Fig. 4; Gini index values shown in the
middle column of Fig. 6 are slightly higher than those in the
middle column of Fig. 4. Second, the This costs shown in the
right column of Fig. 6 are doubled compared with those shown
in Fig. 4(c). The reason is that in the Reset−all−apps scenario,
there is no correlation of application demands between two
consecutive times slots, which results in more cost to achieve
a balanced placement if placement changes are not limited.
Corresponding to its definition, the system cost of This is
lower than Tang, while its load balancing performance is still
comparable.

D. Cost Analysis

System cost is a single objective, as a combination of both
placement change cost and inter-communication cost, in our
formulation. In the previous part, we can conclude that our
framework improves load balancing while maintaining system
total cost at a low level. In this part, the impact to individual
cost is examined. Execution time is also presented to verify
the computational scalability.

In this illustration, we choose a typical setting where Lmem =

0.2. The localized communication h, placement change c and
execution time are shown in Figure 7.

1) Inter Application Communication: The left column in
Figure 7 shows the performance of localization of inter-
application communications. The Tang algorithm does not
consider this cost; hence its h value is randomly low. As a
comparison, over 60% of inter-application communications are

PREPARED FOR IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2010 10

Fig. 7. Localized Communication, placement changes and execution time with configuration (Lmem=0.2,Lcpu=x, under vary − all − apps (upper half) and
reset − all − apps (bottom half)

localized in This algorithm.
2) Placement Change: The middle column in Figure 7

shows the performance of localization of inter-application
communications. It is clear that our algorithm has higher
placement change cost than Tang. In our earlier work, when
inter-application communication cost is not considered, we can
achieve comparable placement change cost and still optimize
the load balancing performance. Hence we argue that higher
placement change cost is not an algorithm defect, but a
necessary cost for reducing the communication between nodes.
In addition, users can modify α and β to adjust the weight of
the two costs in the whole system cost.

3) Execution Time: The right column of Figure 7 depicts
the relative execution time using the This framework with
both vary-all-apps both reset-all-apps pattern compared with
the Tang framework. First, as we mentioned in Section III, the
execution time of our proposed framework is higher than that
of the previous algorithm since the new one includes multiple
runs to perform function MaxDemandMinCost compared
with a single invocation for Tang. The execution time depends
on the time required for Algorithm 1 to determine an optimal
value of p∗. Results show that the ratio between execution
time using the This framework is 3 ∼ 8 times that of the Tang
framework. That is, the loop in Algorithm 1 only performs a
few runs to find a good approximation.

While the proposed framework in this paper incurs overhead
in terms of execution time compared with previous work [6],
we believe that it provides a viable alternative solution for
application placement and is practical for real systems. First,
with optimizations that we are currently working on and ever-
increasing CPU speed, the execution time could be lowered.
Second, one option if execution time is a problem is to
set a higher value for ε in Algorithm 1 and use a lighter
weight version of the new algorithms in which the number of
iterations of function MaxDemandMinCost is reduced. That

way, one would get some of the benefits of the new algorithm
without all of the overhead. Third, the placement controller
may not always have to execute all that frequently (e.g., every
15 minutes in [6]). In this situation, the execution time using
our framework would not be too high.

Other results show that our algorithm often converges after
only a few iterations. That is, it does not introduce too much
overhead when performing the optimization. The number of
iterations will be small when resources are tight, that is, the
values of Lcpu and Lmem are high. It is reasonable because
when resources become tighter, the optimal p∗ value is closer
to 1; hence the probe space of p in Algorithm 1 is smaller.

E. Sensitivity Analysis

In this part, we analyze the sensitivity of both algorithms
to system parameters. Although all default evaluation setting
parameters are obtained from real world experience, it would
be interesting to evaluate the algorithm in more versatile
contexts, such as different system hardware context.

1) Fixed Memory v.s. Increasing CPU: In our normal
experiments, the CPU/memory capacity is almost linear for
each server type. In this experiment, we fix memory and
vary the CPU power of each server type. The configuration
of machines is now the set (2.5GB:1GHz, 2.5GB:1.6GHz,
2.5GB:2.4GHz, 2.5GB:3GHz). We choose a typical setting
where Lmem = 0.6 with reset−all−apps scenario. As shown in
the first row of Figure 8, the performance is almost the same
with the original experiments.

2) Fixed CPU v.s. Increasing Memory: In this experi-
ment, we fix CPU power and vary the memory capacity of
each server type. The configuration of machines is now the
set (1GB:2GHz, 2GB:2GHz, 3GB:2GHz, 4GB:2GHz). We
again choose a typical setting where Lmem = 0.6 with the
reset − all − apps scenario. As shown in the second row of

PREPARED FOR IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2010 11

Fig. 8. Maximal machine utilization p value, Gini index, and placement changes with configuration (Lmem=0.6,Lcpu=x, under reset − all − apps

Figure 8, the performance is still almost the same compared
with the original experiments.

3) Applications Requiring Less Memory: In this experi-
ment, we use the original configuration of machines. How-
ever, we consider applications requring less memory. In these
experiments, the memory requirements of applications are
uniformly distributed over the set (0.08GB, 0.16GB, 0.24GB,
0.32GB), just 1/5 of the original experiment. Correspondingly,
the number of applications in each experiment is 5 times
compared with the original experiment. Intuitively, smaller
application memory requirements would improve the perfor-
mance of placement algorithms: it is easier to consolidate
instances with smaller memory size.

As shown in the bottom row of Figure 8, the Gini index
of both algorithms are significantly lower than the original
results. Overall, our algorithm is still results in better load
distribution.

V. CONCLUSION

We have presented a novel framework and a practical
algorithm for application placement. This paper has two ma-
jor contributions. First, motivated by the desire to minimize
worst case server utilization and improve load balancing, our
algorithm dynamically allocates resources to clustered web
applications and balances load across servers simultaneously.
Second, we look at communication cost among applications.

We define system cost as the weighted combination of both
placement change and inter-application communication cost.
Our application placement framework attempts to maximize
the number of instances of dependent applications that reside
in the same set of servers while preserving high throughputs.

We have conducted extensive experiments and demonstrated
that: 1) With the proposed framework, applications are evenly
allocated among servers, throughput is high, and system cost
is low; 2) our new algorithm is able to make application
placement decisions in polynomial time. Overall, compared
with state-of-the-art algorithms, our framework achieves better
load balancing and controls system cost.

Several opportunities exist for future work. These include
evaluating our algorithms on larger clusters to further test their
scalability and adding a fail-over mechanism to ensure that the
load balancer is not a single point of failure.Other topics for
future work include: handling applications with different pri-
orities and different quality-of-service requirements; handling
more complex dependencies among applications in which
more than two applications have communication dependencies
among each other; and handling situations in which some
applications can only can be allocated to certain types of
servers with specific hardware or software.

PREPARED FOR IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2010 12

ACKNOWLEDGEMENT

This work was supported in part through National Natural
Science Foundation of China (No.60803115, No.60873127,
No.61073147), the Fundamental Research Funds for the
Central Universities (No.M2009022), the Youth Chenguang
Project of Wuhan City (No.201050231080), the CHUTIAN
Scholar Project of Hubei Province, and the Scientific Research
Foundation for the Returned Overseas Chinese Scholars, State
Education Ministry.

REFERENCES

[1] D. Li, J. Wu, Y. Cui, and J. Liu. QoS-aware streaming in overlay mul-
ticast considering the selfishness in construction action. In Proceedings
of IEEE INFOCOM, 2007.

[2] G. Tan and S.A. Jarvis. Improving the fault resilience of overlay
multicast for media streaming. IEEE Transactions on Parallel and
Distributed Systems, 18(6):721–734.

[3] Alvin T. S. Chan, Jiannong Cao, and C. K. Chan. Webgop: collaborative
web services based on graph-oriented programming. IEEE Transactions
on Systems, Man, and Cybernetics, Part A, 35(6):1874–1885.

[4] J. Liu, J. Xu, and X. Chu. Fine-grained scalable video caching for
heterogeneous clients. IEEE Transactions on Multimedia, 8(5):1011–
1020.

[5] K. Shen, H. Tang, T. Yang, and C. L. Integrated resource management
for cluster-based internet services. In Proceedings of OSDI, 2002.

[6] C. Tang, M. Steinder, M. Spreitzer, and G. Pacici. A scalable application
placement controller for enterprise data centers. In Proceedings of
International World Wide Web Conference (WWW), 2007.

[7] H. Shachnai and T. Tamir. On two class-constrained versions of the
multiple knapsack problem. Algorithmica, 29(3):442–467, 2001.

[8] H. Shachnai and T. Tamir. Polynomial time approximation schemes for
class-constrained packing problems. Journal of Scheduling, 4(6):313–
338, 2001.

[9] S. Zhou. A trace-driven simulation study of dynamic load balancing.
Technical Report UCB/CSD87/305, Univ. California, Berkeley, 1986.

[10] A. Karve, T. Kimbrel, G. Pacici, M. Spreitzer, M. Steinder, M. Sviri-
denko, and A. Tantawi. Dynamic application placement for clustered
web applications. In Proceedings of International World Wide Web
Conference (WWW), 2006.

[11] T. Kimbrel, M. Steinder, M. Sviridenko, and A. N. Tantawi. Dy-
namic application placement under service and memory constraints.
In Proceedings of International Workshop on Ecient and Experimental
Algorithms, 2005.

[12] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar, S. Kr-
ishnakumar, D. Pazel, J. Pershing, and B. Rochwerger. Oceanosla based
management of a computing utility. In Proceedings of International
Symposium on Integrated Management, 2001.

[13] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource overbooking and
application profiling in shared hosting platforms. In Proceedings of
OSDI, 2002.

[14] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer-
CVerlag, 2004.

[15] A. Turgeon, Q. Snell, and M. Clement. Application placement using
performance surfaces. In Proceedings of International Symposium on
High Performance Distributed Computing (HPDC), 2000.

[16] J. L. Wolf, P. S. Yu, and H. Shachnai. Disk load balancing for video
on-demand systems. ACM Multimedia Systems, 5(6):358–370, 1997.

[17] D. N. Serpanos, L. Georgiadis, and T. Bouloutas. MMPacking: A load
and storage balancing algorithm for distributed multimedia servers. IEEE
Transactions on Circuits and Systems for Video Technology, 8(1):25–30,
1998.

[18] Xueyan Tang and Jianliang Xu. Qos-aware replica placement for content
distribution. IEEE Trans. Parallel Distributed Systems, 16:2005, 2005.

[19] Hsiangkai Wang, Pangfeng Liu, and Jan jan Wu. A qoS-aware heuristic
algorithm for replica placement. In Proceedings of IEEE/ACM Interna-
tional Conference on Grid Computing, 2006.

[20] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms (2nd edition ed.). MIT Press and
McGraw-Hill, 1990.

[21] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, New Jersey, 1993.

[22] Gini index. http://en.wikipedia.org/wiki/Gini coefficient.

Chen Tian received the BS, MS and PhD degrees
from the Department of Electronics and Information
Engineering at the Huazhong University of Science
and Technology, China, in 2000, 2003, and 2008
respectively. He joined the faculty as a lecture in
the Department of Electronics and Information En-
gineering at the Huazhong University of Science and
Technology, China. His research interests include
distributed networks, wireless networks and network
architecture.

Hongbo Jiang received the B.S. and M.S. degrees
from Huazhong University of Science and Tech-
nology, China. He received his Ph.D. from Case
Western Reserve University in 2008. After that he
joined the faculty of Huazhong University of Sci-
ence and Technology as an associate professor. His
research concerns computer networking, especially
algorithms and architectures for high-performance
networks and wireless networks. He is a member
of the IEEE.

Arun Iyengar received the Ph.D. degree in com-
puter science from MIT. He does research and de-
velopment into Web performance, distributed com-
puting, and high availability at IBMs T.J. Watson
Research Center. Arun is Co-Editor-in-Chief of the
ACM Transactions on the Web, Founding Chair of
IFIP Working Group 6.4 on Internet Applications
Engineering, and an IBM Master Inventor. He is a
senior member of the IEEE.

Xue Liu received the BS degree in applied mathe-
matics and the MEng degree in control theory and
applications from Tsinghua University and the PhD
degree in computer science from the University of
Illinois, Urbana-Champaign, in 2006. From 2007 to
2009, he was an Assistant Professor in the School of
Computer Science at McGill University in Montreal,
Canada. He is currently an associate professor in the
Department of Computer Science and Engineering,
University of Nebraska-Lincoln. He was briefly with
the Hewlett-Packard Laboratories and IBM T.J. Wat-

son Research Center. His research interests include real-time and embedded
computing, performance and power management of server systems, sensor
networks, fault tolerance, and control. He is the author/coauthor of more than
20 refereed publications in leading conferences and journals in these fields.
He is a member of the IEEE.

Zuodong Wu received the BS from the Huazhong
University of Science and Technology, China, in
2010. He is for now a M.S. students in the Depart-
ment of Electronics and Information Engineering at
the Huazhong University of Science and Technology,
China. His research interest is network architecture.

PREPARED FOR IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2010 13

Jinhua Chen received the BS from the Huazhong
University of Science and Technology, China, in
2008. He is for now a M.S. students in the Depart-
ment of Electronics and Information Engineering at
the Huazhong University of Science and Technology,
China. His research interest is network architecture.

Wenyu Liu received the PhD and MS degrees from
the Department of Electronics and Information En-
gineering at the Huazhong University of Science and
Technology, China. received the BS degree from the
Department of Computer Science and Technology
at the Tsinghua University, China, in 1986. He is
a professor of electronics and information engi-
neering at the Huazhong University of Science and
Technology, China. His research interests include
image processing, distributed networks and wireless
networks. He is a member of the IEEE.

Chonggang Wang received his PhD degree from
Beijing University of Posts and Telecommunications
(BUPT). He was awarded a National Award for
Science and Technology Progress in Telecommu-
nications. He is currently with NEC Laboratories
America. His research focuses on Hybrid Optical
and Wireless Networks, Sensor Networks and Ap-
plications, Cognitive Radio Networks, Ubiquitous
and Distributed Computing, and Data Center. He
is an editor of ACM/Springer Journal of Wireless
Networks and an associate technical editor of IEEE

Communications Magazine. He is a senior member of the IEEE.

