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Abstract— 1 Secure media broadcast over the Internet poses
unique security challenges. One important problem for public
broadcast Location-Based Services (LBS) is to enforce access
control on a large number of subscribers. In such a system a
user typically subscribes to a LBS for atime interval (a, b) and
a spatial region (xbl, ybl, xtr, ytr) according to a 3-dimensional
spatial-temporal authorization model. In this paper, we argue
that current approaches to access control using key management
protocols are not scalable. Our proposal STauth minimizes the
number of keys which needs to be distributed and is thus scalable
to a large number of subscribers and the dimensionality of the
authorization model. We also demonstrate applications of our
algorithm to quantified-temporal access control (using∀ and
∃ quantifications) and partial order tree based authorization
models. We describe two implementations of our key manage-
ment protocols on two diverse platforms: a broadcast service
operating on top of a publish/subscribe infrastructure and an
extension to Google maps API to support quality (resolution)
based access control. We analytically and experimentally show
that the performance and scalability benefits of our approach
over traditional key management approaches.

Index Terms— Location based Services, Access Control, Key
Management, Scalability & Performance

I. I NTRODUCTION

The ubiquitous nature of the Internet has resulted in wide-
spread growth and deployment of location based services (LBS)
[2], [4], [5]. LBS (as the name indicates) provide information
with spatial-temporal validity to potentially resource constrained
wireless and mobile subscribers. Example services include: (i)
list all Italian restaurants in midtown Atlanta, (ii) current traffic
conditions at the junction ofpeach tree parkway andpeach
tree circle, (iii) cheapest gas station in downtown Atlanta
today. Secure LBS over an open channel such as the Internet or
a wireless broadcast medium poses unique security challenges.
LBS typically use a payment based subscription model using 3-
dimensional spatial-temporal authorization as follows: Apaying
useru subscribes for a spatial bounding box (xbl, ybl, xtr, ytr)
and a time interval (a, b); the subscription fee may be an arbitrary
function, sayfee ∝ (xtr − xbl)×(ytr − ybl)×(b − a). A user
u is allowed to read a broadcast from the LBS about a spatial
coordinate(x, y) at time t if and only if xbl ≤ x ≤ xtr andybl

≤ y ≤ ytr anda ≤ t ≤ b.
Several authors have argued that coarse grained access is not

sufficient in several applications where the data/servicesprovided
has dynamic attributes that determine its sensitivity [7],[9]. One

1A preliminary version of this paper appears in IEEE INFOCOM, 2008:
http://www.research.ibm.com/people/i/iyengar/Infocom08.pdf

common example of a dynamic attribute is time. A coarse grained
access control mechanism would be abstractly represented as a
{0, 1} matrix M : U × D, where U is the set of users and
D is the set of data items andM(u, d) = 1 ⇒ user u in U

can access data itemd in D. In a commercial setting, several
services are of the type: pay-per-view streaming data, pay-per-
limited time online games, etc. In such cases the access control
matrix M has to be expanded to include a dynamic attribute,
namely, timet. There are other scenarios wherein the spatial
attribute may be of interest. For example, in a military setting, a
map showing current military installations at strategic locations
may be considered highly sensitive. Hence, users may be limited
access only to smaller portions of the map or lower quality maps
as appropriate the user ’s role(s) and mission objectives.

A common solution for enforcing fine grained access in such
services is to encrypt the data and distribute the secret decryption
key (group key) only to the legitimate receivers. The general
approach is to use a key distribution center (KDC) for group key
management. A group is defined as a set of users that hold equiv-
alent authorizations. A user may be a part of zero (unauthorized
user) or more groups. Group key management is complicated due
to two reasons: (i) Group dynamics (a well studied problem in
literature) because of users joining and leaving a group at any
time. Scalable algorithm to manageone group is well studied
in literature: GKMP [21], LKH [31], [20], ELK [26]. These al-
gorithms provide optimized solutions for a KDC to update the
group key on member join and leave (subscription termination)
events to ensure that a user is able to decrypt the data only
when it is a member of the group of authorized users. (ii) Large
number of groups (new problem specific to LBS-like services).
Using a spatial-temporal authorization model, each unit ofdata
broadcast by a LBS may be destined to a potentially different
set of subscribers. Hence, the number of such sets of subscribers
(groups) may in the worst case be exponential (power set) in
the number of subscribers. This largely limits the scalability of
traditional group key management protocols in the context of
LBS.

In this paper we propose STauth a secure, scalable and ef-
ficient key management protocol for LBS-like services. STauth
minimizes the number of keys which needs to be distributed
and is thus scalable to a much higher number of subscribers
and the dimensionality of the authorization model. We useN

to denote the number of active users in the system andd to
denote the dimensionality of an authorization model (for instance,
the spatial-temporal authorization model discussed aboveis 3-
dimensional〈x, y, t〉).

In a group key management based approach, one would define
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the set of users within ad-dimensional bounding box as a group.
Suppose a useru1 subscribes for ad = 1 spatial range(20, 30)

then, we have one groupG = {u1}. Let us suppose that a new
useru2 subscribes for a range(25, 40), then we have three groups:
G1 = {u1} (for the range(20, 25)), G2 = {u1, u2} (for the range
(25, 30)), and G3 = {u2} (for the range(30, 40)). Observe that
the group key management server has to not only maintain more
keys (computing and storage cost) as the number of subscribersN

increases, but also update keys at one or more existing subscribers
as new users join/leave the network. Below, we briefly summarize
the drawbacks of using existing key management protocols for
location based services.

1) In the worst case, KDC managesO(2dN ) groups.
2) User join and leave requires the KDC to broadcastO(22d ∗

N) key update message.
3) The ELK protocol tolerates a certain level of packet losses

during key updates; however, none of the protocols can
tolerate arbitrary large packet losses.

4) Updates to the state maintained by the KDC (key hierarchy
in LKH and ELK) have to be serialized, thereby, making it
hard to replicate the KDC on multiple servers. This makes
it difficult to handle bursty loads on the KDC.

5) These protocols are vulnerable to purportedfuture group
keys based denial of service (DoS) attacks from unautho-
rized users. Typically, these protocols use a counter to iden-
tify the group keys. Each time the group key is updated (say,
due to a user join/leave), the counter is incremented. When
an authorized user has a group key identified by counter
c, and it receives a broadcast packet that is encrypted with
a future group key identified by counterc′ > c, the user
buffers the packet until it receives the key update messages
corresponding to the future group key. The unauthorized
users can launch a DoS attack on this buffer by flooding
the broadcast channel with packets that are purportedly
encrypted with future group keys.

6) As described above, an authorized user buffers packets until
it receives future group keys. This may cause large delays
and jitters in actually decrypting and delivering the plain-
text broadcast data to the client, thereby making this ap-
proach unsuitable for low-latency real-time broadcast ser-
vices (like, live audio/video teleconference). Packet losses
during key updates and the DoS attack described above
further complicate this problem.

Under the multi-dimensional authorization model, we use a
simple and yet powerful key management protocol using hier-
archical key graphs [7], [12] with several features:

1) Number of groups managed by KDC isO(1).
2) User join and leave cost is independent ofN .
3) Requires no key update messages and is thus trivially re-

silient to arbitrary packet losses in key updates.
4) Allows the KDC to have a small, constant and stateless

storage that is independent ofN andd.
5) Allows dynamic and on-demand replication of KDC servers

without requiring any interaction between the replicas (no
concurrency control for serializing updates on KDC state).

6) Resilient to purported future group key based DoS attacks
from unauthorized users.

7) Incurs only a small and constant (no jitter) computational
overhead and is thus suitable even for low latency real-time
broadcast services.

In the rest of this paper, we first describe a scalable key man-
agement algorithm for temporal access control. We compare our
algorithm analytically against other key management algorithms
and show that our approach offers significant performance and
scalability benefits. We demonstrate four applications of our al-
gorithm. First, we extend our algorithm to operate on quantifi-
cation operators like∀ and ∃ and demonstrate its usefulness to
quantified-temporal access control. Second, we describe exten-
sions to handle multi-dimensional authorization models (e.g.: spatial-
temporal access control). Third, present constructions tosupport
partial order trees based authorization models (e.g.: spatial-quality
access control). We sketch a prototype implementation of our
proposal on a publish/subscribe broadcast service and evaluate its
performance and scalability against traditional group keymanage-
ment approaches and more recent proposals in key management
algorithms for Geo-Spatial access control ([7], [9], [8]).We also
describe a prototype implementation of spatial-quality access con-
trol using Google maps API that demonstrates ease of use and
deployability of our approach.

The rest of this paper is organized as follows. Section II presents
our algorithms for temporal authorization in multimedia broad-
cast services. Sections III, IV and V presents our techniques for
constructing quantifications, multi-dimensional authorizations and
partial order trees respectively. Section VII discusses some related
work followed by a conclusion in Section VIII

II. T EMPORAL AUTHORIZATION

A. Overview

In this section, we present techniques for handling temporal
authorizations (one-dimensional) in broadcast services.In this
scenario we assume that a user needs to subscribe (by paying
a fee) to access the broadcast service. Each subscription has a
lifetime indicated by a time interval (a, b); note that(a, b) could be
different and highly fine grained for different user subscriptions.
When a user subscribes for a broadcast service S from time (a,
b) the service provider issues an authorization keyKa,b to the
user u. This ensures that:

• Given Ka,b a useru can efficiently deriveKt,t if a ≤ t ≤
b.

• Given Ka,b it is computationally infeasible for a useru to
guessKt,t if t < a or t > b.

The primitive described above helps us to construct a very simple
and efficient protocol for temporal access control on broadcast ser-
vices. At any given time instantt, the service provider broadcasts
a packetP (of say, audio/video data) as follows:

• Get current time instantt and computeKt,t.
• Broadcast〈t, EKt,t(P ), MACKt,t(P )〉.

EK(x) andMACK(x) denote an encryption and a message au-
thentication code of a stringx respectively. Note that all users
can potentially receive the broadcast message. An authorized sub-
scriber decrypts the payloadP as follows:

• Receive the broadcast message〈t, EKt,t(P ), MACKt,t(P )〉.
Note that the time instantt is in plain-text.

• A subscriber is authorized if it has a temporal authorization
for some time period(a, b) such thata ≤ t ≤ b. An autho-
rized subscriber can compute the decryption keyKt,t from
Ka,b, decrypts the broadcast message to obtain the payload
P and checks its integrity.
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The property of the authorization keyKa,b ensures that one can
efficiently computeKt,t from Ka,b if and only if a ≤ t ≤ b. In
the following section, we present an algorithm to efficiently and
securely construct such keys using hierarchical key graphs.

Algorithm 1: Key Derivation

Input: t, Ka,b

Output: Kt,t

DERIVE(t, Ka,b)
(1) if t < a or t > b

(2) return ⊥
(3) mid ← a+b

2
(4) if t = mid

(5) return Ka,b

(6) if t < mid

(7) Ka,mid ← H(Ka,b, 0)

(8) return DERIVE(t, Ka,mid)
(9) else
(10) Kmid+1,b ← H(Ka,b, 1)

(11) return DERIVE(t, Kmid+1,b)

B. Key Management Algorithm

In this section, we describe techniques to construct keys using
hierarchical key graphs [12], [31], [7] that satisfy the primitive
described in Section II-A. We first introduce some notation and
parameters used in our algorithm. Let(0, Tmax) denote the time
horizon of interest. Letδt seconds denote the smallest time gran-
ularity of interest. Let time equal tot denote thetth time unit,
where one unit time =δt seconds. Our algorithms efficiently
support temporal authorization at very low granularities (δt ∼
10−3 or 10−6). We associate a keyKa,b(S) as the authorization
key that permits a useru to access a broadcast serviceS in the
time interval(a, b).

We now construct a key tree that satisfies the property that
a useru can efficiently guessKt,t from Ka,b if and only if a

≤ t ≤ b. Each element in the key tree is labeled with a time
interval starting with the root(0, Tmax). Each element(a, b) in
the key tree has two children labeled with time intervals(a, a+b

2 )

and(a+b
2 +1, b). We associate a keyKa,b(S) with every element

(a, b) in the key tree. The keys associated with the elements of
the key tree are derived recursively as follows:

Ka, a+b
2 (S) = H(Ka,b(S), 0) (1)

K
a+b
2 +1,b(S) = H(Ka,b(S), 1)

whereH(K, x) denotes output of a pseudo-random function (PRF)
keyed by K for which the range is sufficiently large that the
probability of collision is negligible. The root of the key tree has
a key computed using the KDC’s secret master keyMK and S

is the name of the broadcast serviceK0,Tmax(S) = H(MK, S).
Observe that givenKa,b(S) one can derive all keys{Kt,t(S): a

≤ t ≤ b}. Also, deriving the keyKt,t(S) for anya ≤ t ≤ b from
Ka,b(S) requires no more thanlog2

b−a
δt applications ofH. Algo-

rithm 1 shows an algorithm for derivingKt,t from Ka,b. Figure
1 illustrates the construction of our key tree assumingTmax = 31
time units. We deriveK0,31(S) = H(MK, S). Then, we compute
K0,15(S) = H(K0,31(S), 0) and K16,31(S) = H(K0,31(S), 1).
One can recursively extend this definition to any arbitrarily small
time granularity at the expense of additional key derivation cost.

Fig. 1. Authorization Key Tree

KDC user
Simple N ∗ K K

LKH (2N − 1)K (log2 N + 1)K
ELK (2N − 1)K (log2 N + 1)K
TAC Tmax log log Tmax ∗ K 3K

STauth (max) K (2 log2
Tmax

δt
− 2)K

STauth (avg) K log2
b−a
δt

∗ K

TABLE IV

STORAGE COST

Having described the construction of our key tree, we pick an
authorization key for any arbitrary time interval (a, b) as follows.
One can show that any time interval(a, b) can bepartitioned
into no more than2 log2

Tmax

δt − 2 elements in the key tree.
For example, given a time interval(8, 19), we partition the time
interval into two subintervals(8, 15) and (16, 19) (see Figure 1).
We provide temporal authorization for a time interval(8, 19) by
issuing two authorization keysK8,15(S) andK16,19(S).

Security Analysis.We present a security analysis of our protocol
using the following cryptographic gameSTauth:
Setup: The KDC generates a randomρ-bit private master key
MK and outputs a public security parameterρ and a PRFH:
{0, 1}ρ × {0, 1}∗ → {0, 1}ρ.
Query: Subscriber adaptively issuesq = poly(ρ) queries to the
KDC for time intervals(ai, bi) (0≤ i < q and(ai, bi) 6= (0, Tmax)).
The KDC returnsKai,bi for the ith query.
Challenge: Subscriber pickst /∈ (ai, bi) (for any 0≤ i < q). The
KDC returns a random permutation of the set{Kt,t, R}, where
R is a random bit string of lengthρ. The KDC challenges the
subscriber to distinguish betweenKt,t andR in the output.

Let dist(K, R) denote the probability with which a PPT (Prob-
abilistic Poly Time) subscriber can distinguish keyK from a
random bit stringR (of equal lengths). We note that for any
(a, b) = anc(ai, bi), whereanc denotes an ancestor of the node
(ai, bi) in the authorization key tree, the subscriber can trivially
distinguishKa,b from R (by derivingKai,bi from Ka,b); hence,
dist(Ka,b, R) = 1. Trivially, given Kai,bi for any range(ai, bi),
dist(K0,Tmax , R) = 1. We hypothesize that anyKa,b (where(a, b)

is an ancestor of(ai, bi)) is secure against key recovery, while
it fails to satisfy key indistinguishability [18]. However, we note
that only the leaf nodes in the authorization key tree (namely,
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N number of users
H PRF
X xor operation
E encryption function
D decryption function
K key size in bits

n1, n2 ELK parameters
Tmax total time period
rate message broadcast rate
δt time granularity

TABLE I

NOTATION

δt Num Keys Time (µs)
one month 6 12.74
one week 10 20.02
one day 16 30.94
one hour 26 49.14

one minute 38 70.98
one second 48 89.18
one millisec 68 125.58

TABLE II

MAXIMUM NUMBER OF KEYS AND COMPUTATION TIME

b − a Num Keys Time (µs)
one month 21 40.04
one week 19 38.22
one day 16 35.49
one hour 11 30.94

one minute 5 25.48
one second 1 21.84

TABLE III

AVERAGE NUMBER OF KEYS AND

COMPUTATION TIME WITH δt = 1 SECOND

Forward/Backward Secrecy Collusion Resistance Distributed KDC KDC-User Channel Reliable Key Update
Simple Yes Yes Yes unicast No
LKH Yes Yes No multicast No
ELK Yes Yes No multicast Yes
TAC Yes Yes Yes unicast Yes

STauth Yes Yes Yes unicast Yes

TABLE V

SECURITY PROPERTIES

Join (KDC) Join (users) Terminate (KDC) Terminate (users) Msg (user)
Simple N ∗ K N ∗ K N ∗ K N ∗ K -
LKH (log2 N + 1)K (log2 N + 1) ∗ N ∗ K 2 log2 N ∗ K 2 log2 N ∗ N ∗ K -
ELK (log2 N + 1)K (log2 N + 1) ∗ K (log2 N − 1)(n1 + n2) (log2 N − 1) ∗ (n1 + n2) ∗ N -
TAC 3K 3K - - 5K

STauth (max) (2 log2
Tmax

δt
− 2)K (2 log2

Tmax
δt

− 2)K - - -
STauth (avg) log2

b−a
δt

∗ K log2
b−a
δt

∗ K - - -

TABLE VI

COMMUNICATION COST

Join (KDC) Join (users) Terminate (KDC) Terminate (users) Msg (user)
Simple N ∗ E N ∗ D N ∗ E N ∗ D D

LKH log2 N(H + 3E) (log2 N + 1) ∗ N ∗ D 2 log2 N ∗ E log2 N ∗ D D

ELK 2(2N − 1)H + 2E + (log2 N + 1)E - 8 log2 N ∗ E log2 N ∗ D + 5 log2 N ∗ E D

TAC - - - - 5H + D

STauth (max) (4 log2
Tmax

δt
− 2)H - - - H log2

b−a
δt

+ D

STauth (avg) (log2
Tmax

δt
+ log2

b−a
δt

− 1)H - - - −H log2(rate ∗ δt) + D

TABLE VII

COMPUTATION COST

Fig. 2. Key Recovery and Key Indistinguishability− Set of revealed keys:
{K0,7}, Keys resistant to recoveryKR = {K0,15, K0,31} and Keys that
are indistinguishable from randomKI = {K8,15, K16,31, · · · }

Kt,t) are used for encrypting broadcast messages. Hence, the
challenge phase attempts to establish key indistinguishability only
for those encryption keys (note that composability with secure
encryption algorithm requires that the encryption keys satisfy key
indistinguishability). Figure 2 shows keys that are resistant to key

recovery (KR) and key indistinguishability (KI) whenK0,7 is
revealed to the subscriber.

The advantage for an subscriberAdvSTauth is defined asdist(Kt,t,
R). Let AdvPRF denote the advantage for an subscriber against
a pseudo-random functionH defined using the following crypto-
graphic gamePRF :
Setup: The KDC generates a privateρ-bit key K and outputs a
public security parameterρ and a PRFH: {0, 1}ρ × {0, 1}∗ →
{0, 1}ρ.
Query: Subscriber adaptively issuesq = poly(ρ) queries to the
KDC for inputsx0, x2, · · · , xq−1. The KDC returnsyi = H(K, xi)

for the ith query.
Challenge: The subscriber picksx /∈ {xi} and the KDC returns
a random permutation of the set{y, R} such thaty = H(K, x),
where R is a random bit string. The KDC challenges the sub-
scriber to distinguish betweeny andR in the output.

Theorem 2.1: For any PPT adversary,AdvSTauth ≤ Tmax ∗
AdvPRF , whereTmax is the size of the temporal dimension.

Proof: Let A denote a PPT algorithm that distinguishesKt,t

andR with probabilityAdvSTauth. Let us consider a simple case
with Tmax = 2. We have three keysK0,1, K0,0 = H(K0,1, 0)
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and K1,1 = H(K0,1, 1). Let us suppose in the query phase of
STauth game, the subscriber queries forK0,0. In the challenge
phase, the subscriber pickst = 1 and is presented with a random
permutation of the set{K1,1, R}. It is easy to see that if the
subscriber can use algorithmA to distinguishK1,1 from R with
probability AdvSTauth, then it can defeatPRF game with at
least the same probability, namely,AdvPRF ≥ AdvSTauth. One
can use proof techniques similar to [18] to show thatAdvSTauth

is no more thanAdvPRF amplified by the maximum number of
keys queried in theSTauth game (Tmax). The proof details are
outside the scope of this paper.
Cost Analysis.In general, if one uses ar-ary key tree (r ≥ 2), any
range can always be subdivided into no more thanr(logr(

Tmax

δt )−
1) subinterval. One can show that this is a monotonically increas-
ing function in r (for r ≥ 2) and thus has a minimum value
when r = 2. One can also show that if the time interval(a, b)

were chosen uniformly and randomly from(0, Tmax) then on an
average(a, b) can be subdivided into(r−1) logr

b−a
δt subintervals.

This is also a monotonically increasing function inr (for r ≥ 2)
and thus has a minimum value atr = 2. However, asr increases
the height of the key tree (logr(Tmax

δt )) decreases, that is, the
cost of key derivation decreases monotonically withr. However,
since the PRFH is computationally inexpensive (< 1µs on a
typical 900 MHz Pentium III processor), we focus our efforts
on minimizing the size of the authorization key rather than the
key derivation cost. Tables II and III show the maximum and
the average number of keys and computation time required for
different values ofδt for a time interval of one year using a binary
authorization key tree (r = 2) respectively.

C. Comparison with Other Approaches

In this section, we present an analytical comparison of our
approach against other group key management protocols.Simple
uses a keyK(u) for a useru. When the group key needs to be
updated (because of some user joining or leaving the system),
the KDC chooses a new random group key. The KDC sends one
message per group memberu that includes the new group key
encrypted withK(u). LKH [31] builds a logical key hierarchy
on the set of authorized users to enhance the efficiency of the
key update protocol.ELK [26] introduces the concepts of hints to
enhance the efficiency of LKH protocol and improve its resilience
to arbitrary packet loss of key update messages.

Atallah et. al. [7], [9], [8] (henceforth referred to as TAC in
this paper) have proposed key management algorithms for han-
dling temporal capabilities. Their approach presents an alternate
implementation of our high level protocol described in Section
II-A. Similar to our approach they use a directed acyclic graph
(DAG) over the one-dimensional space (e.g.: time). The atomic
primitive supported by their approach is to derive a key along a
directed edge from a node with labellu to a node with labellv.
Each nodev in the graph is associated with a keyKv; the keysKv

are generated randomly for every nodev. Given a directed edgelu
→ lv is labeled with a public informationyu,v = Kv ⊕ FKu

(lv),
whereFK(s) denotes a family of pseudo-random functions on an
input keyK and strings. GivenKu and the public labelyu,v, Kv

is derived asKv = FKu
(lv) ⊕ yu,v. The authors propose using

short cut edges to trade-off the size of public storage and the key
derivation cost.

On the positive side, TAC requires onlyO(1) keys to be dis-
tributed when a new user joins the network; while our approach

requiresO(log T ) keys. We note that this is a one time com-
munication cost incurred when a user subscribes to the system.
TAC incursO(1) key derivation cost, in comparison toO(log T )

key derivation cost incurred by our approach. We show below that
using a key caching based approach one can reduce the amortized
key derivation cost toO(1) in our approach.

On the flip side, TAC incursO(1) communication cost for
key derivation. While TAC does not have to communicate with
the KDC to derive a key, it does require access to authenticated
‘public information’ (namely, labels on directed edges in TAC) in
order to derive keys. This public information could be retrieved
by a subscriber once-for-all when she joins the network or onan
on-demand basis. In either approach, the amortized communica-
tion cost to pull out public information per derived key is O(1).
In contrast STauth requires no public information and thus no
communication cost for key derivation.

TAC requires at leastO(T ∗ log log T ) public storage. Using a
fine grained access control (say,δt = one second),Tmax for one
year is about3.15 ∗ 107. Hence, the cost of public storage may
become prohibitively high; on the other hand, our approach can
support very fine granularity (say,δt = 1µs). While public storage
may be made available to all users (authorized or not) without
compromising on access control, the integrity and availability of
public storage must be guaranteed. For instance, the publicstorage
may become a target for DoS attacks; also, a compromised public
storage system may serve corrupted data, making it impossible for
legitimate users to derive the decryption keys.

Security Properties.Table V compares the properties of different
group key management approaches. TheLKH andELK approach
have a centralized key graph data structure that is non-trivial to
be distributed amongst multiple KDCs. On the other hand, our
approach can use multiple KDC servers by just sharing the read-
only master keyMK amongst them. Note that since all temporal
authorization keys are derivable from the master keyMK we
do not require the KDC servers to share and update a common
data structure. This allows on-demand creation of KDC server
replicas to handle bursty KDC traffic. Our approach does not
require a key update protocol, thereby making it trivially tolerant
to arbitrary packet losses in key update messages. Finally,our
approach does not require a multicast channel between the KDC
and the user, since the KDC does not have to broadcast any key
update messages to the users.

Storage Cost.Table IV compares the storage cost at the KDC
and the users for different approaches. Our approach requires the
KDC to only store the master keyMK (rest of the keys can be
computed on the fly). On the other hand, in theLKH and theELK
approach the storage cost at the KDC grows linearly with the
number of usersN . In our approach, the storage cost at a user is
on an average logarithmic in the length of the subscription time
interval.

Communication Cost. Table VI compares the communication
cost at the KDC and the users for different key management
protocols. The key advantage of our approach is that a key needs
not be updated once it is given to the user. A join operation
requires only an interaction between the KDC and the new user;
a subscription terminate operation is cost free. One shouldnote
that the temporal authorization model simplifies the user leave
operation by a priori determining the time interval(a, b). On
the other hand,LKH join, LKH leave andELK leave sends
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O(log2 N) size message to all the usersO(N); andELK join
sendsO(log2 N) size message only to the new user while compro-
mising backward secrecy for at most onetime interval. Further,
the KDC has to maintain the set of active users in order to update
the logical key hierarchy data structure.

Computation Cost. Table VII compares the computation cost at
the KDC and the users for different approaches. Our approach
requires only simple PRF computations at the KDC to handle
a new user join. TheLKH join, LKH leave andELK leave
needs to encrypt and update at leastO(log2 N) keys in the key
graph and broadcast a key update message to all the users. As
described earlier our approach has zero cost for key update and
user leaves. However, our approach incurs a small computation
cost for processing broadcast packets. Given the time instant t in
the packet header, the user has to compute the keyKt,t from an
authorization keyKa,b (a ≤ t ≤ b). This may requirelog2

b−a
δt

applications ofH. Using standard cryptographic algorithms (say,
HMAC-SHA [23], [17] for H and AES-CBC-128 [25] forE),
the cost of key derivation will be about two orders of magnitude
smaller than that of encryption/decryption, thereby making this
approach suitable for low latency real-time applications (like au-
dio and video broadcast for a teleconference). On the other hand,
low latency real-time applications that useLKH and ELK may
experience large delays and unexpected jitters due to key updates
and packet losses during key updates (application packets need
to be buffered until the user receives an updated key). Indeed an
unauthorized subscriber (adversary) may exploit this vulnerability
to launch a denial of service attack (DoS) by flooding subscribers
with applications packets that are purportedly encrypted with fu-
ture group keys. We can easily mitigate such an attack in our
approach by appending a MAC (message authentication code)
MACKt,t(P ) to the broadcast message.

Key Caching.One can additionally use a caching mechanism de-
scribed below to decrease the key derivation cost. Let us suppose
that a user received a broadcast packetP at timet. In the process
of computingKt,t from its authorization keyKa,b (a ≤ t ≤ b),
the user computes several intermediate keysKa′,b′ (a ≤ a′ ≤ t

≤ b′ ≤ b). The user can cache these intermediate keys for future
use. Say, the user were to receive its next broadcast packetP ′ at
time t′, then the user could potentially computeKt′,t′ from some
Ka′,b′ such thata ≤ a′ ≤ t ≤ t′ ≤ b′ ≤ b. Indeed, this would
require onlylog2

b′−a′

δt applications ofH (b′−a′ ≤ b−a). One can
show that if the mean inter-packet arrival time is1rate then, the
mean per-packet key derivation cost drops to−H log2(rate ∗ δt)

(assuming,δt < 1
rate ). An interesting observation is that the per-

packet key derivation cost is independent of the length of the
subscription intervalb− a (for reasonably large intervals(a, b)).
Also, note that asrate increases the per-packet key derivation
cost decreases.

III. QUANTIFICATIONS

A. Overview

In this section, we present an application of our key man-
agement algorithm to handle universal and existential quantifica-
tions over the temporal domain. We motivate our algorithm using
quantified-temporal access control on broadcast data. Informally,
a ∀-temporal access control constraint is specified using a three
tuple: (∀, beg, end). A useru satisfies this constraint if it temporal
authorization holdsfor all time instantst ∈ (beg, end). Similarly,

a useru satisfies a∃-temporal access control rule (∃, beg, end)
if its temporal authorizations holdsfor some time instantt ∈
(beg, end).

In the context of broadcast services, we assume that every unit
of broadcast data (say an objecto or a file f ) is tagged with a
quantified-temporal access control rule. We also assume that the
broadcast data is encrypted with a randomly chosen secret key
randK . Now, we require the encrypted broadcast data be made
publicly available to all subscribers. However, the data should
be intelligible to a user only if its temporal authorization(a, b)

satisfies the quantified-temporal constraint associated with the
data. Observe that a useru with a temporal authorization(a, b)

can satisfy a (∀, beg, end) constraint if and only ifa ≤ beg ≤
end ≤ b; and satify a (∃, beg, end) constraint if and only if (b ≥
beg ∧ a ≤ end).

In our key management algorithm, we associate an authoriza-
tion key AKa,b with a time interval(a, b). We associate an en-
cryption keyEK∀,a,b with a ∀-temporal constraint (∀, beg, end)
and EK∃,a,b with a ∃-temporal constraint (∃, beg, end). Our
enforcement protocol is similar to Section II. A broadcast data
with a quantified-access control constraint (q, beg, end) (q ∈ {∀,
∃}) is encrypted with an encryption keyEKq,beg,end. Only an
authorized user can derive the encryption keyEKq,beg,end from
its authorization keyAKa,b and thus decrypt the broadcast data.
We construct the authorization keyAKa,b and the encryption keys
EK∀,a,b andEK∃,a,b such that:

• Given an authorization keyAKa,b, a useru can efficiently
derive any encryption keyEK∀,beg,end if a ≤ beg ≤ end ≤
b.

• Given an authorization keyAKa,b it should be computation-
ally infeasible to derive any encryption keyEK∀,beg,end if
beg < a ∨ end > b.

• Given an authorization keyAKa,b, a useru can efficiently
derive any encryption keyEK∃,beg,end if b ≥ beg ∧ a ≤
end.

• Given an authorization keyAKa,b it should be computation-
ally infeasible to derive any encryption keyEK∃,beg,end if
b < beg ∨ a > end.

B. Key Management Algorithm

1) ∀-Temporal Authorization: We observe that a∀-temporal
constraint reduces to that of a simple temporal access control
constraint whenbeg = end = t (see Section II). We leverage
the same key management algorithm described in Section II as
follows. Given a time interval(a, b) the authorization keyAKa,b

= Ka,b is constructed using the same key management algorithm
as that described in Section II. Now, we generate the encryption
key EK∀,beg,end as follows. Let(beg1, end1), · · · , (begn, endn)

minimally partition the range(beg, end), such that(begi, endi)

(for all 1 ≤ i ≤ n) are elements on the key tree. Now we
construct the encryption key as shown in Equation 2. For example,
EK∀,0,11 = K0,7 ⊕ K8,11.

EK∀,beg,end =

n
⊕

i=1

Kbegi,endi (2)

Observe that given an authorization keyAKa,b such thata ≤ beg

≤ end ≤ b, an authorized user can efficiently deriveKbegi,endi

(for all 1 ≤ i ≤ n) sincea ≤ beg ≤ begi ≤ endi ≤ end ≤ b.
For example, an authorized useru with authorization keyK0,15
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can deriveK0,7 = H(K0,15, 0), K8,11 = H(H(K0,15, 1), 0), and
encryption keyEK∀,0,11 = K0,7 ⊕ K8,11.

Let us consider an unauthorized useru′. A useru′ is unautho-
rized if the temporal authorization for useru′ fails for some time
instant t ∈ (beg, end). From the temporal authorization model
(Section II) it is evident that it should be computationallyinfea-
sible for the useru′ to guessKt,t. Hence, it should be computa-
tionally infeasible for the useru′ to guessKbegj ,endj such that
begj ≤ t ≤ endj and 1≤ j ≤ n. Note that such aj exists sincebeg
≤ t ≤ end and(begi, endi) partitions the range(beg, end). Hence,
without knowingKbegj ,endj it is infeasible for the unauthorzed
useru′ to guess the encryption keyEK∀,beg,end.

2) ∃-Temporal Authorization: We now focus on the(∃, beg, end)

access control constraints. We leverage the same key management
algorithm described in Section II to handle∃-temporal constraints
as follows. Let us suppose that a useru is authorized for some
time interval (a, b). For the sake of simplicity, let us suppose
that (a, b) exactly matches an element in the authorization key
tree in Section II. If not the algorithm described below should
be duplicated for every partition of(a, b) in the authorization key
tree. Let(a1, b1), · · · (am, bm) denote the ancestors of element
(a, b) on the authorization key tree with(a1, b1) = (0, Tmax).
Now, the authorization key for time interval(a, b) is constructed
as shown in Equation 3. For example, the authorization key for
time interval(0, 15) is AK∃,0,15 = {K0,15, F (K0,31)}.

AK∃,a,b = Ka,b, F (Ka1,b1), · · · , F (Kam,bm) (3)

whereF is a one-way collision free hash function. The encryption
key for a broadcast data with access control constraint(∃, beg, end)

is constructed as shown in Equation 4. Let(beg1, end1), · · · ,
(begn, endn) minimally partition the range(beg, end), such that
(begi, endi) (for all 1 ≤ i ≤ n) are elements on the key tree. For
example, the encryption keys for a access control constraint (∃,
0, 11) isEK∃,0,11 = {F (K0,7), F (K8,11)}.

EK∃,beg,end = F (Kbeg1,end1), · · · , F (Kbegn,endn) (4)

The encryption keyrandK for the broadcast data is randomly
chosen andrandK is encrypted using key encryption keys from
EK∃,beg,end and broadcast along with the data. An authorized
useru with AK∃,0,15 = {K0,15, F (K0,31)} can computeK0,7

from the authorization keyK0,15. It can then useF (K0,7) to
decrypt the filef ’s metadata and obtain the file encryption key
K(f).

One can easily observe that the authorization keyAK∃,a,b

satisfies the following property: Given any element(x, y) in the
authorization tree such thata ≤ x ≤ y ≤ b, an useru can compute
H(Kancx,ancy) for all ancestors(ancx, ancy) of the element
(x, y) on the authorization key tree. Recall that a useru satisfies
the constraint (∃, beg, end) if and only if there exists a time instant
t ∈ (beg, end) ∩ (a, b). Since,t ∈ (a, b), the useru can compute
F (Kanct1,anct2)) for all ancestors(anct1, anct2) of the element
(t, t). Sincet ∈ (beg, end), there exists a partitionj of (beg, end)

such thatt ∈ (begj , endj) (1 ≤ j ≤ n), that is, (begj , endj) is
an ancestor of the element(t, t) in the authorization tree. Hence,
the useru can compute the encryption keyF (Kbegj ,endj ).

Let us consider an unauthorized useru′. A useru′ is unautho-
rized if a > end ∨ b < beg. Let us consider the first casea > end.
Hence, for all partitions of(beg1, end1), · · · (begn, endn) of the
range(beg, end), b ≥ a > endi. Therefore, for noi, (begi, endi) ∈
(a, b), that is, it is infeasible to guessKbegi,endi (and thus guess

the encryption keyF (Kbegi,endi)) from Ka,b (and thus from the
authorization keyAK∃,a,b). Also, for no i, (a, b) ∈ (begi, endi),
that is, the element(begi, endi) is not an ancestor of the element
(a, b) on the authorization key tree, and thus the authorization key
AK∃,a,b does not include the encryption keyF (Kbegi,endi). A
similar argument holds for the second caseb < beg.

C. Comparison with Group Key Management Approaches

We compare the cost of our key management algorithm with
the group key management approaches. Tables VIII, IX and X
shows the costs for our key management algorithm. The security
properties of our approach is identical to that of Table V. Observe
that the storage, communication and computation costs are small
and independent of the number of users in the system. Also, the
key derivation cost is very small when compared to the decryption
cost, thereby ensuring that our approach adds only a small (∼1%)
overhead.

The group key management protocols define a groups based
on the quantified-temporal access control constraint(q, beg, end).
When a useru’s temporal authorization begins to satisfy the con-
straint(q, beg, end) the user is added to the group; and when the
temporal authorization begins to fail the constraint(q, beg, end)

the user is removed from the group. Hence, the number of groups
equals the number of constraints and average size of a user group
for a (∀, beg, end) constraint isN ∗ max((b−a)−(end−beg),0)

Tmax
and

that for a (∃, beg, end) constraint isN ∗ (b−a)+(end−beg)
Tmax

as-
suming(a, b) and(beg, end) are chosen uniformly and randomly
from (0, Tmax). The per-group management cost for group key
management protocols has already been described in SectionII.
Evidently, quantification based constraints exacerbate the cost of
group key management based protocols by requiring the KDC to
manage multiple groups with large number of overlapping users
amongst these groups.

IV. M ULTI -DIMENSIONAL AUTHORIZATION

A. Overview

In this Section, we extend our key management algorithms to
operate on multi-dimensional authorization models. In this sec-
tion, we use location based services (LBS) as a motivating ex-
ample. Location based services provide information with spatial-
temporal validity, say, traffic information at the junction(x, y)

at time t. An LBS service uses a spatial-temporal authorization
model as follows: A useru subscribes for a spatial bounding box
(xbl, ybl, xtr, ytr) and a time interval (a, b). A useru is allowed
to read a broadcast from the LBS about a spatial coordinate(x, y)

at time t if and only if xbl ≤ x ≤ xtr andybl ≤ y ≤ ytr anda

≤ t ≤ b.
Similar to the temporal authorization model, we associate akey

Kxbl,ybl,a,xtr,ytr,b with a spatial-temporal bounding box (xbl, ybl,
a, xtr, ytr, b). We use a broadcast protocol that is very similar
to that used in temporal authorization model in Section II. A
broadcast include〈x, y, t, EKx,y,t,x,y,t(P )〉. Only an authorized
subscriber can compute the encryption keyKx,y,t,x,y,t and thus
decrypt the broadcast packetP . We construct the keys such that:

• Given Kxbl,ybl,a,xtr,ytr,b a useru can efficiently derive
Kx,y,t,x,y,t for all xbl ≤ x ≤ xtr andybl ≤ y ≤ ytr anda

≤ t ≤ b.
• GivenKxbl,ybl,a,xtr,ytr,b it is computationally infeasible for

a useru to guessKx,y,t,x,y,t if x < xbl or x > xtr or y <

ybl or y > ytr or t < a or t > b.
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KDC user
∀ (max) K (2 log2

Tmax
δt

− 1)K

∀ (avg) K (log2
b−a
δt

)K

∃ (max) K (4 log2
Tmax

δt
− 3)K

∃ (avg) K (2 ∗ log2
b−a
δt

+ 1)K

TABLE VIII

QUANTIFICATIONS: STORAGE COST

Join (KDC) Join (user) Leave (KDC/user)
∀ (max) (2 log2

Tmax
δt

− 2)K (2 log2
Tmax

δt
− 2)K -

∀ (avg) (log2
b−a
δt

)K (log2
b−a
δt

)K -
∃ (max) (4 log2

Tmax
δt

− 3)K (4 log2
Tmax

δt
− 3)K -

∃ (avg) (2 ∗ log2
b−a
δt

+ 1)K (2 ∗ log2
b−a
δt

+ 1)K -

TABLE IX

QUANTIFICATIONS: COMMUNICATION COST

Join (KDC) Join (user) Leave (KDC/user) Key Derivation
∀ (max) (4 log2

Tmax
δt

− 2)H - - (4 log2
b−a
δt

− 2)H

∀ (avg) (log2
Tmax

δt
+ log2

b−a
δt

− 1)H - - (log2
b−a
δt

+ log2
end−beg

δt
− 1)H

∃ (max) (6 log2
Tmax

δt
− 3)H - - (log2

b−a
δt

+ 1)H

∃ (avg) (log2
Tmax

δt
+ 2 ∗ log2

b−a
δt

)H - - (log2(b − a) − log2 |(a, b) ∩ (beg, end)| + 1)H

TABLE X

QUANTIFICATIONS: COMPUTATION COST

KDC User
TAC (Xmax log log Xmax)d 2d ∗ K

STauth(max) K 2d(2 ∗
∑d

i=1 log2 Xi
max

d
− 1) ∗ K

STauth(avg) K 2d−1(
∑d

i=1 log2 xi

d
) ∗ K

TABLE XI

STORAGE COST

Join (KDC/User) Msg (user)
TAC 2d ∗ K 2d+1 ∗ K

STauth(max) 2d(2 ∗
∑d

i=1 log2 Xi
max

d
− 1) ∗ K -

STauth(avg) 2d−1(
∑d

i=1 log2 xi

d
) ∗ K -

TABLE XII

COMMUNICATION COST

Join (KDC) Join (User) Terminate (KDC/user) Msg (User)
TAC - - - 2d ∗ H + D

STauth (max) 2d(2 ∗
∑d

i=1 log2 Xi
max

d
− 1) ∗ H - - 2d(2 ∗

∑d
i=1 log2 xi

d
− 1) ∗ H + D

STauth (avg) 2d−1(
∑d

i=1 log2 Xi
max

d
+

∑d
i=1 log xi

d
− 1) ∗ H - - 2d(2 ∗

∑d
i=1 log2 xi

cache
d

− 1) ∗ H + D

TABLE XIII

COMPUTATION COST

B. Key Management Algorithm

Let us suppose thatX1, X2, · · · Xd denote thed orthogonal
domains. Without loss of generality we assume that the minimum
and maximum values from a domaini is 0 andXi

max respectively.
We construct a key tree starting from the root element (0, 0,
· · · , 0, X1

max, X2
max, · · · Xd

max). We divide each element (X1
a ,

X2
a , · · · Xd

a , X1
b , X2

b , · · · Xd
b ) into 2d elements as follows.

The bottom left corner of these2d bounding boxes can be com-
pactly represented as a cartesian product as:{X1

a , X1
a+X1

b

2 } ×
{X2

a , X2
a+X2

b

2 } × · · · × {Xd
a , Xd

a+Xd
b

2 }. Each bounding box

is for size (X
1
b−X1

a

2 , X2
b−X2

a

2 , · · · , Xd
b −Xd

a

2 ). Given the lower
left corner and the size of each bounding box, one can easily
determine the top right corner. For each of these2d bounding
boxes we derive keys as follows:KX′1

a ,X′2
a ,··· ,X′d

a ,X′1
b ,X′2

b ,··· ,X′d
b

= H(KX1
a,X2

a,··· ,Xd
a ,X1

b ,X2
b ,··· ,Xd

b , ξ1ξ2 · · · ξd), where ξi = 0 if
X ′i

a = Xi
a andξi = 1 otherwise.

Tables XIII, XII and XI show the computation, communication
and storage cost incurred by our approach. Note that the costs
tend to grow exponentially in the number of dimensionsd. For
typical spatial-temporal based LBS applications,d = 3 and thus
the cost of our key management algorithms would be acceptably
small. Note thatxi denotes the extent of an authorization on the
ith domain and (x1

cache, x2
cache, · · · , xd

cache) denotes the size of
the smallest cached bounding box that includes thed-dimensional
coordinate in the broadcast message.

Distribution Parameter x

Exponential 1
λ

= 0.01Xmax 2800

Exponential 1
λ

= 0.1Xmax 2320

Exponential 1
λ

= 0.5Xmax 272

Gaussian µ = 0.5Xmax, σ = 0.01Xmax 2768

Gaussian µ = 0.5Xmax, σ = 0.1Xmax 2477

Gaussian µ = 0.5Xmax, σ = 0.5Xmax 2111

Zipf γ = 0.01 238

Zipf γ = 0.1 288

Zipf γ = 0.5 2192

TABLE XVI

d=3, N = 10
2 , x

Xmax
= 0.1

Fig. 4. Partial Order Trees
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Fig. 3. User Join: Group Key Management

N x

10 1.12
102 3.03
103 216

104 2160

105 21600

TABLE XIV

d=3, x
Xmax

= 0.1

x
Xmax

x

0.01 1
0.05 4
0.1 216

0.15 254

0.20 2128

TABLE XV

d=3, N = 10
3

C. Comparison with Group Key Management Approaches

In this section we compare our approach with that of a group
key management algorithm. In a group key management based ap-
proach, one would define the set of users within ad-dimensional
bounding box as a group. For example, let us consider ad=1
spatial domain. Suppose a useru1 subscribes for a spatial range
(20, 30) then, we have one groupG = {u1}. Let us suppose
that a new useru2 subscribes for a range(25, 40), then we have
three groups:G1 = {u1} (for the range(20, 25)), G2 = {u1, u2}
(for the range(25, 30)), andG3 = {u2} (for the range(30, 40)).
Observe that the group key management server has to not only
maintain more keys (computing and storage cost) as the number
of subscribersN increases. The server also needs to update active
subscribers, likeu1, with new group keys (communication cost)
as new users join the system. Additionally, the key server has to
maintain all subscriptions made by all active subscribers in order
to determine the key updates. Our approach allows the key server
to bestateless and ensures that the cost of a subscription is small
and independent of the number of subscribersN . The stateless
nature of our authorization service allows us to distributeand
replicate iton demand to handle bursty loads.

In this section, we analytically compare the communication
cost incurred by the key management server using our approach
and the group key management approach. Let us suppose that
there areN active subscribers in the system. When a new user
u joins the system, the key management server needs to update
the group keys of all those users whose bounding box overlaps
with that of useru. Let us suppose that (x1, x2, · · · , xd) denote
the average size of a subscription range along thed-dimensions.
The subscription range along theith dimension is assumed to
be chosen uniformly and randomly from (0,Xi

max). Hence, the
probability that a subscription range of the new useru overlaps
with an active useru′ in the ith dimension is 2xi

Xi
max

(if, xi <

Xi
max

2 ). Note that ifxi ≥ Xi
max

2 then the probability of overlap
is one. The bounding boxes for a useru and a useru′ overlap
if their subscriptions overlap on all thed-dimensions. Hence, the
probability that the bounding box of a new useru overlaps with
some active useru′ is given by equation 5. Therefore, the key
update cost isN*Proverlap.

Proverlap =

∏d
i=1(2xi)

∏d
i=1(X

i
max)

= 2d
d

∏

i=1

xi

Xi
max

(5)

For every useru′ whose subscription range overlaps with useru,
the key server has to break up the bounding box into an averageof
2d sub-boxes. Figure 3 illustrates the creation of new sub-boxes
are new users join the system for ad=2 dimensional domain. The
size of the average key update message for every overlappinguser
u′ is 2d keys. Therefore, the total cost of a new user join using

the group key management is given by Equation 6.

costgkm = 2d ∗N ∗ 2d
d

∏

i=1

xi

Xi
max

(6)

The cost of a new user join in our key management protocol is

costour = 2d−1 ∗
∑d

i=1 log xi

d . The ratio of the costs is given by
Equation 7.

costgkm : costour =
2d+1 ∗N ∗ d
∑d

i=1 log xi
∗

d
∏

i=1

xi

Xi
max

(7)

Let us suppose that the subscription range along each dimension
xi = x and the maximum subscription range along each dimen-

sionXi
max = Xmax. Then the ratio becomes2

d+1∗N
log x *

(

x
Xmax

)d
.

Now, settingN = 104, d = 3 and x
Xmax

= 0.1, we observe that
costgkm:costour is smaller than one only ifx ≥ 2160. Tables XIV
and XV shows the maximum value ofx for d = 3-dimensional
domain such thatcostour ≤ costgkm for different values ofN
and x

Xmax
.

One should note that the uniform and random distribution of
the subscription rangexi over theXi

max favors the group key
management approach since it largely reduces the probability of
overlap (Equation 5). However, a realistic scenario wherein a large
collections of users share common interests is typically modeled
using auto-correlated or heavy tailed distributions. Table XVI
shows the largest subscription range such thatcostour ≤ costgkm

for three distributions: exponential, gaussian and zipf distributions
with various parameter values. Note that these distributions are
truncated and renormalized to the range(0, Xmax). Observe that
as the standard deviation increases, the probability of overlap
between two subscription ranges decreases, thereby reducing the
cost of the group key management algorithms. On the other hand,
our approach is agnostic to the distribution of user interests. Table
XVI demonstrates the ability of our approach to handle largeand
fine grained domains and yet achieve significantly lower costs
than the group key management approach.

V. PARTIAL ORDER TREES

A. Overview

So far, we have studied applications of our key management
to multi-dimensional domains wherein each domain has a well
defined total order. One can easily extend our algorithm to oper-
ate on domains that only have a partial order defined on them.
We motivate an application of our algorithm using spatio-quality
access control on services like Google Earth. Informally, aspatio-
quality authorization is specified by a five tuple: (xbl, ybl, xtr, ytr,
q), where (xbl, ybl, xtr, ytr) denotes the spatial bounding box,
and q denotes a quality of the image. Typically, one can build a
partial order tree on the qualityq by moderating the resolution,
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smoothness of the image. A satellite image of the Earth broadcast
by a public service should be intelligible to a user only if the
coordinates of the broadcasted image is within (xbl, ybl, xtr, ytr)
and the image qualityq′ ≤ q, where≤ is overloaded to operate
on the partial order defined on the quality domain.

Similar to the multi-dimensional authorization model, we as-
sociate a keyKxbl,ybl,xtr,ytr,q with a spatial-quality bounding
box (xbl, ybl, xtr, ytr, q). We use a broadcast protocol similar to
Section II. A broadcast packet includes〈x, y, q, EKx,y,x,y,q (P )〉.
Only an authorized subscriber can compute the decryption key
Kx,y,x,y,q and thus decrypt the broadcast packetP . We construct
the keys such that:

• GivenKxbl,ybl,xtr,ytr,q, a useru can efficiently deriveKx,y,x,y,q′

for all xbl ≤ x ≤ xtr andybl ≤ y ≤ ytr andq′ ≤ q.
• Given Kxbl,ybl,xtr,ytr,q it should be computationally infea-

sible for a useru to guessKx,y,x,y,q′

if x < xbl or x > xtr

or y < ybl or y > ytr or q > q′.

B. Key Management Algorithm

The key idea of our approach is to map the partial order tree
into a totally ordered numeric range(0, 2s−1), wheres is a suffi-
ciently large integer. Letx0 denote the root element in the partial
order. If the partial order has more than one root element we
follow the same procedure for every such maximal root element.
We associate a totally ordered numeric range with every element
in the partial order. First, we associate the range(0, 2s − 1) with
the root elementx0. We define a minimal submissive set for every
elementx in the partial order domainPO asminSub(x):

sub(x) = {y : x > y}
minSub(x) = {y : y ∈ sub(x) ∧ (6 ∃y′ ∈ sub(x), y′ > y)}

We partition the range associated withx for each elementy
∈ minSub(x). Let (xa, xb) denote the range associated with
the elementx. We partition this range into2dlog2 |minSub(x)|e

equally sized sub-ranges and associate a distinct sub-range with
every elementy ∈ minSub(x). We repeat this process recursively
starting from the root elementx0 and its associated range(0, 2s−
1). The range assignment maintains the property thatx > y if and
only if xa ≤ ya ≤ yb ≤ xb. Figure 4 illustrates range assignment
for a small partial order domainq ∈ {A, B, · · · , H} such thatA
> {B, C}, B > {D, E, F} andC > {H}.

We associate a keyKxa,xb with the elementx. We derive this
key from the root key, namelyK0,2s−1, using the same recursive
formulae shown in Equation 1. This key derivation ensures that
Kya,yb can be efficiently derived fromKxa,xb if and only if
xa ≤ ya ≤ yb ≤ xb. Combining this with our assignment of
ranges to each element in the partial order tree, one can showthat
Kya,yb can be efficiently derived fromKxa,xb if and only if y ≤
x in the partial order domain. Figure 4 shows the assignment of
authorization keys in a partial order domain. Table XVII shows the
computation cost of our approach, whered(x) denotes the depth
of x ∈ PO on the partial order tree; note that the computation
and storage cost at both the KDC and user isK.

C. Comparison with Group Key Management Approaches

A cost analysis for our key management algorithm on partial
domains is similar to that for a totally ordered domain. We com-
pute the probability that the subscription of a new useru overlaps
with some active useru′ asProverlap in Equation 8. We usef(x)

(x ∈ PO) as the probability distribution of user subscriptions over
the partially ordered domainPO.

Proverlap =
∑

x∈PO

f(x) ∗ (
∑

y≤x

f(y) +
∑

y>x

f(y)) (8)

Then, following the same lines of argument as in Section IV
(using d = 1), one can show that cost ratio of our approach
(costour) to the group key management approach (costgkm) is:

costgkm : costour =
2 ∗N ∗ Proverlap

s
(9)

wheres is the average height of the partial order tree. The cost
ratio as shown in Equation 9 attains a minimum value when
Proverlap is minimum. Evidently this is achieved when for anyx,
y ∈ PO such thatx 6= y, neitherx < y or y < x. Hence,Prmin

overlap

is given byPrmin
overlap =

∑

x∈PO f(x)2. Given that
∑

x∈PO f(x)

= 1, one can show thatPrmin
overlap achieves an absolute minima

whenf(x) is uniformly and randomly distributed, that is,f(x) =
1

|PO|
for all x ∈ PO, where|PO| denotes the size of the partial

order domainPO. The absolute minimaPrminima
overlap is given by

Prminima
overlap = 1

|PO|
.

However, assuming that no twox, y ∈ PO are related by
the operator< and using a uniform and random distribution
of f(x) may not be realistic. We relax the first constraint and
assume thatf(x) is uniform and random and that the partial order
tree is ar-ary tree of heights. One can show that

∑

y≤x f(y)

=
∑logr |PO|

i=d(x)
ri = rlogr |P O|−d(x)+1−1

r−1 and
∑

y>x f(y) = d(x),
whered(x) denotes the depth ofx in the partial order (d(root) =
0). Hence, the probability of overlap in ar−ary tree is given by
Equation 10.

Prr−ary tree
overlap

=

logr |PO|
∑

i=0

ri

|PO| ∗
|PO|∗r−i+1−1

r−1 + i

|PO|

=
2 logr |PO| − 1

|PO| + 2 ∗ logr |PO|+ 1

|PO|2 (10)

Observe that this probability is2 logr |PO| − 1 times larger than
the absolute minima. Note that asr increases, the probability
of overlap decreases. However, the height of anr-ary tree is
s = logr |PO|. Plugging this into Equation 9 the cost ratio be-
tween the group key management protocols and our approach is:
costgkm:costour ≈ 4∗N

|PO|
. Observe that the cost ratio is indepen-

dent of the parameterr.
Now, we relax the second constraint and assume that nox, y

∈ PO are related by the operator< while using non-uniform
distributions (like truncated Geometric, discrete approximation
to Gaussian and Zipf) for the functionf . Table XVIII summa-
rizes our results for different parameters of these distributions for
N=100 and|PO| = 100. Observe that as the standard deviation
increases, the probability of overlap between two subscriptions
decreases, thereby reducing the cost of the group key management
algorithms. One the other hand, our approach incurs a small
and a constant (nearly) cost that is completely agnostic to the
distribution of user subscriptions.

VI. EXPERIMENTAL EVALUATION

We have implemented our key management algorithms on Siena
publish-subscribe network [15]. Siena is a wide-area publish-
subscribe network that allows events to be disseminated from
a LBS server (publisher) to a geographically scattered group of
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Join (KDC) Join (User) Leave (KDC/User) Msg (User)
(max) Maxx∈P Od(x) ∗ H - - Maxx∈P Od(x) ∗ H + D

(avg)
∑

x∈P O(d(x) ∗ f(x)) ∗ H - -
∑

y≤x((d(y) − d(x)) ∗ f(y)) ∗ H + D

TABLE XVII

COMPUTATION COST

Distribution Parameter costgkm : costour

Geometric 1
p

= 0.01|PO| 199

Geometric 1
p

= 0.1|PO| 30.4

Geometric 1
p

= 0.5|PO| 6.7

Geometric 1
p

= |PO| 2.1

Gaussian µ = 0.5|PO|, σ = 0.01|PO| 296

Distribution Parameter costgkm : costour

Gaussian µ = 0.5|PO|, σ = 0.1|PO| 162
Gaussian µ = 0.5|PO|, σ = 0.5|PO| 50

Zipf γ = 0.01 8.4
Zipf γ = 0.1 12.8
Zipf γ = 0.5 80

TABLE XVIII

N = 10
2 , |PO| = 100
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subscribers. We used GT-ITM [34] topology generator to generate
an Internet topology consisting of 63 nodes. The round trip times
on these links varied from24ms to184ms with mean74ms and
standard deviation50ms. We constructed a complete binary tree
topology using 63 nodes. The tree’s root node acts as the LBS
server, 32 leaf nodes act as subscribers and 30 nodes operateas
routing nodes. We ran our implementation of STauth on eight 8-
processor servers (64 CPUs) (550 MHz Intel Pentium III Xeon
processors running RedHat Linux 9.0) connected via a high speed
LAN. We simulated the wide-area network delays obtained from
the GT-ITM topology generator.

All experimental results presented in this section were averaged
over five independent runs; each run represents an hour long ex-
periment on our publish/subscribe network that measures various
performance metrics such as throughput and response time. We
simulated a spatial-temporal space of volume 1024× 1024 ×
1024. The size of a subscription range (along each dimension)
was chosen using a Gaussian distribution with mean 256 and a

standard deviation 64. The subscription boxes (left bottomcorner)
for the spatial coordinates were chosen using a two dimensional
Gaussian distribution centered at coordinate (512, 512); while that
for the temporal coordinate was chosen uniformly and randomly
over (0, 1024). Each LBS broadcast message was assumed to be
of size 1 KB.

In this section we show two experimental results. First, we
compare our proposals with traditional group key management
approaches: we demonstrate the scalability problems in group
key management protocols by measuring the number of groups
that need to be managed by the KDC; we measure the overhead
of our algorithms over the insecure LBS system in terms of its
throughput and latency; and we demonstrate the low jitter and
purported future keys based DoS attack resilience properties of
our protocols in comparison with the group key management pro-
tocols. Second, we compare our approach with recently proposed
key management algorithms [7], [9], [8] for temporal and geo-
spatial access control. Third, we describe an implementation of
our spatial-quality key management algorithms using the Google
maps API. We show that our approach incurs minimal on page
load time while enforcing spatial-quality access control on maps.

A. Group Key Management Protocols

Scalability. Figure 5 demonstrates the lack of scalability in tra-
ditional group key management protocols. The figure shows the
number of groups that need to be managed by the KDC versus the
number of subscribersN for different values of dimensionalityd.
Even for 32 subscribers, the number of managed groups may be
of the order of104 with d = 3. Our analysis indicates that even for
a modest set of 1000 subscribers the number of managed groups
could be about2112.
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Throughput and Latency. Figures 6 and 7 show the throughput
and latency of LBS broadcasts respectively. We observe thatthe
throughput loss due to our key management algorithm is very
small when compared to the insecure Siena network. The increase
in latency due to our key management algorithm can be attributed
almost entirely to the encryption and decryption costs; thekey
management costs account to less than 12% of the overhead.
Traditional group key management protocols on the other hand
incur significant drop in throughput (62.5% forN = 32) and
increase in latency as the number of subscribers increase (52%
for N = 32). Our simulation results indicate that forN = 1000
subscribers, the throughput could drop is about 99.96% and the
increase in latency is about 140 times.

DoS Attack. Figure 8 shows the jitter (standard deviation in
inter-packet arrival times) in LBS broadcasts. The jitter added
by our key management protocol even when under a DoS attack
(purported future key based DoS attack) is only a few tens of mil-
lisecond, which is less than 3% of the mean latency. On the other
hand, the jitter incurred by traditional group key management
protocols even in the absence of DoS attacks is about 22% and
that under a DoS attack is about 200%. This clearly demonstrates
the vulnerability of traditional group key management protocols
to the purported future key based DoS attack.

B. Temporal and Geo-Spatial Access Control

In this section, we compare our key management algorithms
with other hierarchical key derivation algorithms (TAC [7], [9],
[8]).

Number of Keys. Figure 9 shows the number of keys maintained
by a subscriber (incurred by bothSTauth andTAC). We observe
that the number of subscriber keys incurred by theTAC is a
constant while that in theSTauth approach grows logarithmically
with the size of the dimensionXmax. Hence,TAC requires a
subscriber to maintain fewer keys. Figure 13 shows the size of
public storage incurred byTAC; note thatSTauth requires no
public storage.TAC requires public storage whose size is at least
proportionalXd

max (whered is the number of dimensions). Figure
13 shows that the size of public storage can grow prohibitively
large for large dimensions (Xmax) and the number of dimensions
(d).

Key Derivation Cost. Figures 14 and 15 show the computation
and communication cost incurred during key derivation. Recall
that the key derivation cost is incurred on the receipt of each
broadcast packet. We observe that theSTauth approach incurs
marginally higher computation cost (in microseconds). Further,
one can use the key caching based approach described in Sec-
tion II to reduce the key derivation computation cost to a small
constant in theSTauth approach. On the other hand,TAC in-
curs communication cost during key derivation; though the per-
subscriber communication is small (few 100 Bytes), the aggregate
load on the public storage grows linearly with the number of sub-
scriber in the network. This can additionally increase application
level latency and jitter and may render the network vulnerable to
DoS attacks on public storage.

C. Spatial-Quality Access Control

In this section, we describe an implementation of our algo-
rithms for spatial-quality key management (see Section V) on

function load() {

GEvent.addListener(map, "click", function() {

//Left Click = Zoom In

var center = map.getCenter(); var zoom = map.getZoom() + 1;

if(boundingBox(center, zoom, authBox)) {

var dKey = deriveKey(center, zoom);

map.setCenter(center, zoom); //gets encrypted file

if(!decryptImage(map, dKey))

alert("Integrity check on map failed");

} else {

alert("No auth key found for zoom level: " + · · · )

} } }

var tileLayerOverlay = new GTileLayerOverlay(

new GTileLayer(null, null, null, {

//Get encrypted tile image: center = (X, Y) and zoom = Z

tileUrlTemplate: ’http://nc12.watson.ibm.com/cryptImg {Z} {X} {Y}.png’,

isPng:true, opacity:1.0});

map.addOverlay(tileLayerOverlay);

}

〈body onload="load()" onunload="GUnload()"〉

〈div id="map" style="width: 256px; height: 256px"〉〈/div〉

〈/body〉

Fig. 16. Spatial-Quality Access Control using Google Maps API: JavaScript
Code Snippets

Google maps [3]. Recall that a spatial-quality authorization is
specified by a five tuple: (xbl, ybl, xtr, ytr, q), where (xbl, ybl,
xtr, ytr) denotes the spatial bounding box, andq denotes quality
(of the map in this scenario). We implemented STauth using
JavaScripts (AJAX model) which exports three interfaces:boolean

boundingBox (coordinates, quality, authBox): checks if(coordinates,
quality) of a tile file belongs to the client’s spatial-quality au-
thorization boxauthBox, key deriveKey (coordinates, quality):
derives the decryption key for a given coordinate and quality tupl,
and boolean decryptImage (map, key): decrypts the map image
usingkey.

Before we describe our implementation, we provide a brief
overview of Google maps. There are three coordinates in Google
maps: tile, pixel and zoom level. Google map divides the entire
Earth into multiple square tiles. Each tile consists of 256×256
pixels irrespective of the zoom level. At zoom leveln, the Earth
is divided into4n tiles (1≤ n ≤ 19). When transitioning from
zoom leveln to n + 1, each tile is divided into four quadrants,
thereby, doubling the pixel space in both thex andy axis. Figure
10 shows that at zoom level two, the Earth is divided into 16 (=42)
tiles. We note that the way Google map divides Earth into tiles
is exactly identical to our approach of defining and partitioning a
two dimensional bounding box (Xa, Ya, Xb, Yb). We treat the
zoom level as a totally ordered quality dimension; higher the
zoom level better the quality.

Figure 16 shows a code snippet of a JavaScript based imple-
mentation of our access control algorithm using Google maps
API. The Web server (Apache HTTPD [1]) serves tiles as image
files; tiles are indexed by their center (latitude, longitude) and the
zoom level. The server applies our key management algorithms
to derive the encryption key for each tile and encrypts the tile
(image file) with the corresponding key. In response to a client’s
(web browser: FireFox or Microsoft IE) request, the server returns
an encrypted tile file. The client checks if the tile belongs to its
authorized bounding box (authBox). If so, the client derives the
decryption key, decrypts the tile file and renders the image (see
Figure 11); otherwise, the client throws an alert (see Figure 12)
indicating that the user is not authorized to view the tile (at the
requested zoom level).

Our initial experiments indicate the percentile overhead added



13

 1

 2

 4

 8

 16

 32

 64

 128

 1  4  16  64  256  1024

N
um

be
r 

of
 S

ub
sc

rib
er

 K
ey

s

Size of Dimension (Xmax)

’TAC-d=1’
’TAC-d=3’

’STauth-d=1’
’STauth-d=3’

Fig. 9. Number of Subscriber Keys

Fig. 10. Zoom Level 2:
16 Tiles

Fig. 11. Zoom Level 12:
Access Permitted

Fig. 12. Zoom Level 13: Not Authorized

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1  4  16  64  256  1024

S
iz

e 
of

 P
ub

lic
 S

to
ra

ge
 (

B
yt

es
)

Size of Dimension (Xmax)

’TAC-d=1’
’TAC-d=3’

’STauth’

Fig. 13. TAC: Size of Public Storage

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1  4  16  64  256  1024

K
ey

 D
er

iv
at

io
n 

C
os

t (
m

ic
ro

se
co

nd
s)

Size of Dimension (Xmax)

’TAC-d=1’
’TAC-d=3’

’STauth-d=1’
’STauth-d=3’

Fig. 14. Key Derivation Computation Cost

 1

 10

 100

 1000

 1  4  16  64  256  1024

K
ey

 D
er

iv
at

io
n 

C
os

t (
B

yt
es

)

Size of Dimension (Xmax)

’TAC-d=1’
’TAC-d=3’

’STauth’

Fig. 15. Key Derivation Communication Cost

by our key management algorithms to the page load time is about
0.72% (indicating that our key derivation cost is very small). We
also used a client side JavaScript to draw random tiles and mea-
sured the throughput (number of web pages per second (WPP)).
We measured the drop in throughput at the client was 0.4% and
0.44% using Mozilla FireFox and Microsoft IE respectively.

We note that the size of the spatial-quality dimension in Google
maps is219×219×19. While the total number keys managed by
the system is19 ∗ 238 = 5.22*1012, STauth incurs low overhead
primarily because of its efficient key derivation algorithm. The
TAC approach incurs slightly lower key derivation computation
cost than the STauth approach; however, the size of public storage
using the TAC approach is238 ∗ 19 * 16 Bytes = 76 TeraBytes.
Hence, maintaining integrity of public storage data and serving
the data in real-time pose severe challenges for the TAC approach.

VII. R ELATED WORK

Broadcast encryption [22] is the problem of sending an en-
crypted message to a large user base (sizeN ) such that the
message can only be decrypted by a dynamically changing priv-
ileged subset (sizeN − r). However, such schemes are designed
to operate in scenarios wherer � N ; for example, optimal LSD
[19] broadcast encryption scheme requires message headersof
size O(r log log N). In the context of location based services,r

can beO(N), making it non-trivial to use traditional broadcast en-
cryption schemes. More recently, Boneh et. al. [11] have proposed
efficient schemes for subsets of arbitrary sizes. However, their
scheme still requires a message header of sizeO(

√
N) and incurs

the overhead of expensive pairing operations. In the context of
location based services, the broadcast messages are typically very
small; in energy constrained wireless environments, it is important
to restrict message headers toO(1) size.

Group key management addresses the problem of sending an
encrypted message to a large and dynamic user base such that

the message can only be decrypted by the members of the user
base. In contrast to broadcast encryption, the parameterN dy-
namically changes in a group key management system; however,
there is no concept of a privileged subset of users in the group.
Significant amount of work has been done in the field of group
key management using the concept of a logical key hierarchy
[20]. Several papers [6], [29], [30], [32], [24], [13], [14], [26]
have developed interesting optimization techniques to enhance the
performance and scalability of group key management protocols
on multicast networks. Some extensions to operate on unreliable
multicast channels are proposed in [26], [33]. A detailed survey
along with comparisons amongst various group key management
protocols is described in [27]. Group key management protocols
use message headers of constant size (unlikeO(

√
N) in broadcast

encryption) making them more suitable for our target application.
However, the cost of key management (as demonstrated in Section
VI) in the context of location based services is unacceptably high.

Recently, several papers [16], [7], [10], [28] have proposed
to exploit the hierarchical structure of an authorization model
to develop more efficient key management schemes. Similar to
[7] (that we compare against in this paper), the other schemes
require public storage that is at least linear in the size of the
authorization space. As shown in Section VI, such an approach
may incur high storage and communication overhead for high
dimensional authorization models such as that in Google maps.
STauth also exploits the hierarchical structure of the authorization
model; it builds on the MARKS protocol [12] and requires no
public storage.

VIII. C ONCLUSION

In this paper we have presented STauth, a scalable key man-
agement algorithm for enforcing spatial-temporal access control
on public broadcast services. Unlike traditional group keyman-
agement approaches, we exploit the spatial-temporal authoriza-
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tion model to construct authorization keys using efficient and
secure hierarchical key graphs. We have shown that our approach
solves several drawbacks in traditional group key management ap-
proaches including poor scalability, vulnerability to packet losses,
failures in the presence of packet losses, vulnerability tocertain
DoS attacks, and susceptibility to jitters and delays. We have de-
scribed a prototype implementation and experimental evaluation
that demonstrates our performance and scalability benefits, while
preserving the security guarantees.
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