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Abstract— 1 Peer-to-Peer VoIP (voice over IP) networks, ex-
emplified by Skype [5], are becoming increasingly popular due
to their significant cost advantage and richer call forwarding
features than traditional public switched telephone networks.
One of the most important features of a VoIP network is pri-
vacy (for VoIP clients). Unfortunately, most peer-to-peer VoIP
networks neither provide personalization nor guarantee a quan-
tifiable privacy level. In this paper we propose novel flow analysis
attacks that demonstrate the vulnerabilities of peer-to-peer VoIP
networks to privacy attacks. We then address two important
challenges in designing privacy-aware VoIP networks: Can we
provide personalized privacy guarantees for VoIP clients that
allow them to select privacy requirements on a per-call basis?
How to design VoIP protocols to support customizable privacy
guarantee? This paper proposes practical solutions to address
these challenges using a quantifiablek-anonymity metric and a
privacy-aware VoIP route setup and route maintenance protocols.
We present detailed experimental evaluation that demonstrates
the performance and scalability of our protocol, while meeting
customizable privacy guarantees.

I. I NTRODUCTION

The concept of a mix [9] was introduced by Chaum in 1981.
Since then several authors have used mix as a network routing
element to construct anonymizing networks such as Onion
Routing [16], Tor [10], Tarzan [15], or Freedom [7]. Mix
network provides good anonymity for high latency communi-
cations by routing network traffic through a number of nodes
with random delayand random routes. However, emerging
applications such as VoIP, SSH, online gaming, etc have addi-
tional quality of service (QoS) requirements; for instanceITU
(International Telecommunication Union) recommends up to
250ms one-way latency for interactive voice communication;
recent case study [26] indicates that latencies up to 250ms
are unperceivable to human users; while latencies over 400ms
significantly deteriorate the quality of voice conversations.

This paper examines anonymity for QoS sensitive appli-
cations on mix networks using peer-to-peer VoIP service as
a sample application. A peer-to-peer VoIP network typically
consists of a core proxy network and a set of clients that
connect to the edge of this proxy network (see Fig 1). This
network allows a client to dynamically connect to any proxy

1A short version of this paper appears in IEEE INFOCOM 2009:
http://www.research.ibm.com/people/i/iyengar/INFOCOM2009-kanon.pdf.
Prof. Ling Liu’s work was partially supported by grants fromNSF CyberTrust
program, AFOSR, Intel, and an IBM faculty award

in the network and to place voice calls to other clients on
the network. VoIP uses the two main protocols: route setup
protocol for call setup and termination, and Real-time Trans-
port Protocol (RTP) for media delivery. In order to satisfy
QoS requirements, a common solution used in peer-to-peer
VoIP networks is to use a route setup protocol that sets up
the shortest routeon the VoIP network from a callersrc to
a receiverdst2. RTP is used to carry voice traffic between
the caller and the receiver along an established bi-directional
voice circuit.

In such VoIP networks, preserving the anonymity of caller-
receiver pairs becomes a challenging problem. In this paperwe
focus on attacks that attempt to infer the receiver for a given
VoIP call using traffic analysis on the media delivery phase.
We make two important contributions. First, we show that
using the shortest route (as against a random route) for routing
voice flows makes the anonymizing network vulnerable toflow
analysis attacks. Second, we develop practical techniques to
achieve quantifiable and customizablek-anonymity on VoIP
networks. Our proposal exploits the fact that audio codecs
(such as G.729A without silence suppression3) generatesta-
tistically identical packet streams that can be mixed without
leaking much information to an external observer (see Fig 2).

The following portions of this paper are organized as fol-
lows. We present a reference model for a VoIP network fol-
lowed by flow analysis attacks in Section III. Section IV pro-
vides a more concrete definition ofk-anonymity and describes
an efficient anonymity-aware route setup protocol (AARSP).
We sketch an implementation of our proposal and present ex-
perimental results that quantify the performance and scalability
of AARSP in Section V. We present related work in Section
VI and finally conclude in Section VII.

II. V OIP ROUTE SETUP PROTOCOL

In this section, we describe a commonly used shortest route
setup protocol in peer-to-peer VoIP networks. The protocol
operates in four steps:initSearch (initiates a route setup by
src), processSearch (process route setup request at some

2Enterprise VoIP networks that use SIP or H.323 signaling protocol may
not use the shortest route

3G.729A without silence suppression deterministically generates one IP
packet every 20ms. With silence suppression voice flows may be non-identical,
thereby making them trivially vulnerable to traditional traffic analysis attacks
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Fig. 1. Anonymizing VoIP Network
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Fig. 2. Mixing Statistically Identical VoIP Flows

node),processResult (process results of a route setup re-
quest at some node), andfinSearch (concludes the route
setup). One should note that flow analysis attacks exploits only
the shortest path property and isindependentof the concrete
route setup protocol. The description here serves as a basisfor
our AARSP in Section IV.
initSearch. A VoIP client src initiates a route setup for
a receiverdst by broadcastingsearch(searchId, sipurl =
dst.sipurl, ts = curT ime) to all nodesp ∈ ngh(src), where
ngh(src) denotes the neighbors of nodesrc in the VoIP net-
work. Each VoIP client is identified by an URL (say,sip:bob@

example.com). The search identifiersearchId is a long ran-
domly chosen unique identifier andts denotes the time stamp
at which the search request was initiated.
processSearch. Let us supposep receivessearch(searchId,
sipurl, ts) from its neighborq. If p has seensearchId in
the recent past then it drops the search request. Otherwise,
p checks if sipurl is the URL of a VoIP client connected
to p. If yes, p returns its IP address usingresult(searchId,
p) to q. p broadcastssearch(searchId, sipurl, ts) to all p′

∈ ngh(p)−{q} and caches the search identifier〈searchId,
sipurl, q〉 in its recently seen list. Note thatp′ has no knowl-
edge of where the search request is initiated.
processResult. Let us supposep receivesresult(searchId,
q) from q. Note thatp has no knowledge as to where the search
result was initiated.p looks up its cache of recently seen search
queries to locate〈searchId, sipurl, prev〉. p adds a routing
entry 〈sipurl, q〉 and forwardsresult(searchId, p) to prev.
finSearch. Whensrc receivesresult(searchId, q) from q,
it adds a routing entry〈dst, q〉 to its routing table.

The route setup protocol establishes the shortest overlay
network route betweensrc anddst. This observation follows

from the following facts: (i) the first search request that reaches
a nodep must have traveled along theshortestroute fromsrc
to p, and (ii) In processSearch a nodep records the neigh-
bor q through which it received the first search request. This
indicates that the shortest route fromsrc to p is via q. Setting
p = dst shows that route setup procedure inprocessResult
builds the shortest VoIP network path fromsrc to dst.

After a successful route setup, the clientssrc and dst ex-
change an end-to-end media encryption key and switch to the
media delivery phase. The media delivery phase additional
uses hop-by-hop re-encryption using pair-wise shared keys
between neighboring proxy nodes in the VoIP network. An
external observer tapping into the VoIP network may observe
〈srcIP , dstIP , srcPort, dstPort, EKp,q

(EKsrc,dst
(media))〉,

whereKp,q denotes a pair-wise shared symmetric key between
neighboring nodesp andq on the route,Ksrc,dst denotes the
end-to-end encryption key andmedia denotes an encoding of
media bits. Further, an observer may observe packet sizes4 and
statistics on inter-packet arrival times. Re-encryption essen-
tially guarantees unlinkability betweenEKp,q

(EKsrc,dst
(media))

and EKq,r
(EKsrc,dst

(media)) by examining the contents of
the transmitted packet.

III. F LOW ANALYSIS ATTACKS

In this section, we describe flow analysis attacks on VoIP
networks. These attacks exploit the shortest path nature of
the voice flows to identify pairs of callers and receivers on
the VoIP network. Similar to other security models for VoIP
networks, we assume that the physical network infrastructure
is owned by an untrusted third party (say, tier one/two network

4Media packet sizes obtained from a common encoding algorithm such as
G.729A are typically identical; if not packets can be paddedwith random bits
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Fig. 3. Inferring Number of Flows from Flow Volume

Fig. 4. Call Volume Data

service provider). Hence, the VoIP service must route voice
flows on the untrusted network in a way that preserves the
identities of callers and receivers from the untrusted network.
We assume that the untrusted network service provider (ad-
versary) is aware of the VoIP network topology [28][10] and
the flow rates onall links in the VoIP network [19][7]. The
network service provider can obtain VoIP topology and flow
information using traffic analysis (see Fig 3) or using various
measurement based approaches (such as expanding ring search
on the network topology) [23]. We experimentally show that
the attack can be very effective even when only one third of
the links are monitored by the adversary.

We represent the VoIP network topology as a weighted
graph G = 〈V , E〉, whereV is the set of nodes andE ⊆
V ×V is the set of undirected edges. The weight of an edgee
= (p, q) (denoted byw(p, q)) is the latency between the nodes
p andq. We assume that the adversary can observe the network
and thus knowsnf(p → q) the number of voice flows between
two nodesp andq on the VoIP network such that(p, q) ∈ E.

To illustrate the effectiveness of our flow analysis attacks,
we use a synthetic network topology with 1024 nodes. The
topology is constructed using the GT-ITM topology gener-
ator [35][1] and our experiments were performed on NS-2
[2][3]. GT-ITM models network geography and the small world
phenomenon (power law graph with parameterγ=2.1) [14][22].
The topology generator assigns node-to-node round trip times

Fig. 5. Call Hold Time Data
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varying from 24ms− 150ms with a mean of 74ms and is
within 20% error margin from real world latency measure-
ments [17]. The average route (shortest path) latency between
any two nodes in the network is 170ms, while the worst case
route latency is 225ms. Our experiments over NS-2 use a
bursty packet delay model wherein 20% of the packets incur
an additional delay of up to 44% of average one-way latency
[17]. In practice, the total cost of framing, decoding and hop-
by-hop re-encryption amounts to about 1.4ms per voice packet
on commodity hardware. In our simulations, we adjust link
latencies to reflect the cost of routing VoIP packets.

We generate voice traffic based on call volume and call
hold time distribution obtained from a large enterprise with
973 subscribers (averaged over a month) (see Figures 4 and
5). The call volume is specified in Erlangs [18]: if the mean
arrival rate of new calls isλ per unit time and the mean
call holding time (duration of voice session) ish, then the
traffic in ErlangsA = λh; for example, if total phone use in a
given area per hour is 180 minutes, this represents 180/60 =
3 Erlangs. We use G.729A audio codec for generating audio
traffic. The (src, dst) pair information for each call was not
made available. We have experimented under two settings:
first, we assume that for a given VoIP call, the (src, dst) pair is
chosen randomly from the VoIP network; second, we assume
that 80% of the calls are made between nodes that are in the
same network geography (e.g., same autonomous system). As
noted in Section III-E, any prior information (such as, 80%
of call volume is limited to local network geography) can be
used by the adversary to further enhance the efficacy of flow
analysis attacks. Finally, we note that all results reported in
this paper have been averaged over seven independent runs.

A. Naive Tracing Algorithm

Let src be the caller. We use a Boolean variablef(p) ∈ {0,
1} to denote whether the nodep is reachable fromsrc using
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TRACE(GraphG=〈V , E〉, Caller src)
(1) for each vertexv ∈ V
(2) f [v] = 0; label[v] = false
(3) end for
(4) f [src] = 1; label[src] = true
(5) while pick a vertexv labeledtrue
(6) label[v] = false
(7) for each nodeu such that(u, v) ∈ E
(8) if (f [u] = 0)
(9) f [u] = 1; label[u] = true
(10) end if
(11) end for
(12) end while

Fig. 8. Naive Tracing Algorithm

the measured flows on the VoIP network. One can determine
f(p) for all nodesp in O(|E|) time as follows. The base case
of the recursion isf(src) = 1. For any nodeq, we setf(q)
to one if there exists a nodep such that(p, q) ∈ E ∧ f(p) =
1 ∧ nf(p → q) > 0.

Let us consider a sample topology shown in Figure 6. For
the sake of simplicity assume that each edge has unit latency.
The label on the edges in Figure 6 indicates the number of
voice flows. A trace starting from callerp1 will result in f(p1)
= f(p2) = f(p3) = f(p4) = f(p5) = 1. Filtering out the VoIP
proxy nodes (p5) and the caller (p1), the clientsp2, p3 andp4

could be potential destinations for a call emerging fromp1.
However, the tracing algorithm does not consider the short-

est path nature of voice routes. Considering the shortest path
nature of voice paths leads us to conclude thatp2 is not a
possible receiver for a call fromp1. If indeed p2 were the
receiver then the voice flow would have taken the shorter route
p1 → p2 (latency = 1), rather than the longer routep1 → p5 →
p2 (latency = 2) as indicated by the flow information. Hence,
we now have only two possible receivers, namely,p3 andp4.

B. Shortest Path Tracing Algorithm

In this section, we describe techniques to generate a directed
sub-graphG1 = 〈V 1, E1〉 from G which encodesthe shortest
path nature of the voice paths. Given a graphG and a caller
src, we construct a sub-graphG1 that contains only those
voice paths that respect the shortest path property. Figure9
uses a breadth first search onG to computeG1 in O(|E|)
time.

One can formally show that the directed graphG1 satisfies
the following properties: (i) If the voice traffic fromsrc were
to traverse an edgee /∈ E1, then it violates the shortest path
property. (ii) All voice paths that respect the shortest path
property are included inG1. (iii) The graphG1 is acyclic.

Figure 7 illustrates the result of applying the algorithm in
Figure 9 on the sample topology in Figure 6. Indeed if one uses
the trace algorithm (Figure 8) on graphG1, we getf(p2) =
0, f(p3) = f(p4) = 1. Figure 10 compares the effectiveness of
the shortest path tracing algorithm with the tracing algorithm
on a 1024 node VoIP network. On the x-axis we plot the
call traffic measured in Erlangs. We quantify the efficacy of
an attack using standard metrics from inference algorithms:
precision, recall and F-measure. We useS to denote the set

SHORTEST PATH TRACING(Graph G=〈V , E〉, Caller
src)
(1) for each vertexv ∈ V
(2) dist[v] = ∞; label[v] = false; prev[v] =

null
(3) end for
(4) dist[src] = 0; label[src] = true
(5) while pick a labeled vertexv with minimum

dist[v]
(6) label[v] = false
(7) for each nodeu such that(u, v) ∈ E
(8) if (dist[u] < dist[v] + w(u, v))
(9) dist[u] = dist[v] + w(u, v)
(10) prev[u] = {v}; label[u] = true
(11) end if
(12) if (dist[u] = dist[v] + w(u, v))
(13) prev[u] = prev[u] ∪ {v}
(14) end if
(15) end for
(16) end while
(17) G1 = 〈V 1, E1〉: V 1 = V , E1 = (u → v) ∀u ∈

prev[v], ∀v ∈ V

Fig. 9. Shortest Path Tracing Algorithm
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of nodes such that for everyp ∈ S, f [p] = 1. Recalldenotes the
probability of identifying the true receiverdst (dst ∈ S?), and
precisionis inversely related to the size of candidate receiver
set (∝ 1

|S| ). F -measure (computed as harmonic mean of recall
and precision scores) is a commonly used as a single metric
for measuring the effectiveness of inference algorithms [29].

recall = Pr(f [dst] = 1)

precision =

{

1
|S| if dst ∈ S

0 otherwise

F-measure =
2 ∗ recall ∗ precision

recall + precision

In a deterministic network setting, the receiverdst is guar-
anteed to be marked withf [dst] = 1, that is,recall = 1 for
both the naive tracking algorithm and the shortest path tracing
algorithm. Hence, Figure 10 compares only the precision of
these two algorithms. We observe that for low call volumes (<
64 Erlangs) the shortest path tracing algorithm is about 5-10
times more precise than the naive tracking algorithm. However,
higher call volumes facilitate natural mixing of VoIP flows
thereby decreasing the precision of both the naive tracing and
shortest path tracing algorithms.

C. Statistical Shortest Path Tracing

In a realistic setting with uncertainties in network latencies
the shortest path tracing algorithm may not identify the re-
ceiver. We handle such uncertainties in network link latencies
by using a top-κ shortest path algorithm to constructGκ from
G. An edgee is in Gκ if and only if it appears in some top-κ
shortest path originating fromsrc in graphG. We modified
Algorithm 9 to constructGκ by simply maintaining top-κ
distance measurementsdist1[v], dist2[v], · · · , distκ[v] instead
of only the shortest (top-1) distance measurement. We also
maintain previous hopsprev1[v], prev2[v], · · · , prevκ[v] that
correspond to each of these top-κ shortest paths. We add an
edge(u, v) to Eκ if u = previ[v] for some1 ≤ i ≤ κ. We
say that the voice traffic fromsrc to v satisfies the top-κ
shortest path property if it is routed along one of the top-κ

shortest paths fromsrc to v. One can formally show that all
voice paths that respect the top-κ shortest path property are
included inGκ. However, unlikeG1, the graphGκ (for κ ≥
2) may contain directed cycles.

Evidently, asκ increases, the tracing algorithm can accom-
modate higher uncertainty in network latencies, thereby im-
provingrecall. On the other hand, asκ increases, theprecision
initially increases and then decreases. The initial increase is
attributed to the fact whenκ is small the tracing algorithm may
even fail to identify the actual receiver as a candidate receiver;
f [dst] may be 0 resulting in zero precision. However, for
large values ofκ, the number of candidate receivers becomes
very large, thereby decreasing theprecisionmetric. Figure 11
shows the precision, recall andF -measure of the statistical
shortest path tracing algorithm with 128 Erlang call volume
and varyingκ. This experiment leads us to conclude thatκ =
2 yields a concise and yet precise list of potential receivers;
observe thatκ = 2 improves precision and recall by 97% and
37.5% (respectively) overκ = 1.

Figure 12 compares theF -measure for the statistical short-
est path tracing algorithm (κ = 2) and the shortest path tracing
algorithm (κ = 1) and varying call volume. We observe that
for low call volumes the shortest path tracing algorithm is
sufficiently accurate. However, for moderate call volumes the
statistical shortest path tracing algorithm can improve attack
efficacy by 1.5-2.5 times.

D. Flow Analysis Algorithm

We have so far used a Boolean variablef(p) to denote
whether a VoIP clientp can be a potential receiver for a VoIP
call from src. In this section, we use the flow measurements
to construct a probability distribution over the set of possible
receivers. LetGκ be a sub-graph ofG obtained using the top-κ
shortest path tracing algorithm with callersrc. Let nf(p → q)
denote the number of flows on the edgep → q. Let in(p)
denote the total number of flows into nodep. Note that both
nf(p → q) andin(p) are observable by an external adversary.
Assuming a nodep in the VoIP network performs perfect
mixing, the probability that some incoming flow is forwarded
on the edgep → q as observed by an external adversary is
nf(p→q)

in(p) . Let f(p) denote the probability that a VoIP flow
originating atsrc flows through nodep. The functionf is
recursively defined on the directed edges inGκ=〈V κ, Eκ〉 as
follows:

f(q) =
∑

p→q∈Eκ

f(p) ∗
nf(p → q)

in(p)
(1)

with the base casef(src) = 1 andin(src) = 1. Now, every
VoIP client p (p 6= src) is a possible destination for the VoIP
flow originating from src if f(p) > 0. We use the top-m
probability metric, namely, the probability that the receiver
dst appears in the top-m entries whenf(p) is sorted in de-
scending order. Top-m probability besides being an intuitive
metric directly relates to the information theoretic notion of
self-information (entropy)I = − log p. Indeed higher entropy
represents higher randomness and thus translates into better
privacy. Such probability and entropy based metrics are often
used for quantifying privacy in anonymous networks [19].
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Fig. 13. Top-10 Probability (κ = 2): Comparison between shortest path
tracing, flow analysis algorithm with no prior and Distance prior

Computing the probabilitiesf(p) for G1 (top-1 shortest
paths) is very efficient. Observe that sinceG1 is a directed
acyclic graph, it can be sorted topologically. Letp1 = src, p2,
· · · pN be a topological ordering of the nodes inG1 such that
f(pi) depends onf(pj) only if j < i. Hence, one can effi-
ciently evaluate the probabilities by following the topological
order, namely, computef(p2), f(p3), · · · , f(pN ) in that order
starting withf(p1) = 1.

However, Gκ (for κ ≥ 2) may contain cycles and thus
cannot be topologically sorted. In this case, we represent the
set of equations in 1 asπ = πM , whereπ is a 1×N row
vector andM is a N×N matrix, whereπi = f(pi) andMij

= nf(pi→pj)
in(pi)

if there exists a directed edgepi → pj in Gκ;
andMij = 0 otherwise. Hence, the solutionπ is the stationary
distribution of a Markov chain whose transition probability
matrix is given byM . We computeπ using afixed point com-
putationapproach as follows: we recursively computeπt+1 =
πtM starting with π0

i = 1 if pi = src; π0
i = 0 otherwise.

Assuming M is irreducible,π converges to a steady state
solution π∗ in O(N log N) iterations. If the matrixM were
not irreducible (this happens if the underlying directed graph
Gκ is not strongly connected5), then we approximateπ∗ as
∑ τ∗N log N

t=0 πt

τ∗N log N
for some constantτ ≥ 1 (typically, we setτ =

1).

E. Distance Prior and Hop Count Prior

In this section, we enhance the efficacy of the flow analysis
algorithm using hop count and distanceprior. We useghop

andglat to denote hop count and distance (in terms of latency)
betweensrc anddst. For instance, one can useghop andglat to
encode the fact that most calls are between nodes in the same
autonomous system. Using the hop count prior, the probability
that a nodep forwards an incoming flow on the edgep →
q is nf(p→q)

in(p) ∗ Pr(hop ≥ hc(src, p) + 1 | hop ≥ hc(src,
p)), wherehc(src, p) denotes the number of hops along the
shortest path betweensrc and p on graphGκ. Pr(hop ≥

5A directed graph is said to be strongly connected if there exists a directed
path from every vertex to every other vertex in the graph
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hc(src, p) + 1 | hop ≥ hc(src, p)) = Pr(hop≥hc(src,p)+1)
Pr(hop≥hc(src,p))

denotes the probability that the receiverdst could be one more
hop away given thatdst is at leasthc(src, p) hops away from
src.

A similar analysis applies to distance prior as well. We use
dist(src, p) to denote the latency of the shortest path between
src and p on graphGκ, and w(p, q) denotes the one-way
latency between nodesp and q. As with the flow analysis
algorithm, the functionf is defined on the directed edges in
graphGκ = 〈V κ, Eκ〉 as follows:

f(q) =
∑

p→q∈Eκ

f(p) ∗
nf(p → q)

in(p)
∗

Pr(hop ≥ hc(src, p) + 1)

Pr(hop ≥ hc(src, p))

f(q) =
∑

p→q∈Eκ

f(p) ∗
nf(p → q)

in(p)
∗

Pr(lat ≥ dist(src, p) + w(p, q))

Pr(lat ≥ dist(src, p))

Figure 13 shows the Top-10 probability of an attack versus
call volume usingκ = 2 for different attack algorithmsspt:
statistical shortest path tracing,fa: flow analysis (with no
priors),fah: flow analysis with hop count prior andfad: flow
analysis with distance prior. We observe that the flow analysis
algorithm with distance prior offers the best results. Thisis
primarily because the route setup protocol always constructs
voice paths that have minimum one-way latency. The distance
prior directly reflects on the latency based shortest path nature
of the route setup protocol and thus performs best.

Figure 14 shows the top-m probability, namely, the proba-
bility that the true receiverdst appears in the top-m entries
whenf(p) is sorted in descending order using the flow anal-
ysis algorithm with distance prior andκ = 2. We also experi-
mented with hop count prior; however, distance prior directly
reflects on the latency based shortest path nature of the route
setup protocol and thus performs best. With a call volume of
64 Erlangs, there is 86% chance that the true receiverdst
appears in the top-10 entries. Under very high call volume
(512 Erlangs) the top-10 probability drops to 0.17. However,
we note from our enterprise data set (see Fig 4) that the call
volume is smaller than 64 Erlangs for about 75% of the day.

Figure 15 shows the computation cost6 incurred in com-
puting the probabilitiesf(p) for all potential receiversp. In
practice, we observed that the number of iterations required
for f(p) to converge to its stationary value is much smaller
that the theoretical boundO(N log N). We attribute this to the
sparse nature of matrixM . The overall running time is of the
order of few tens of milliseconds making the attack feasible
in real-time.

F. Incomplete Flow Information

So far, we have assumed that the adversary can monitor the
flow rate on all the links in the VoIP network. In the absence
of flow information on a linkp→q, we use an unbiased ran-
dom walk estimator to computef(p)’s contribution tof(q) as
f(p) ∗ 1

deg(p) , wheredeg(p) denotes the number of neighbors
of p on the VoIP network. As with the flow analysis algorithm,
the functionf is defined on the directed edges in graphGκ

6As measured on a 900 MHz Pentium III processor running RedHat Linux
7.2

= 〈V κ, Eκ〉 and the set of unmonitored linksU ⊆ Eκ as
follows:

f(q) =
∑

p→q∈U

f(p) ∗
1

deg(p)
+

∑

p→q∈Eκ\U

f(p) ∗
nf(p → q)

in(p)

Figure 16 shows the efficacy of the attack assuming that only a
fraction of the flow information is monitored by the adversary.
It follows from the figure that with only 20% flow information,
flow analysis attacks are ineffective; however, with 30-60%
flow information the top-m probability increases substantially.
This suggests that the flow analysis attack is robust against
some inaccuracies in topology and flow information.

G. Compromised Proxies

In addition, to passive observation based attacks, the ad-
versary could actively compromise some of the nodes in the
VoIP proxy. We assume an honest-but-curious model for the
compromised nodes. A compromised nodep reveals its mixing
information (namely,nf(r → p → q)) to an adversary, where
nf(r → p → q) denotes the number of voice flows that were
routed fromr to q by the malicious nodep. With slight abuse
of notation, we usef(p → q) to denote the probability that a
VoIP call from src traverses the edgep → q. Hence, the new
flow analysis equations are as follows:

f(p → q) =

{

f(p) ∗ nf(p→q)
in(p)

honestp
∑

r→p
f(r → p) ∗ nf(r→p→q)

nf(r→p)
maliciousp

f(q) =
∑

p→q

f(p → q) (2)

Figure 17 shows the effectiveness of the attack as we vary
the fraction of nodes that is compromised by the adversary.
We use a call volume of 128 Erlangs andκ = 2 in this
experiment. Evidently, compromised proxy nodes significantly
enhance attack efficacy; for instance, when 20% of the nodes
are compromised the top-1 probability improves from 0.23 to
0.50.

IV. V OIP PRIVACY USING k-ANONYMITY

In this section, we develop ak-anonymity approach to pro-
tect the identity of a receiver from flow analysis attacks. We
definek-anonymity for identical voice flows as follows:

k-anonymity: A voice flow from src to dst is said to bek-
anonymous if the size of a candidate receiver set identified by
an adversary using the naive tracking algorithm is no smaller
thank7.

As pointed out earlier,k-anonymity can be realized by mixing
a voice flow fromsrc to dst with at leastk − 1 other flows
(each of which has a different source and destination nodes).
The primary supposition that any two voice flows are indistin-
guishable under traffic analysis (see Fig 2) follows from the
properties of RTP (real-time protocol) and the constant packet
rate property of silence suppression free audio codecs. One

7
k-anonymity is defined with respect to naive tracing, since AARSP does

not use shortest path routing
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way to achievek-anonymity is to mix a flow fromsrc to dst
with k − 1 dummy voice flows; however, this approach can
increase aggregation bandwidth consumption byk-fold. In this
section, we propose an anonymity aware route set up protocol
(AARSP). AARSP reroutes and mixesexisting voice flows
(without adding dummy traffic) with the goal of: (i) meeting
k-anonymity, and (ii) satisfying latency based QoS guarantee.

Figures 18 illustrates a simple scenario with two VoIP flows
between clients(s1, d1) and(s2, d2). In the figures, each edge
on the VoIP network is marked with the number of flows it
carries. Figure 19 shows how one can reroute VoIP traffic in
order to achieve2-anonymity. Evidently, the rerouted flows
may not satisfy the shortest route property and thus may vio-
late latency based QoS guarantees. However, AARSP exploits
the slack between the shortest path latency and the tolerable
latency (250ms) to accomplish its goals.

A. AARSP: Anonymity-Aware RSP

In this section, we summarize our ideas behind AARSP.
AARSP accepts an anonymity parameterk as an input for the
route setup protocol, on a per-client per-call basis. AARSP
modifies the basic route set up protocol (RSP) such that it si-
multaneously satisfies three conditions: (i) we have at least one
nodep ∈ route(src, dst) such thatin(p) ≥ k (k-anonymity),
(ii) the end-to-end one-way latency on the route fromsrc to
dst is smaller thanmaxLat (typically set to 250ms), and (iii)
the total call volume on every nodep ∈ route(src, dst) is
smaller than its capacitymaxFlow(p).

Similar to the naive route set up protocol discussed in Sec-
tion II, AARSP uses an expanding search approach to con-
struct ak-anonymous path from a callersrc to a recipient
dst. The key idea is that the expanding search not only tracks
the distance fromsrc to a nodep in the network (dist[p]), but
also the anonymity of a route fromsrc to p (anon[p]). Recall
that the naive route set up protocol drops a search request if
it has seen the search identifiersearchId in the recent past.
On the other hand, in the AARSP protocol, let us suppose
that a nodep receives a search request identified bysearchId
at two time instantst1 and t2 (wlog, t1 < t2) such that the
anonymity of the route traversed by the search requests isk1

andk2 respectively. Nodep drops the search request received
at time t2 if: k1 ≥ k or k1 ≥ k2.

AARSP may intentionally introduce loops in the path to
improve the anonymity of voice flows. In doing so, AARSP
ensures the protocol converges to a valid path by limiting
number of times any loop is traversed by a path to at most one.
Unlike the shortest path route setup protocol, the routing entry
at a nodep in the AARSP protocol is a three tuple〈sipurl,
prev, next〉, which indicates that when a nodep receives voice
packets from nodeprev destined tosipurl, then nodep must
forward the packet to nodenext. The three tuple routing table
allows us to handle loops; for example, from Figure 19 node
p3 may have the following two routing entries:〈d1, p1, p2〉
and 〈d1, p2, p1〉. In the AARSP protocol, let us suppose that
a nodep receives a search request identified bysearchId at
two time instantst1 andt2 (wlog, t1 < t2) such that the search
request was forwarded to nodep by nodesprev1 and prev2

p1

s1 d2d1 s2

p3

1

0 0

1 1
1

p2

Fig. 18. 1-anonymity

p1

s1 d2d1 s2

1

p2

p3

1

1

1 1 1

Fig. 19. 2-anonymity

respectively. Nodep drops the search request received at time
t2 if: prev1 = prev2.

AARSP sets up the shortest possible route fromsrc to dst
that meetsk-anonymity (if there exists such a route). If no
such route exists, AARSP setup identifies a route with highest
possible anonymityk′ < k; in addition, AARSP sets up the
shortest route that achievesk′-anonymous route fromsrc to
dst. Indeed, if one setsk = ∞, then AARSP identifies the
most anonymous route whose one-way latency is smaller than
maxLat = 250ms. For detailed analysis on the properties
of the AARSP protocol we refer the readers to a detailed
technical report [27].

Figure 20 compares the average one-way path latency for
both AARSP and RSP for varying call volumes. At low call
volumes AARSP may construct significantly longer routes than
RSP. At lower call volumes, AARSP may significantly de-
viate from the shortest path to achieve the desired level of
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anonymity; higher call volumes facilitate natural mixing of
voice flows and thus require relatively smaller deviation from
the shortest path. Nonetheless, AARSP ensures that the la-
tency is below 250ms and thus preserves the quality of voice
conversations.

Figure 21 shows the anonymity level of a VoIP call as
a function of its hold time given that the initial route was
established usingk = 20. Anonymity level of a VoIP flowF
at time t denotes the number of flows mixed withF at time
t along F ’s route. We tracked the worst case (lowest) and
the best case (highest) anonymity levels of a VoIP call. We
observe that at lower call volumes (64 Erlangs) calls with hold
time larger than 400 seconds may experience time durations
at which their anonymity level falls below 80% of the initial
value. Fortunately, 95% of voice calls are shorter than 400s
(see Fig 5). Long lasting calls may set up a lower watermark
level k′ ≤ k such that the AARSP route maintenance protocol
automatically terminates the call when its anonymity levelfalls
below k′.

B. Flow Analysis Attacks on AARSP

A flow analysis attack on AARSP operates efficiently as
follows. We assume that the adversary knows the parameterk
used by a callersrc. First, the adversary identifies all nodesp
such thatin(p) ≥ k; if there exists no suchp, then the attacker
picks p that maximizesin(p). Let Gκ

src be a sub-graph ofG
obtained using the top-κ shortest path tracing algorithm with
callersrc. We useGκ

src and the flow measurements to compute
the probability that the voice flow is routed fromsrc to p
(fsrc(p)) for all p such thatin(p) ≥ k starting withfsrc(src)
= 1. The algorithm used for computingfsrc(p) is described
in Section III-D.

Second, for every such nodep with in(p) ≥ k, we con-
structGκ

p as a sub-graph ofG obtained using the top-κ short-
est path tracing algorithm withp as the caller. We compute
the probability of a voice flow being routed fromsrc to r
via p (fsrc,p(r)) for every candidate receiverr starting with
fsrc,p(p) = fsrc(p), wherefsrc(p) is obtained from the first
step. Third, we compute the probability ofr being the re-
ceiver asfrecv(r) = fsrc,pivot(r), where pivot = argminp

{dist(src, p) + dist(p, r)}. Similar to other flow analysis at-
tacks, one could sort the receivers in descending order off(r)
and use a top-m probability metric to study the efficacy of the
attack.

Figures 22 and 23 compare the effectiveness of AARSP
with the shortest path route setup protocol (RSP) in mitigating
flow analysis attacks. We set the parameterk = ∞ so that
AARSP identifies themost anonymousroute from callersrc
to receiverdst that satisfies the latency constraint. We use the
flow analysis described in this section for AARSP and a flow
analysis attack with distance prior for RSP. Figure 22 shows
the top-10 probability using both AARSP and RSP for varying
call volumes. Observe that at low and moderate call volumes
AARSP offers significantly improved protection against flow
analysis attacks. Figure 23 shows the top-m probability for
both AARSP and RSP for varyingm and a call volume of
128 Erlangs. We also observe that AARSP consistently out
performs RSP for all values ofm.
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C. Tolerating Compromised Proxies

In this section, we study the effect of compromised proxies
on AARSP. Similar to Section III, we assume that a com-
promised node will execute AARSP honestly. However, the
malicious nodes may record observed information during the
voice session and collude with the external observer. In par-
ticular, a malicious node may reveal the mapping between its
in-flows and out-flows thereby decreasing the anonymity of a
VoIP flow.

We describe a simple extension to AARSP to tolerate ma-
licious nodes and yet preservek-anonymity. We allow the
caller src to specify a personalized security parameterc for
every VoIP call indicating that the route fromsrc to dst
should tolerate up toc compromised nodes while preserving
k-anonymity. The key idea is to construct a route fromsrc to
dst with at leastc+1 nodesp1, p2, · · · , pc+1 such thatin(pi)
≥ k for all 1 ≤ i ≤ c+1. One can introduce this constraint by
recording top-c anonymity levels in theanon field of ASRSP.
Now, one could replace the constraintanon ≥ k with anon
≥ (k, c).

While this approach offers significantly higher attack re-
silience, one can extend the flow analysis attack on ak-anonymous
AARSP to a(k, c)-anonymous AARSP. We assume that the
adversary knows the parametersk and c used by a caller
src. The adversary identifies a set of nodesS such that for
all nodesp ∈ S, in(p) ≥ k. For every permutation ofc
nodes from the setS, the adversary computes the probabil-
ity of a voice flow being routed fromsrc to r via p1, p2,
· · · , pc (fsrc,p1,p2,··· ,pc

(r)) for a candidate receiverr. We
recursively computefsrc,p1,p2,··· ,pi

(r) using flow analysis al-
gorithms onGκ

pi
and starting probabilityfsrc,p1,··· ,pi

(pi) =
fsrc,p1,p2,··· ,pi−1

(pi). The recursion terminates at the base case
fsrc(src) = 1. Finally, we compute the probability ofr be-
ing the receiver asfrecv(r) = fsrc,pivot(r), where pivot =
argmin{p1,p2,··· ,pc}⊆S {latdist(src, p1) + latdist(p1, p2) +
· · · + latdist(pc−1, pc) + latdist(pc, r)}. This attack reduces
a simple flow analysis attack on AARSP whenc = 1; however,
the pivot size and consequently the attack complexity grows
exponentially inc.

Figure 24 shows the effectiveness of the attack as we vary
the fraction of nodes that are compromised by the adversary
and the parameterc. We use a call volume of 128 Erlangs,
k = 10 andκ = 2 in this experiment. We observe that asc
increases the effectiveness of the attack decreases significantly;
for instance, when 10% of the nodes are compromised, using
c = 3 reduces the top-10 probability to 0.06 when compared to
c = 1 which results in a top-10 probability of 0.44. Nonethe-
less, when a large number of nodes are malicious AARSP
becomes vulnerable to flow analysis attacks. Under a realistic
setting, when only a small number of nodes (< 20%) are likely
to be malicious, AARSP offers very good protection against
flow analysis attacks.

Figure 25 shows the computation cost incurred to an adver-
sary ask increases. Ask increases, the number of pivot nodes
p, that is, p such thatin(p) ≥ k decreases; and thus, the
computation cost decreases. Figure 26 shows the computation
cost for an attack asc increases withk=∞. We observe that the
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k Time(s)
2 9.0
10 5.9
20 4.0
50 2.9

Fig. 25. Attack Cost Vs Anonymity Level (k)

computation cost for an attack grows rapidly withc, making
it harder for an adversary to launch flow analysis attacks in
real-time.

V. PERFORMANCEEVALUATION

A. Implementation Sketch

In this section, we briefly describe an implementation of
our algorithms using Phex [4]: an open source Java based
implementation of shortest route set up protocol (RSP). VoIP
protocols operate on top of the peer-to-peer infrastructure.
We have implemented our algorithms as pluggable modules
that can be weaved into the Phex client code using AspectJ
[12]. Our implementation is completely transparent to the VoIP
protocol that operates on top of the peer-to-peer infrastructure.
Also, our implementation does not require any changes to
topology construction and maintenance algorithms (as nodes
join, leave, fail or recover) and the underlying TCP/IP or UDP
based communication libraries.

Below we sketch our implementation of AARSP. The Phex
broadcast search protocol has four operations:initSearch,
processSearch, processResult and finSearch. These
four operations are implemented as event handlers in Phex.
When a Phex client receives a messages, it determines the
type of the message (search request, search result, etc) and

c Time(s)
1 2.9
2 4.4
3 11.6
4 43.5

Fig. 26. Attack Cost Vs Tolerance to Malicious Nodes (c)
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triggers the appropriate event handler. AARSP substitutesall
four event handlers (see Section IV). In addition, we also mod-
ify the search request payload and the search result payload
to include the parametersk and c. In the rest of this section,
all experimental results are reported using our implementation
deployed on 64 nodes in Planet Lab8.

B. Performance and Scalability

In this section, we compare the messaging cost and the
search latency of AARSP and RSP. Figure 27 shows the mes-
saging cost per node as we vary the call volume and the
anonymity parameterk (usingc = 1). These experiments show
that AARSP incurs about 1-3 times the messaging cost of RSP.
However, the search request and the results are typically of
the order of 300 Bytes. Hence, the communication cost at a
node for handling 10 messages (3 KB) is equivalent to a voice
session of one second (24 Kbps). Even though AARSP incurs
higher communication cost than RSP, its effect on the overall
bandwidth consumption is negligible.

Figure 28 shows the latency of a search operation as we
vary the call volume and the anonymity parameterk (usingc
= 1). This experiment shows that AARSPs incurs about 30-
40% higher search latency than RSP. One should note that the
search latency only affects the initial connection set up time.
Once the route is established AARSP ensures good quality
voice conversations by limiting the path latency to 250ms.
Figures 27 and 28 also show that the relative overhead of
AARSP over RSP decreases with call volume. The key intu-
ition here is that higher call volumes facilitate natural mixing
of voice flows, thereby decreasing the overall messaging and
search cost.

Figure 29 shows the average number of concurrent VoIP
calls handled by a node in the VoIP network (usingc = 1).
AARSP incurs a higher load primarily because the traffic is
not routed through the optimal route. Hence, a voice route
in AARSP may include more network hops than RSP. This
increases the average number of proxies that route one voice
call, and thus increases the average load on a proxy. The per-
centile increase in average node load for higher call volumes
is small. Hence, when the call volume is high (VoIP network
is heavily loaded), AARSP imposes small overheads (20-40%)
compared with RSP. On the other hand, when the call volume
is low (VoIP network is lightly loaded), AARSP incurs 2-3
times the average node load when compared to RSP. However,
this 2-3x increase in node load is incurred when the VoIP
network is itself lightly loaded; hence, AARSP does not harm
the performance and scalability of the VoIP network.

VI. RELATED WORK

Privacy has long been a hot button issue for both the VoIP
clients and the law enforcement bodies. On one hand, users
want their phone conversations to be anonymous; anonymity
offers thempossible deniabilitythereby shielding them from
law enforcement bodies. On the other hand FCC (Federal

8http://www.planet-lab.org/
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Communications Commission) [13] considers capability of track-
ing VoIP calls “of paramount importance to the law enforce-
ment and the national security interests of the United States”.
Similar to other VoIP privacy papers [30], we leave aside the
controversy between anonymity and security. Instead we focus
on technical feasibility of privacy attacks and defenses onVoIP
networks.

Mix [9] is a routing element that attempts to hide correspon-
dences between its input and output messages. A large number
of low latency anonymizing networks have been built using
the concept of a mix network [9][25]. Onion routing [16] and
its second generation Tor [10] aim at providing anonymous
transport of TCP flows over the Internet. ISDN mixes [20]
proposes solutions to anonymize phone calls over traditional
PSTN (Public Switched Telephone Networks). In this paper we
have focused on VoIP networks given its recent wide spread
adoption9.

It is widely acknowledged that low latency anonymizing
networks [10][16][7] are vulnerable to timing analysis attacks
[28][25], especially from well placed malicious attackers[33].
Several papers have addressed the problem of tracing encrypted
traffic using timing analysis [32][34][36][31][8][11][30]. All
these papers use inter-packet timing characteristics for trac-
ing traffic. Complementary to all these approaches, we have
introduced flow analysis attacks that target the shortest path
property of voice routes and presented techniques to provide
customizable anonymity guarantees in a VoIP network. Unlike
the timing analysis attacks, our approach does not rely upon
inter-packet times to detect caller-receiver pairs; instead we
analyze the volume of flow in the VoIP network and deduce
possible caller-receiver pairs using the flow information and
the underlying VoIP network topology.

Tarzan [15] presents an anonymizing network layer using a
gossip-based peer-to-peer protocol. We note that flow analysis
attacks target the shortest path property and not the protocol
used for constructing the route itself; hence, a gossip based
shortest path setup protocol is equally vulnerable to flow anal-
ysis attacks.

Traditionally, multicast and broadcast protocols have been
used to protect receiver anonymity [21][24]. However, in a
multicast based approach achievingk-anonymity may increase
the network traffic byk-fold. In contrast our paper attempts
to reroute and mix existing voice flows and thus incurs sig-
nificantly smaller overhead on the VoIP network.

VII. C ONCLUSION

In this paper we have addressed the problem of providing
privacy guarantees in peer-to-peer VoIP networks. First, we
have developed flow analysis attacks that allow an adversary
(external observer) to identify a small and accurate set of
candidate receivers even when all the nodes in the network
are honest. We have used network flow analysis and statistical
inference to study the efficacy of such an attack. Second, we
have developed mixing based techniques to provide a guaran-
teed level of anonymity for VoIP clients. We have developed

9According to TeleGeography Research [6], worldwide VoIP’sshare of
voice traffic has grown from 12.8% in 2003 to about 44% in 2007

an anonymity aware route setup protocol (AARSP) that allows
clients to specify personalized privacy requirements for their
voice calls (on a per-client per-call basis) using a quantifiable
k-anonymity metric. We have implemented our proposal on the
Phex client and presented detailed experimental evaluation that
demonstrates the performance and scalability of our protocol,
while meeting customizable privacy guarantees.
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