
Engineering Highly Accessed Web Sites for

Performance

Jim Challenger, Arun Iyengar, Paul Dantzig, Daniel Dias, and Nathaniel Mills

IBM Research, T. J. Watson Research Center, P. O. Box 704,

Yorktown Heights, NY 10598, USA,

fchallngr,aruni,pauldant,dias,wnm3g@us.ibm.com

Abstract. This paper describes techniques for improving performance

at Web sites which receive signi�cant tra�c. Poor performance can be

caused by dynamic data, insu�cient network bandwidth, and poor Web

page design. Dynamic data overheads can often be reduced by caching

dynamic pages and using fast interfaces to invoke server programs. Web

server acceleration can signi�cantly improve performance and reduce the

hardware needed at a Web site. We discuss techniques for balancing load

among multiple servers at a Web site. We also show how Web pages can

be designed to minimize tra�c to the site.

1 Introduction

Performance is a critical factor at manyWeb sites. Popular Web sites can receive

hundreds of thousands of hits per minute. A Web site which only receives a

moderate amount of tra�c can also su�er from slow response times if a signi�cant

percent of the requests are for dynamic data which are expensive to create since

dynamic data can consume orders of magnitude more CPU time to create than

static data.

There are a number of techniques which can be used to improve performance

at a Web site. Multiple processors can be used to scale the CPU capacity of the

system. We will describe techniques for balancing load among multiple proces-

sors. In order to reduce the overhead for generating dynamic pages, it is often

possible to cache the dynamic pages and re-use cached copies instead of gener-

ating a new copy each time. The cache must be explicitly managed so that it

is kept consistent. It is also important to use an e�cient interface for invoking

server programs to create dynamic data.

Web pages should also be properly designed to optimize performance. Web

pages can often be redesigned to provide more information close to the home

page so that less navigation is required to obtain critical information. Encryp-

tion consumes signi�cant CPU cycles and should only be used for con�dential

information; many Web sites use encryption for nonessential information such

as all of the image �les included in a Web page.

The remainder of the paper is organized as follows. Section 2 describes how

multipleWeb servers can be deployed to service high request rates and techniques



for routing requests to such servers. Section 3 describes how performance can

be improved with Web server acceleration. Section 4 describes techniques for

e�ciently serving dynamic data. Finally, Section 5 describes other techniques

a�ecting performance such as page design.

2 Multiple Web Servers

In order to handle signi�cant tra�c, Web servers must use multiple servers

running on di�erent computers. Some sites use mirroring in which di�erent Web

sites contain the same information. Clients are responsible for selecting one of

the mirrored Web sites. In some cases, the mirrored sites are geographically

dispersed, and clients are supposed to select the closest Web site.

There are a number of problems with mirroring. Clients must select an ap-

propriate Web site. This puts an extra burden on clients. There could be con-

siderable load imbalances if some sites are selected more than others. Mirroring

doesn't solve the problem of routing requests from one site to another when one

of the sites fail. There is also administrative work in maintaining multiple Web

sites and providing consistent content across the Web sites.

Because of the problems with mirroring, it is often preferable to have a sin-

gle Web site being serviced by multiple servers running on di�erent computers.

The servers might share information using a shared �le system such as the An-

drew File System (AFS) or Distributed File System (DFS). Information can also

be shared via a shared database or replicated across independent �le systems

running on the servers.

2.1 Routing Requests to Multiple Web Servers

One method for distributing requests to the various servers is by using the round-

robin Domain Name Server [1, 16] (RR-DNS). RR-DNS allows a single domain

name to be associated with several IP addresses which could each represent dif-

ferent Web servers. Client requests specifying the domain name will be mapped

to Web servers in a round-robin fashion.

There are several problems that arise with this method. First, caching of

name-to-IP address mappings at name servers can cause load imbalances. There

are typically several name servers between clients and the RR-DNS that cache

the resolved name-to-IP address mapping. In order to force a mapping to dif-

ferent server IP addresses, the RR-DNS can specify a time-to-live (TTL) for a

resolved name, such that requests made after the speci�ed TTL are not resolved

in the local name server, but are forwarded to the authoritative RR-DNS to

be re-mapped to the IP address of a di�erent HTTP server. Multiple name re-

quests made during the TTL period will be mapped to the same HTTP server.

If the TTL is made very small, there is a signi�cant increase in network tra�c

for name resolution. Therefore, name servers often impose their own minimum

TTL, and ignore small TTL's given by the RR-DNS. There is thus no way to

prevent intermediate name servers from caching the resolved name-to-IP address



mapping, even by using small TTL's. Many clients, for instance those served by

the same Internet service provider, may share a name server, and may therefore

be pointed to a speci�c Web server.

A second problem is that client caching of resolved name-to-IP address map-

pings can cause load imbalances. Since the clients may make future requests at

any time, the load on the HTTP servers cannot be controlled subsequently and

will vary due to statistical variations in client access patterns. Further, clients

make requests in bursts as each Web page typically involves fetching several ob-

jects including text and images, and this burst is directed to a single server node,

increasing the skew. It is shown in [8] that these e�ects can lead to signi�cant

dynamic load imbalance, requiring that the cluster be operated at lower mean

loads in order to be able to handle peak loads.

Another problem with RR-DNS is that round-robin is often too simplistic a

method for providing good load balancing. It is desirable to consider other factors

such as the load on individual servers. For instance, a particular Web server may

become overloaded due to requests for dynamic data, which is constructed from

many database accesses at a server node.

Finally, another important problem with RR-DNS is client and name server

caching of resolved name-to-IP address mappings make it di�cult to provide

high availability if Web server nodes fail. Since clients and name servers are

unaware of Web servers going down, they may continue to make requests to failed

servers. Similarly, it may be desirable to bring down a speci�c Web server node

of a cluster for maintenance purposes. Again, making IP addresses of individual

Web servers visible to the client and name servers makes it more di�cult to

achieve this. It is possible to con�gure back-up servers and perform IP address

take-overs when Web server node failures are detected, or when a node is to be

brought down for maintenance. However, not only is this hard to manage, but

if the back-up node is active, it may get twice the load after failure of a primary

node.

Another method for achieving load balancing is based on routing at the TCP

level (rather than standard IP routing), and is illustrated in Figure 1. A node of

the cluster serves as a so-called TCP router(s), forwarding client requests to the

di�erent Web server nodes in the cluster in a round-robin (or other) order. The

name and IP address of the router is public, while the addresses of the other

nodes in the cluster are hidden from clients. The client sends requests to the

TCP router node which in turn forwards all packets belonging to a particular

TCP connection to one of the server nodes. The TCP router can use di�erent

algorithms based on load to select which node to route to, or use a simple round-

robin scheme. The server nodes directly send the response back to the client,

bypassing the TCP router. Note that the response packets are large compared

to the request packets; these bypass the router. Thus, the overhead added by

the TCP router is small.

One advantage of the router scheme over the DNS-based solutions is that

good load balancing can be achieved and there is no problem of client or name

server caching. It is shown in [8] that the use of a TCP router results in better



Router


End User
 End User


End User
 End User


HTTP Server
HTTP Server


Fig. 1. A TCP router can load balance requests to multiple Web servers. Responses

from the server go directly to clients, bypassing the router.

load balancing than RR-DNS. Another advantage of using TCP routers is that

the router can use sophisticated load balancing algorithms which take the load

on individual servers into account as opposed to simple round-robin. Finally, the

TCP router provides high availability by detecting failure of Web server nodes,

and routing user requests to only the available Web server nodes. In addition,

for easy maintenance of the Web server cluster, the TCP router con�guration

can be changed to remove or add Web server nodes. Failure of the TCP router

node itself is handled by con�guring a back-up TCP router [8]. The back-up

TCP router can operate as a Web server during normal operation; on detecting

failure of the primary TCP router, the back-up TCP router would route client

requests to the remaining Web server nodes, possibly excluding itself.

There are a number of commercially available TCP routers. One example

is IBM's Network Dispatcher (ND) [10] which runs on stock hardware under

several Operating Systems (OS), including Unix, Sun Solaris, Windows NT,

and an embedded OS optimized for communication. The advantage of using an

embedded OS is that router performance is improved by optimizing the TCP

communications stack, and eliminating the scheduler and interrupt processing

overheads of a general-purpose operating system. ND can route up to 10,000

HTTP requests per second (when running under an embedded OS on a unipro-

cessor machine). Other commercially available TCP routers are the Web Server

Director by Radware [17] and the Resonate Central Dispatch [18]. Cisco Sys-

tems' LocalDirector [7] di�ers from the TCP router approach because packets

returned from servers go through the LocalDirector before being returned to

clients. A comparison of di�erent load balancing approaches is contained in [2].



If a single TCP router has insu�cient capacity to route requests to a site

without becoming a bottleneck, the TCP router and DNS schemes can be used

together. For example, a number of router nodes can be used, and the RR-

DNS method can be used to map di�erent clients to di�erent router nodes. This

hybrid scheme can tolerate the load imbalance achieved using RR-DNS because

the corresponding router will route any burst of requests that were mapped

by the RR-DNS to the same router to di�erent server nodes. It achieves good

scalability because (i) a long TTL can be used so that the node running the

RR-DNS does not become a bottleneck, and (ii) several router nodes can be

used achieving scaling beyond that of a single router.

One characteristic of many load balancing algorithms is that they spread

requests from the same client across the Web server nodes; while this is often

desirable, some applications need requests routed to speci�c servers. To support

such applications, ND allows requests to be routed with an a�nity towards spe-

ci�c servers. An example is the manner in which ND handles requests encrypted

using SSL (Secure Sockets Layer). SSL generates a session key which is used

for encrypting information passed between a client and server. Session keys are

expensive to generate. In order to avoid regenerating a session key for every

SSL request, session keys typically have a lifetime of about 100 seconds. After a

client and server have established a session key, all requests within the session

key lifetime between the speci�c client and server will use the same session key.

In a system with multiple Web servers, however, one Web server will not

know about session keys generated by another Web server. If a simple load

balancing scheme like round-robin is used, there is a high probability that two

SSL requests from the same client within the lifetime of a session key will be

sent to di�erent servers resulting in unnecessary generation of session keys. ND

avoids this problem by routing two SSL requests received from the same client

within 100 seconds of each other to the same server.

2.2 Geographically Distributed Web Servers

In addition to cluster of nodes at a single site, geographically distributed Web

servers supporting a single Web site provide for higher availability in the face

of catastrophic failures at a location, and also can provide better response time

by routing client requests to the lowest latency site for that client. There are

a number of methods for providing load balancing of client requests among

geographically distributed Web sites including: (i) Manual; (ii) DNS-based; (iii)

Open Shortest Path First (OSPF)-based; (iv) Geographical Dispatching.

(i) Manual (naive) load balancing: This is the obvious method, where the

client is given a choice of location, often based on a country selection, or geo-

graphical area. The obvious advantage is the simplicity of implementation. The

drawbacks include that it places the burden on the client, and the load across

the servers is not system controlled, leading to poor load balancing.

(ii) DNS-based: Geographical load balancing based on extending the basic

Domain Name Server techniques are gaining increasing popularity. As discussed,

in Section 2.1, DNS can be used to map incoming name resolution requests



for a Web server name to di�erent IP addresses, which in the geographically

distributed case is for the (single) IP address of each site. Each site, in turn,

could be hosted on multiple computers, as discussed in Section 2.1.

Various algorithms can be used by the extended DNS to map di�erent clients

to di�erent sites. The RR-DNS, outlined in Section 2.1, is the simplest, and maps

clients to sites in a round-robin manner. One drawback is that RR-DNS does

not take into account the current load on the sites, or the proximity of the

client to servers. Several other DNS site selection algorithms have been devised.

In one technique, the sites send load information to the DNS periodically; the

DNS maps incoming requests to the sites based on last known load, such as

the least loaded site, or round-robin among sites below a threshold load. The

DNS could also add an estimated load for all mapping requests since the last

known load, so as to attempt to prevent overloading the site(s) which was/were

previously lightly loaded till the next load information is received. As explained

in Section 2.1, the DNS technique is moderate at best in balancing the load,

because of caching in name servers and at the client. Nevertheless, site-level load

balancing using these and other similar techniques works reasonably well [2].

In another extended DNS technique, some source (i.e. requestor) IP addresses

can be associated with certain geographies, such as country of origin; in this case,

the DNS can map the request to the nearest geographically located sites. How-

ever, several IP address origins, such as those from multi-national companies,

cannot be identi�ed by country or geographical proximity. For such cases, an-

other known technique is referred to as WOMbat [9]. In this technique, either

the DNS and/or another set of sites ping the source IP address, and the site to

serve the request is based on the response times to the pings measured. Measur-

ing the \ping triangulation" delays is not possible for each request, because of

the overheads and delays this incurs. Tables can be maintained for the best site

to serve certain sets of source IP addresses.

Combinations of the above techniques can also be used. For example, the

closest site if it can be identi�ed as such can be selected unless the load at this

site is above a threshold; if so, the next closest, or other site can be selected.

(iii) Open Shortest Path First (OSPF)-based: OSPF is a routing protocol

supported by (most) routers on the Internet. OSPF determines the lowest cost

route to a destination IP address from a speci�c router. In using OSPF to balance

load across multiple Web sites, the Web servers are in a single subnet, and each

advertises the same IP address. Thus, the routers near the requestor route the

request along the lowest cost path to a selected Web server node.

This technique has been used for a number of IBM sports sites, including the

Olympic Games Web site, to balance the load among multiple Web sites.

(iv) Geographical TCP routing: One of the above techniques can be used

to achieve coarse load balancing across a set of geographically distributed sites

used to support a single Web site. However, once a Web client is directed to a

Web site in this manner, especially with the DNS or manual techniques, the Web

server loses control, and the clients, or many clients behind a gateway can make

requests to one site, potentially overloading it. In such a case, a TCP router at



that site can detect the overload situation, and re-route Web requests to one of

the other sites. We refer to this as geographical TCP routing; this technique is

supported by IBM's Network Dispatcher.

The TCP router at each site periodically get load information from the dis-

patchers at the other sites. When the load at one site is above a threshold, and

the load at a set of other sites is below a threshold, incoming Web requests are

re-directed to the other sites. This redirection can use various algorithms, such

as round-robin among other qualifying sites or weighted round robin based on

load or other criteria.

A combination of these techniques, using OSPF-based or DNS-based tech-

niques for coarse-grained load balancing, and geographical TCP routing for �ne-

grained load balancing, works well in practice.

3 Web Server Accelerators

The performance of Web servers is limited by several factors. In satisfying a re-

quest, the requested data is often copied several times across layers of software,

for example between the �le system and the application and again during trans-

mission to the operating system kernel, and often again at the device driver level.

Other overheads, such as operating system scheduler and interrupt processing,

can add further ine�ciencies. One technique for improving the performance of

Web sites is to cache data at the site so that frequently requested pages are

served from a cache which has signi�cantly less overhead than a Web server.

Such caches are known as httpd accelerators [6] or Web server accelerators.

We have developed a Web server accelerator [13] which runs under an embed-

ded operating system and can serve up to 5000 pages/second from its cache on a

uniprocessor 200 MHz PowerPC. This throughput is up to an order of magnitude

higher than that which would typically be achieved by a high-performance Web

server running on similar hardware under a conventional operating system. The

superior performance of our system results largely from the embedded operating

system, by optimizing the TCP communications stack, and by largely eliminat-

ing scheduler and interrupt processing. Bu�er copying is kept to a minimum.The

operating system is unsuitable for implementing general-purpose software appli-

cations (like database applications or on-line transaction processing) because of

its limited functionality. However, it is well-suited to specialized network ap-

plications such as Web server acceleration because of its optimized support for

communications.

In order to maximize hit rates and maintain updated caches, our accelerator

provides an API which allows application programs to explicitly add, delete, and

update cached data. Consequently, we allow dynamic Web pages to be cached as

well as static ones, since applications can explicitly invalidate any page whenever

the page becomes obsolete. Caching of dynamic Web pages is important for

improving the performance of many Web sites containing signi�cant dynamic

content.



Proxy


Request


Proxy


Request


Network


Router


Network


Cache


Accelerator


End User
 End User


HTTP Server
 HTTP Server


End User
 End User


Fig. 2. Web server acceleration.

As illustrated in Figure 2, the accelerator can be placed in front of a set

of Web server nodes. A TCP router runs on the same node as the accelerator

(although it could also run on a separate node). If the requested page is contained

in the cache, the page is returned to the client. Otherwise, the TCP router selects

a Web server node to service the request, and the request is sent to the selected

Web server node. Our accelerator can signi�cantly reduce the number of Web

servers needed at a Web site since a large fraction of the Web requests can be

handled by the accelerator cache. A nice feature of our accelerator is that it can

be used in conjunction with any server platform; special support in the operating

system for serving platforms is not required.

There are a number of Web server accelerators which are implemented either

in network routers, or as kernel-mode caches on the serving platform. Kernel-

mode accelerators generally require special operating system support. Examples

are IBM's Adaptive Fast Path Architecture (AFPA) cache, Microsoft's Scalable

Web Cache (SWC) [15], and kHTTPd for Linux (http://www.fenrus.demon.nl/).

Novell sells an httpd accelerator as part of its BorderManager product [12].

Web server accelerators can also be geographically distributed. In this case,

they di�er from proxy caches in that they cache content for speci�c sites, rather

than caching data from all Web servers. IBM has used geographically distributed

Web server accelerators for hosting a number of highly accessed sports sites.

Another example of a distributed Web server accelerator is the service o�ered

by Akamai (www.akamai.com). Akamai has a large number of distributed Web

caches, on the order of a few thousand. Web servers utilize Akamai's caching

service by running a utility at the Web server which modi�es the URLs of em-

bedded objects in pages to point to Akamai's caches. The base Web page is



fetched from the server, while the embedded objects, such as images, are ob-

tained from the Akamai caches. Akamai uses a DNS-based scheme to distribute

requests for cached objects among their caches.

Web server acceleration services are also provided by other providers, such as

Digital Island (http://www.digisle.net/),Mirror Image Internet (http://www.mirror-

image.com/), and epicRealm (www.epicrealm.com).

4 E�ciently Serving Dynamic Data

Web servers provide two types of data: static data from �les stored at a server

and dynamic data which are constructed by programs that execute at the time

a request is made. Dynamic pages can seriously reduce Web server performance.

High-performance Web servers can typically deliver several hundred static �les

per second. By contrast, the rate at which dynamic pages are delivered is often

orders of magnitude slower; it is not uncommon for a program to consume over

a second of CPU time in order to generate a single dynamic page. For Web sites

with a high proportion of dynamic pages, the performance bottleneck is often

the CPU overhead associated with generating dynamic pages.

Dynamic pages are essential at Web sites which provide data that change

frequently. If pages are generated dynamically by a server program, the server

program can return the most recent version of the data. If, on the other hand,

the data are stored in �les and served from a �le system, it may not be feasible

to keep the �les current. This is particularly true if the number of �les which

need to be updated frequently is large.

One technique for improving performance of dynamic data is to cache dy-

namic pages the �rst time they are created. That way, subsequent requests for

the same dynamic page can access the page from a cache instead of repeatedly

invoking a program to generate the same page. This was a key technique for

improving performance at the Web sites for the 1996 and 1998 Olympic Games

Web sites [11, 3]. These Web sites served signi�cant amounts of dynamic data,

and caching was a critical component in reducing the amount of hardware need

for the Web sites.

In order to keep the cached data consistent, the server should explicitly man-

age the cache contents instead of relying on expiration times. Algorithms for

keeping cached dynamic data consistent are described in [4].

Dynamic data cannot always be cached. Some requests cause updates to oc-

cur at the server and thus must invoke a server program. If a Web site is gener-

ating pages which are personalized to individual clients, speci�c pages might not

be accessed by multiple clients which makes caching ine�ective. A technique we

have developed to reduce dynamic overhead in this situation is to generate Web

pages from fragments. Personalized parts of the page can be con�ned to speci�c

fragments. In order to generate a personalized page, a personalized fragment

is added to a template containing the rest of the page, a process which incurs

signi�cantly less overhead than regenerating the entire page from scratch [5].



Many Web sites create dynamic data from databases. Ine�cient implemen-

tations will make a new connection to the database for each access. Connecting

to a database can incur signi�cant CPU overhead. It is more e�cient to main-

tain open connections to the database via long-running processes so that new

connections are not required for each access [14].

The next section discusses techniques for getting more out of servers. We

examine one aspect of what distinguishes a static page from a dynamic one and

try and determine if pages once thought uncachable might, in fact, be cachable.

We discuss the use of database and application triggers to automatically generate

HTML pages. Some of the consequences of the use of server-side processing and

ine�cient HTML are demonstrated. Finally we discuss pregeneration of HTML

pages in more detail, with an eye toward separating server functions from page

generation functions to allow better tuning of servers.

4.1 Myths About the Cachability of Dynamic Data

There has long been a misconception that dynamic pages are not cachable. It is

true that some pages must be recreated on each fetch of the page. However, a

great deal of data commonly thought of as dynamic is, in fact, highly cachable.

The di�culty with managing changing pages is controlling cache coherence.

If a page changes at intervals close to, or greater than the natural lifetime of

objects in caches, it is easier to manage. If the page changes more frequently,

cache management becomes more di�cult. But if frequently changing pages can

be cached and updated properly, the savings can be considerable. For example

pages with current scores of sporting events are often requested hundreds of

times a second while the event is in progress, making it quite pro�table to invest

in the overhead of managing short lifetimes.

While an argument can be made that, given su�cient disk space and com-

puting power, nearly every page is cachable, the cost of caching some pages can

exceed the cost of generating the page on each request. Such pages can validly

be considered non-cachable. For instance, attempting to cache airline reservation

information is di�cult because the data changes too frequently and the number

of pages a�ected is very large. Current stock quotes are another example where

the update rate may be signi�cantly higher than the request rate.

The choice of where and when an object should be cached can also in
u-

ence server design. Private data such as bank balances might be cachable in

a well-controlled web server accelerator but not in public proxy caches. Server

performance can be improved this way, but tra�c at the proxy remains un-

changed. Highly public data, however, can bene�t from proxy caching because

the more general appeal of such data increases the frequency of access. The na-

ture of the data is also a consideration. Some data can tolerably be somewhat

out of date, signi�cantly increasing its cachability. Stock quotes, for instance,

are often served with 20-minute delays and disclaimers regarding their use for

buy/sell decisions. This relaxation of requirements could well be su�cient to

permit successful caching in Web accelerators and even in proxies.



Consider a bank account where the bank's server has a Web server accel-

erator that is managed directly by the server itself. When the balance is �rst

requested, the server places a copy of the returned page in its accelerator cache

and notes that the user is active. This also causes a trigger to be set in the

database that results in the the page being regenerated and recached if any

change occurs. After a period of inactivity, or if the user explicitly logs out, the

trigger and cached copies are then removed. This scheme can be optimized if

a login process is required to establish a session. Part of session initialization

would include prefetching commonly accessed information such as the current

account summary and establishing appropriate triggers. The key idea here is

that users often view shopping carts or account summaries many times before

making a change that a�ects the underlying data. This technique can be used

for many applications traditionally considered uncachable such as shopping carts

and online banking.

Pages whose content can be classi�ed as news are potentially quite cachable

regardless of the update rate, because a great deal is known about both the

update rate and the request rate. In general, news classi�ed as current is the news

most people fetch: this morning's headlines, the current sports scores, today's

Doonesbury. News servers can therefore bene�t greatly by forcing pages into

cache as soon as they are generated, and without waiting for an explicit request.

Cache misses against such pages can be very costly, because of their high request

rate. When such a page is allowed to expire from cache, each subsequent request

generally requires a new fetch from the server, thus causing disruptive request

spikes at the server. Some proxies and web accelerators do not queue subsequent

requests for a page if a fetch for the page is already pending to the host because

of the di�culty of error recovery. Rather, if the requested object is not in cache,

the request is forwarded to the host regardless of whether a similar request is

already in progress. This is not a problem for infrequently accessed pages, but

for popular pages, this can cause a great number of redundant host accesses until

the object �nally arrives in cache. This entire problem can be sidestepped for

pages known to be popular by simply prefetching as soon as they are available.

Ideally, caches permit authenticated applications to directly manipulate their

contents by adding, removing, and updating items. Unfortunately there is no

standardization of cache protocols and APIs among vendors, so few commercial

caches provide this ability yet. Older protocols such as ICP were designed to solve

cache-to-cache communication problems and do not provide su�cient function

for host-to-cache control.

Some caches allow authorized servers to fetch items via specially con�gured

addresses. These addresses can be con�gured to bypass the cache for the fetch,

but to add/replace the item in the cache when it arrives, thus providing a sort

of \proxy-client" update mechanism. Unfortunately there is no comparable way

to delete items, so if explicit object deletion is required rather than object re-

placement, a di�erent mechanism such as time-based expiration is required.



4.2 Overuse of HTTP Services

Another signi�cant cause of overhead on http servers is the use of server ex-

tensions. These extensions have become very popular and come in many forms:

server side includes (SSI), Java Servlets, Java Server Pages (JSP), the mod perl

extensions to Apache, Microsoft's Active Server Pages (ASP), as well as more

low-level interfaces such as Netscape's NSAPI and Apache's modules. The Com-

mon Gateway Interface (CGI) is still used but due to its very high overhead, is

being replaced by the other, more e�cient, approaches.

These extensions can provide extremely useful services, particularly when a

large number of similar pages can be generated from a site. For example, Mi-

crosoft's Terraserver (http://terraserver.microsoft.com) uses ASP to implement

point-and-click navigation over aerial photographs of most of the continental

United States.

However, these extensions use cycles that may be better consumed serving

pages. One common example is the \factoid", or \thought of the day", a short

snippet of trivia or wisdom chosen at random and appended to each page of

a site. These are usually included by some form of server-side parser such as

SSI. The cost of doing this is very large: the server must parse every page as it

serves it. However, we have found that statically choosing a random factoid only

at initial page generation time produces signi�cant savings at the server. Many

users don't even notice the factoid, and those that do don't generally reload

the page repeatedly just to see how it changes. If the site has any elements of

change (all news sites, for example), the factoid tends to change fairly frequently

anyway.

The per-page overhead of simple features such as factoids may seem small.

However, the server has to serve those pages over and over, and at very high

rates on a busy site. The accumulation of small overheads such as serve-time

factoids can be signi�cant.

Suppose a server extension is used to add a factoid to a page. Let us assume

that the average number of bytes of HTML per page is 10,000 bytes. This could

easily require an extra 20,000 instructions to parse the page, �nd the SSI direc-

tive, fetch the factoid text, insert it into the page, and �nally be ready to serve

the page. The IBM sports sites are starting to experience extended peak request

rates approaching 1,000,000 pages per minute. These peak rates are no longer the

spikes seen in the early days of the web, but are extended, 
at peaks lasting as

long as several hours. To insert a factoid at serve time, given these assumptions,

requires additional processing power su�cient to serve (1,000,000/60) * 20,000

= 333,333,333 additional instructions per second. It is for this reason that the

IBM sports servers have switched to more static factoids, generated only once

at page composition time, rather than at page serve time.

Ine�cient HTML is another signi�cant performance drain. Excessive use of

scripting, deeply nested tables, long hypertext references, and embedded com-

ments and blanks can signi�cantly increase the size of a page. One site recently

analyzed has over 6,000 bytes of Javascript served on every page, whether the

script is needed or not, as a result of the design of the common headers and foot-



ers for each page. Suppose one of the sports sites mentioned above was serving

these pages. During peak periods of 1,000,000 pages per minute the site would

have to serve an additional (1,000,000 / 60) * 6,000 = 100,000,000 bytes per

second, requiring very substantial increase in network infrastructure as well as

additional CPU horse power to feed the network.

4.3 Pre-Generation of Pages

Disk space is inexpensive these days. Several 40 GB disks are signi�cantly less

expensive than a new server. If a site is heavily visited, pre-generating all pages

and serving them as 
at �les can result in signi�cant savings. This is simple when

the database is static or mostly static. If the database changes often, it may still

be easy to \
atten" the pages. Industrial-strength databases usually implement

the concept of database triggers. Through the use of database triggers, one can

easily associate HTML page generation with database updates. This technique

has allowed the IBM Olympic Games and Sports sites to actually decrease the

amount of hardware, despite extremely high growth of tra�c. Techniques for

doing this are described in [4].

One problem with database triggers is that most real-world events cause mul-

tiple database updates. Triggering on each database update results in expensive

redundant triggers that can be di�cult to manage. If the transaction has to

be rolled back before it is complete, some triggers would have been erroneously

delivered, resulting in the generation of inconsistent pages. This problem can

be solved with the use of a \commit table". The database loader is modi�ed

so that after committing the actual transaction updates, a single update to the

commit table is made summarizing the transaction. The database trigger is now

attached only to the commit table. This technique solves the problem of rollback,

and reduces the number of trigger activations to a minimum.

Database triggers are not always available or practical to use. In these cases,

simple log-following programs that parse logs produced by database loaders or

content generating programs can be used in lieu of database triggers. If the

publishing tools have APIs, appropriate hooks can sometimes be inserted into

the tools to trigger page generation.

These examples illustrate the idea of separating page serving from page com-

position. Web servers generate a unique load on the system. Page composition

creates a signi�cantly di�erent type of load. It can be di�cult to tune a sys-

tem that performs both tasks well, and it can be even more di�cult to tune

the system to do both tasks well in the same process (such as a threaded http

server). By partitioning two or more systems so that some are dedicated solely

to the task of generating pages, and dedicating the rest to serving, systems can

be tuned for maximum throughput.

5 Other Factors A�ecting Performance

Web page design can have a signi�cant impact on performance. Web pages should

be designed to convey useful information in a limited number of pages so that



clients don't navigate through too many pages to obtain the information that

they are looking for. For example, Web page design for the 1998 Olympic Games

Web site was considerably improved over the design for the 1996 Olympic Games

Web site in order to reduce the number of intermediate pages viewed for accessing

information. Figure 3 shows a home page from the 1996 Olympic Games Web

site. The page doesn't contain much useful information. Clients must navigate to

other pages in order to obtain the information they are looking for. By contrast,

the home page for the 1998 Olympic Games Web site shown in Figure 4 contains

important information on it. Fewer pages must be navigated through in order to

obtain useful information. We estimate that moving from the 1996 page design

to the 1998 page design may have decreased hits by more than a factor of two.

In order to reduce the number of hits to a Web site, static content can be

cached remotely in proxy caches. A �le cached at a remote proxy can have an

expiration time associated with it indicating when the object should no longer

be served. One problem with caching content in proxy caches is that standard

protocols don't allow a server to pre-emptively contact proxy caches in order

to notify the caches that a �le has changed. Since expiration times are often

di�cult to guess precisely, a proxy cache may continue to serve stale data if

an object changes before its assigned expiration time. Alternatively, if a server

assigns expiration times conservatively so that objects usually change long after

their assigned expiration times have expired, the server is likely to receive more

requests for updates from proxy caches than are needed.

Encrypting Web pages via SSL can consume signi�cant CPU cycles. In order

to reduce overhead, only essential information should be encrypted. A mistake

sights will often make is to encrypt not only text containing con�dential in-

formation but embedded images as well. This can increase the CPU overhead

signi�cantly since a Web page might contain several embedded images, and per-

haps none of them contain con�dential information.

Although data encrypted via SSL is generally not cached within the network,

such data can be cached in browsers if an expiration time is provided. Many sites

have common navigation bars, buttons, logos, etc. which are used on several

di�erent pages. If these entities need to be encrypted, expiration times should

be included in order to allow them to be cached in browsers. This will reduce the

number of SSL requests to the site for the cached objects. While browser caching

of nonencrypted objects also can improve performance, caching of encrypted

objects can reduce server load more signi�cantly because of the high overhead

of SSL requests.

The organization of content and the design of Web pages can adversely a�ect

performance. The HTTP protocol used to retrieve Web page content supports

keep-alive sockets, a method allowing the client requesting content to reuse the

same connection to the Web server for subsequent content requests once the

initial request has been satis�ed. Reusing sockets can avoid the overhead of ne-

gotiating SSL keys and network connections. If a page is designed to draw content

from more than one server, this can cause the client to have to perform a DNS

lookup for the various servers referenced, close previously opened connections



Fig. 3. Home page for the 1996 Olympic Games Web site. Clients must navigate to

other Web pages in order to obtain useful information.



Fig. 4. Home page for the 1998 Olympic Games Web site containing signi�cant useful

information.



and establish new connections to other servers. If the content can be located on

the same server, all of this overhead can be avoided. Keep-alive sockets can also

be closed prematurely by improperly tuned servers, where the session time out

is set too low causing the server to close the socket unnecessarily and forcing the

client to reestablish a connection.

Because the client (e.g., browser) is able to provide content caching, page

designers should ensure the same content (e.g., menu GIFs) are requested using

the same URL's, thereby allowing the request to be satis�ed locally from the

cache. We have seen cases where the main page and search page presented the

same images (e.g., menus, logos), but each was drawn from di�erent locations on

the server forcing the client to re-request the same content. Menus often comprise

multiple images, one for each selection. Therefore, to populate the menu requires

the client to make multiple requests to receive the individual menu images. Even

if the content is able to be served from its cache, a request may be sent from

the client to the server to test to see that the cached copy is still viable. By

consolidating multiple menu images into one larger image and employing an

image map to determine which portion of the menu bar has been selected, only

one request is required to retrieve the menu (or validate the cached menu is

viable), saving on network transmissions and relieving the server by reducing

the number of requests it must satisfy.

We have seen many Web pages comprising 20 or more components, often re-

sulting in downloads of more than 100,000 bytes. While these pages perform well

for the developers connected by 100MB LANs to local servers, consider the typ-

ical customer attaching remotely through the Internet via a 28,800 modem and

able to retrieve less than 4000 bytes per second. Often, changing the size or num-

ber of colors employed by images can have dramatic impact on improving Web

page performance. By paying more attention to the ink to information ratios,

one can often improve performance and simplify the presentation of information

without sacri�cing its beauty.

Designing Web pages to be e�ective is an art requiring the authors to strike

a balance between information, aesthetics and performance considerations. The

application or purpose of the Web page being served plays a large part in select-

ing the \best" design for a Web page. For example, the introductory page for

a Web site provides the jumping o� point to access the sites features. Is there

really a need to have more information than can be viewed without scrolling? If

not carefully coded, retrieval of information unable to be viewed in the visible

portion of the browser can cause the page to be held pending retrieval of size

and placement information before the browser can render the page. This leaves

customers staring at a blank or partially formed page while they wait to use

the Web page. Tags labeling page components with their dimensions allow the

browser to begin page rendering as other components are retrieved. By using

text in combination with graphic buttons, a page can be made navigable before

all the images are retrieved. Even in cases where lots of information needs to be

retrieved for a Web page, the design can make the Web page useful before all

information is retrieved. Consider auction sites that are e�ective by presenting



the most commonly sought information (e.g., current bid, auction close, brief

item description, seller) in the visible portion of the browser while the images of

the items being auctioned and supporting bid histories are retrieved below the

visible portion. By presenting customers with the information they seek while

the remainder is retrieved, the customer switches from waiting to comprehending

(e�ectively allowing use of think time to retrieve the supporting information).

Though it still takes time to completely retrieve the page, the customers will

not perceive poor performance because they can begin using the page soon after

making their retrieval requests.

When engineering highly accessed Web sites for performance, it is important

to understand the end-to-end dynamics of Web page retrievals. Though compo-

nents are often able to be retrieved concurrently, the schedule by which they are

retrieved and the ability of the receiving application to render the content plays

a large part in customer-perceived performance.

References

1. T. Brisco. DNS Support for Load Balancing. Technical Report RFC 1974, Rutgers

University, April 1995.

2. V. Cardellini, M. Colajanni, and P. Yu. Dynamic Load Balancing on Web-Server

Systems. IEEE Internet Computing, pages 28{39, May/June 1999.

3. J. Challenger, P. Dantzig, and A. Iyengar. A Scalable and Highly Available System

for Serving Dynamic Data at Frequently Accessed Web Sites. In Proceedings of

ACM/IEEE SC98, November 1998.

4. J. Challenger, A. Iyengar, and P. Dantzig. A Scalable System for Consistently

Caching Dynamic Web Data. In Proceedings of IEEE INFOCOM'99, March 1999.

5. J. Challenger, A. Iyengar, K. Witting, C. Ferstat, and P. Reed. A Publishing

System for E�ciently Creating Dynamic Web Content. In Proceedings of IEEE

INFOCOM 2000, March 2000.

6. A. Chankhunthod et al. A Hierarchical Internet Object Cache. In Proceedings of

the 1996 USENIX Technical Conference, pages 153{163, January 1996.

7. Cisco Systems. Inc. Cisco LocalDirector. http://www.cisco.com/warp/public/cc/

cisco/mkt/scale/locald/index.shtml.

8. D. Dias, W. Kish, R. Mukherjee, and R. Tewari. A Scalable and Highly Available

Web Server. In Proceedings of the 1996 IEEE Computer Conference (COMPCON),

February 1996.

9. G. Goldszmidt and A. Stanford-Clark. Load Distribution for Scalable Web Servers:

Summer Olympics 1996 - A Case Study. In Proceedings of the 8th IFIP/IEEE In-

ternational Workshop on Distributed Systems: Operations and Management, Oc-

tober 1997.

10. G. Hunt, G. Goldszmidt, R. King, and R. Mukherjee. Network Dispatcher: A

Connection Router for Scalable Internet Services. In Proceedings of the 7th Inter-

national World Wide Web Conference, April 1998.

11. A. Iyengar and J. Challenger. Improving Web Server Performance by Caching

Dynamic Data. In Proceedings of the USENIX Symposium on Internet Technologies

and Systems, December 1997.

12. R. Lee. A Quick Guide to Web Server Acceleration. http://www.novell.com /bor-

dermanager/accel.html.



13. E. Levy, A. Iyengar, J. Song, and D. Dias. Design and Performance of a Web

Server Accelerator. In Proceedings of IEEE INFOCOM'99, March 1999.

14. Y. H. Liu, P. Dantzig, C. E. Wu, and L. M. Ni. A Distributed Connection Manager

Interface for Web Services on SP Systems. In Proceedings of the International

Conference for Parallel and Distributed Systems, June 1996.

15. Microsoft Corporation. Installation and Performance Tuning of Microsoft Scalable

Web Cache (SWC 2.0). http://www.microsoft.com/technet/iis/swc2.asp.

16. P. Mockapetris. Domain Names - Implementation and Speci�cation. Technical

Report RFC 1035, USC Information Sciences Institute, November 1987.

17. Radware Ltd. Complete IP Load balancing Solutions from RADWARE.

http://www.radware.co.il/.

18. Resonate Inc. Central Dispatch - Data Sheets. http://www.resonate.com /prod-

ucts/central dispatch/data sheets.html.


